SUPPLEMENTARY MATERIAL

Novel Cyclam Multicomponent Crystal Forms: Synthesis, Characterization and Antimicrobial Activity

Rajaa Saied, ¹ Paula C. Alves, ^{1,2} Patrícia Rijo,^{3,4} Vânia André,^{1,2*} Luis G. Alves^{1,2*}

¹ Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; ²Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento, Avenida António José de Almeida, n.º 12, 1000-043 Lisboa, Portugal; ³ Universidade Lusófona's Research Center for Biosciences and Health Technologies (CBIOS), Campo Grande 376, 1749-024 Lisboa, Portugal; ⁴ Research Institute for Medicines (iMed. ULisboa), Faculty of Pharmacy, Universidade de Lisboa (UL), Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal

Figure S1B: ${}^{13}C_{{}^{1}}H_{{}^{2}}NMR$ spectrum of **3** in $D_{2}O/(CD_{3})_{2}SO$.

Figure S2A: ¹H and ¹⁹F NMR spectra of 4 in $D_2O/(CD_3)_2SO$.

Figure S2B: ${}^{13}C_{\{}^{f1}H_{\}}^{3}$ NMR spectrum of 4 in $D_2O/(CD_3)_2SO$.

Figure S4: FT-IR spectra of 4.

Figure S5: Experimental (black) and theoretical (blue) PXRD patterns of 3.

Figure S6: Experimental (black) and theoretical (blue) PXRD patterns of 4.

Figure S7B: ${}^{13}C_{\{}^{f1}H_{\}}^{3}$ NMR spectrum of 5 in $D_2O/(CD_3)_2SO$.

Figure S8B: ${}^{13}C_{1}^{f1}H_{1}^{3}$ NMR spectrum of 6 in $D_{2}O/(CD_{3})_{2}SO$.

Figure S9: FT-IR spectra of 5.

Figure S10: FT-IR spectra of 6.

Figure S11: Experimental (black) and theoretical (blue) PXRD patterns of 5.

Figure S12: Experimental (black) and theoretical (blue) PXRD patterns of 6.

2) Hydrogen bond details for compounds 3-6

Sym. Op.	D–H…A	d(D-H) (Å)	$d(\mathrm{H}^{\cdot\cdot\cdot}\mathrm{A})(\mathrm{\AA})$	$d(\mathbf{D}\cdots\mathbf{A})(\mathbf{A})$	(DHA) (°)
<i>x, y, z</i>	$N_2 - H_{1N} \cdots O_1$	0.91(3)	2.01(3)	2.853(3)	154(3)
<i>x, y, z</i>	$N_2 - H_{1N} \cdots O_2$	0.91(3)	2.42(3)	3.151(3)	137(3)
1-x, -y, 1-z	N_2 - H_{2N} ···O ₂	0.83(3)	2.00(3)	2.766(3)	152(3)
<i>x, y, z</i>	N_3 – H_{3N} ···O ₁	0.95(4)	1.86(3)	2.652(3)	140(3)
x, y, z	N_5 – H_{4N} \cdots O_4	0.93(3)	1.85(3)	2.752(3)	163(3)
2-x, -y, 1-z	$N_5 - H_{5N} \cdots O_3$	0.90(3)	1.93(3)	2.759(3)	151(2)
<i>x, y, z</i>	$N_6-H_{6N}\cdots O_4$	0.85(4)	1.92(4)	2.617(4)	138(3)

Table S1: List of the main hydrogen bonds found for 3

 Table S2: List of the main hydrogen bonds found for 4
 Image: Comparison of the main hydrogen bonds found for 4

Sym. Op.	D–H···A	d(D–H)	$d(\mathbf{H}^{\dots}\mathbf{A})$	$d(D \cdots A)$	(DHA)
		(Å)	(Å)	(Å)	(°)
-x, 1-y, 1-z	$N_2 - H_{1N} \cdots N_1$	0.91(3)	2.54(3)	3.013(4)	113(3)
¹ / ₂ -x, ¹ / ₂ -y, 1-z	$N_2 - H_{1N} \cdots O_2$	0.91(3)	1.99(4)	2.766(5)	143(3)
$-\frac{1}{2}+x, \frac{1}{2}+y, z$	$N_2 - H_{2N} \cdots O_1$	0.93(4)	1.84(4)	2.754(5)	169(4)
$-\frac{1}{2}+x, \frac{1}{2}+y, z$	$N_2 - H_{2N} \cdots O_2$	0.93(4)	2.54(4)	3.223(5)	131(3)
x, y, z	$N_3-H_{3N}\cdots O_1$	0.76(4)	2.01(4)	2.653(5)	143(4)

Sym. Op.	D–H···A	<i>d</i> (D–H) (Å)	$d(\mathrm{H}^{\cdot\cdot\cdot}\mathrm{A})(\mathrm{\AA})$	$d(\mathbf{D}\cdots\mathbf{A})(\mathbf{\mathring{A}})$	(DHA) (°)
<i>x, y, z</i>	$O_1 - H_{10} \cdots O_3$	0.82	1.81	2.531(7)	145
1-x, 2-y, -z	$N_2 - H_{1N} \cdots O_2$	0.92(5)	1.82(5)	2.741(5)	162(4)
1-x, -y, 1-z	$N_4 - H_{2N} \cdots O_6$	0.73(5)	2.14(4)	2.807(6)	153(4)
<i>x, y, z</i>	$O_3-H_{3O}\cdots N_2$	0.82	1.99	2.799(6)	169
<i>x, y, z</i>	N_4 - H_{3N} ···· O_5	0.91(7)	1.89(6)	2.746(6)	157(6)
<i>x, y, z</i>	$O_4 - H_{4O} \cdots O_5$	0.82	1.77	2.497(5)	147

Table S3: List of the main hydrogen bonds found for compound (5)

Table S4: List of the main hydrogen bonds found for compound 6

Sym. Op.	D–H···A	<i>d</i> (D–H) (Å)	$d(\mathrm{H}^{\dots}\mathrm{A})$ (Å)	$d(\mathbf{D}\cdots\mathbf{A})$ (Å)	(DHA) (°)
<i>x, y, z</i>	$N_2 - H_{1N} \cdots O_2$	0.97(4)	1.92(3)	2.876(4)	166(3)
<i>x, y, z</i>	$N_2 - H_{1N} \cdots O_3$	0.97(4)	2.52(4)	3.179(3)	125(2)
<i>x, y, z</i>	O_1 - $H_{1O} \cdots O_2$	0.82	1.83	2.558(3)	147
<i>x, y, z</i>	$N_2 - H_{2N} \cdots O_6$	0.89(4)	2.07(3)	2.824(4)	143(3)
<i>x, y, z</i>	N_2 - H_{2N} \cdots N_3	0.89(3)	2.53(3)	3.051(3)	118(2)
<i>x, y, z</i>	$N_4 - H_{3N} \cdots O_3$	0.88(3)	2.09(3)	2.845(4)	143(3)
<i>x, y, z</i>	N_4 – H_{3N} \cdots N_1	0.88(3)	2.59(3)	3.071(4)	115(3)
<i>x, y, z</i>	N_4 – H_{4N} \cdots O_5	0.91(3)	1.89(3)	2.792(4)	169(3)
<i>x, y, z</i>	$O_4-H_{4O}\cdots O_5$	0.82	1.83	2.557(3)	147

3) Antimicrobial activity

Table S5: Minimum inhibitory concentration values (MIC, μ g/mL) of compounds **1-6**, flufenamic acid (FA) as well as positive and negative controls Candida albicans and Saccharomyces cerevisiae (yeasts), Escherichia coli and Pseudomonas aeruginosa (Gram-negative bacteria) and Staphylococcus aureus, Enterococcus faecalis and Mycobacterium smegmatis (Gram-positive bacteria) after 24h for bacteria and after 48h for yeasts.

Microorganisms		FA	1	2	3	4	5	6	Positive control	Negative control
Gram-	M. smegmatis	>125.00	31.25	<0.49	40.63	<0.49	32.50	0.98	<0.49 (Van)	125.00
positive	E. faecalis	62.50	10.00	3.91	5.44	7.81	32.50	7.81	<0.49 (Van)	125.00
Bacteria	S. aureus	62.50	10.00	7.81	10.88	7.81	62.00	7.81	3.91 (Van)	125.00
	S. aureus MRSA	5.86	36.25	3.91	40.63	7.81	32.50	7.81	0.98 (Van)	125.00
Gram-	P. aeruginosa	31.25	16.88	7.81	3.22	7.81	8.13	15.63	<0.49 (Nor)	62.50
negative	E. coli	>62.50	6.41	7.81	5.26	7.81	8.13	7.81	<0.49 (Nor)	62.50
Bacteria										
Yeasts	S. cerevisiae	>62.50	10.00	15.63	5.44	15.63	16.25	31.25	15.63 (Nys)	62.50
	C. albicans	62.50	5.00	15.63	5.44	31.25	16.25	62.50	7.81	125.00
									(Nys)	
Positive controls: Nys – nystatin; Nor – norfloxacin; Van – vancomycin. Negative control: DMSO.										

Note: The antimicrobial effect activity of flufenamic acid (FA) is limited by the effect of DMSO for M. smegmatis, E. coli and S. cerevisiae.