Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2023

Supplementary Material

Introducing intramolecular, interligand arene–alkynyl 2-interactions into heteroleptic [Cu(N^N)(P^P)]+ complexes

Deyanira Gejsnæs-Schaad, Marco Meyer, Alessandro Prescimone, Catherine E. Housecroft* and Edwin C. Constable

Contents:

Scheme S1

Figures S1–S12. NMR spectra of ligands 1–3

Figures S13–S30. NMR spectra of the copper(I) coordination compounds.

Table S1

Scheme S1. Structures of previously published N^N ligands 6,6'-bis(but-3-en-1-yl)-2,2'-bipyridine, 6-(but-3-en-1-yl)-6'-methyl-2,2'-bipyridine or 6-(pent-4-en-1-yl)-6'-methyl-2,2'-bipyridine.

Reference: J. Wöhler, M. Meyer, A. Prescimone, E.C. Constable and C.E. Housecroft, Dalton Trans., 2022, 51, 13094.

Fig. S1. ¹H NMR spectrum of **1**. (500 MHz, 298 K, acetone- d_6). Scale given in δ / ppm. * = residual acetone- d_5 ; ** = H₂O and HOD.

Fig. S2. ¹³C{¹H} NMR spectrum of **1**. (126 MHz, 298 K, acetone- d_6). Scale given in δ / ppm. * = acetone- d_6 .

Fig. S3. HMQC spectrum of **1**. (500 MHz ¹H, 126 MHz ¹³C{¹H}, 298 K, acetone-d₆). * = acetone-d₆ (in ¹³C{¹H}) or residual acetone-d₅ (in ¹H); ** = H₂O.

Fig. S4. HMBC spectrum of **1**. (500 MHz ¹H, 126 MHz ¹³C{¹H}, 298 K, acetone-d₆). * = acetone-d₆ (in ¹³C{¹H}) or residual acetone-d₅ (in ¹H); ** = H₂O.

Fig. S5. ¹H NMR spectrum of **2**. (500 MHz, 298 K, acetone- d_6). Scale given in δ / ppm. * = residual acetone- d_5 ; ** = H₂O and HOD.

Fig. S6. ¹³C{¹H} NMR spectrum of **2**. (126 MHz, 298 K, acetone- d_6). Scale given in δ / ppm. * = acetone- d_6 .

Fig. S7. HMQC spectrum of **2**. (500 MHz ¹H, 126 MHz ¹³C{¹H}, 298 K, acetone-d₆). * = acetone-d₆ (in ¹³C{¹H}) or residual acetone-d₅ (in ¹H); ** = H₂O.

Fig. S8. HMBC spectrum of **2**. (500 MHz ¹H, 126 MHz ¹³C{¹H}, 298 K, acetone-d₆). * = acetone-d₆ (in ¹³C{¹H}) or residual acetone-d₅ (in ¹H); ** = H₂O.

Fig. S9. ¹H NMR spectrum of **3**. (500 MHz, 298 K, acetone- d_6). Scale given in δ / ppm. * = residual acetone- d_5 ; ** = H₂O and HOD.

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 Fig. S10. ${}^{13}C{}^{1}H$ NMR spectrum of **3**. (126 MHz, 298 K, acetone- d_6). Scale given in δ / ppm. * = acetone- d_6 .

Fig. S11. HMQC spectrum of **3**. (500 MHz ¹H, 126 MHz ¹³C{¹H}, 298 K, acetone-d₆). * = acetone-d₆ (in ¹³C{¹H}) or residual acetone-d₅ (in ¹H); ** = H₂O.

Fig. S12. HMBC spectrum of **3**. (500 MHz ¹H, 126 MHz ¹³C{¹H}, 298 K, acetone- d_6). * = acetone- d_6 (in ¹³C{¹H}) or residual acetone- d_5 (in ¹H); ** = H₂O.

Fig. S13. ¹H NMR spectrum (500 MHz, 298 K, CD₂Cl₂) of [Cu(POP)(**1**)][PF₆]. Scale given in δ / ppm. * = residual CHDCl₂.

Fig. S14. HMQC spectrum of $[Cu(POP)(1)][PF_6]$. (500 MHz ¹H, 126 MHz ¹³C{¹H}, 298 K, CD_2Cl_2). * = CD_2Cl_2 (in ¹³C{¹H}) or residual CHDCl₂ (in ¹H).

Fig. S15. HMBC spectrum of $[Cu(POP)(1)][PF_6]$. (500 MHz ¹H, 126 MHz ¹³C{¹H}, 298 K, CD₂Cl₂). * = CD₂Cl₂ (in ¹³C{¹H}) or residual CHDCl₂ (in ¹H).

Fig. S16. ¹H NMR spectrum (500 MHz, 298 K, CD₂Cl₂) of [Cu(xantphos)(**1**)][PF₆]. Scale given in δ / ppm. * = residual CHDCl₂.

Fig. S17. HMQC spectrum of [Cu(xantphos)(1)][PF₆]. (500 MHz ¹H, 126 MHz ¹³C{¹H}, 298 K, CD₂Cl₂). * = CD₂Cl₂ (in ¹³C{¹H}) or residual CHDCl₂ (in ¹H).

Fig. S18. HMBC spectrum of [Cu(xantphos)(1)][PF₆]. (500 MHz ¹H, 126 MHz ¹³C{¹H}, 298 K, CD₂Cl₂). * = CD₂Cl₂ (in ¹³C{¹H}) or residual CHDCl₂ (in ¹H).

Fig. S19. ¹H NMR spectrum (500 MHz, 298 K, acetone- d_6) of [Cu(POP)(**2**)][PF₆]. Scale given in δ / ppm. * = acetone- d_5 . ** = H₂O and HOD. § = CH₂Cl₂.

Fig. S20. HMQC spectrum of $[Cu(POP)(2)][PF_6]$. (500 MHz ¹H, 126 MHz ¹³C{¹H}, 298 K, acetone- d_6). * = acetone- d_6 (in ¹³C{¹H}) or residual acetone- d_5 (in ¹H). ** = H₂O and HOD. § = CH₂Cl₂.

Fig. S21. HMBC spectrum of $[Cu(POP)(2)][PF_6]$. (500 MHz ¹H, 126 MHz ¹³C{¹H}, 298 K, acetone- d_6). * = acetone- d_6 (in ¹³C{¹H}) or residual acetone- d_5 (in ¹H). ** = H₂O and HOD. § = CH₂Cl₂.

Fig. S22. ¹H NMR spectrum (500 MHz, 298 K, acetone- d_6 of [Cu(xantphos)(**2**)][PF₆]. Scale given in δ / ppm. * = acetone- d_5 . ** = H₂O and HOD. § = CH₂Cl₂.

Fig. S23. HMQC spectrum of [Cu(xantphos)(**2**)][PF₆]. (500 MHz ¹H, 126 MHz ¹³C{¹H}, 298 K, acetone- d_6). * = acetone- d_6 (in ¹³C{¹H}) or residual acetone- d_5 (in ¹H). ** = H₂O and HOD. § = CH₂Cl₂.

Fig. S24. HMBC spectrum of [Cu(xantphos)(**2**)][PF₆]. (500 MHz ¹H, 126 MHz ¹³C{¹H}, 298 K, acetone- d_6). * = acetone- d_6 (in ¹³C{¹H}) or residual acetone- d_5 (in ¹H). ** = H₂O and HOD. § = CH₂Cl₂.

Fig. S25. ¹H NMR spectrum (500 MHz, 298 K, acetone- d_6) of [Cu(POP)(**3**)][PF₆]. Scale given in δ / ppm. * residual acetone- d_5 . § = CH₂Cl₂. ** = H₂O and HOD. The sample also contains a small amount of Et₂O.

Fig. S26. HMQC spectrum of $[Cu(POP)(3)][PF_6]$. (500 MHz ¹H, 126 MHz ¹³C{¹H}, 298 K, acetone- d_6). * = acetone- d_6 (in ¹³C{¹H}) or residual acetone- d_5 (in ¹H). ** = H₂O and HOD. § = CH₂Cl₂. The sample also contains a small amount of Et₂O.

Fig. S27. HMBC spectrum of $[Cu(POP)(3)][PF_6]$. (500 MHz ¹H, 126 MHz ¹³C{¹H}, 298 K, acetone- d_6). * = acetone- d_6 (in ¹³C{¹H}) or residual acetone- d_5 (in ¹H). ** = H₂O and HOD. § = CH₂Cl₂. The sample also contains a small amount of Et₂O.

Fig. S28. ¹H NMR spectrum (500 MHz, 298 K, acetone- d_6) of [Cu(xantphos)(**3**)][PF₆]. Scale given in δ / ppm. * = residual acetone- d_5 . ** = H₂O.

Fig. S29. HMQC spectrum of [Cu(xantphos)(**3**)][PF₆]. (500 MHz ¹H, 126 MHz ¹³C{¹H}, 298 K, acetone- d_6). * = acetone- d_6 (in ¹³C{¹H}) or residual acetone- d_5 (in ¹H). ** = H₂O.

Fig. S30. HMBC spectrum of [Cu(xantphos)(**3**)][PF₆]. (500 MHz ¹H, 126 MHz ¹³C{¹H}, 298 K, acetone- d_6). * = acetone- d_6 (in ¹³C{¹H}) or residual acetone- d_5 (in ¹H). ** = H₂O.

Complex Cation	τ_1/μ_S	A ₁	τ_2/μ_S	A ₂	$< \tau > / \mu_{\rm S}$
[Cu(1)(POP)][PF ₆]	12	0.89	1.6	0.08	11.1
[Cu(1)(xantphos)][PF ₆]	14	0.87	1.7	0.09	12.8
[Cu(2)(POP)][PF ₆]	18.7	0.90	0.9	0.05	17.8
[Cu(2)(xantphos)][PF ₆]	11.3	0.75	2.2	0.19	9.5
[Cu(3)(POP)][PF ₆]	4.3	0.70	1.7	0.27	3.5
[Cu(3)(xantphos)][PF ₆]	10.5	0.86	2.2	0.11	9.6
^a The excited state lifetime <	r is calculated from	n the equation $\sum A_i au_i$	A_{i} (A_i) where $A_{i_{is}}$	the pre-exponential fac	tor of the lifetime $ au_i$.