Supporting Information

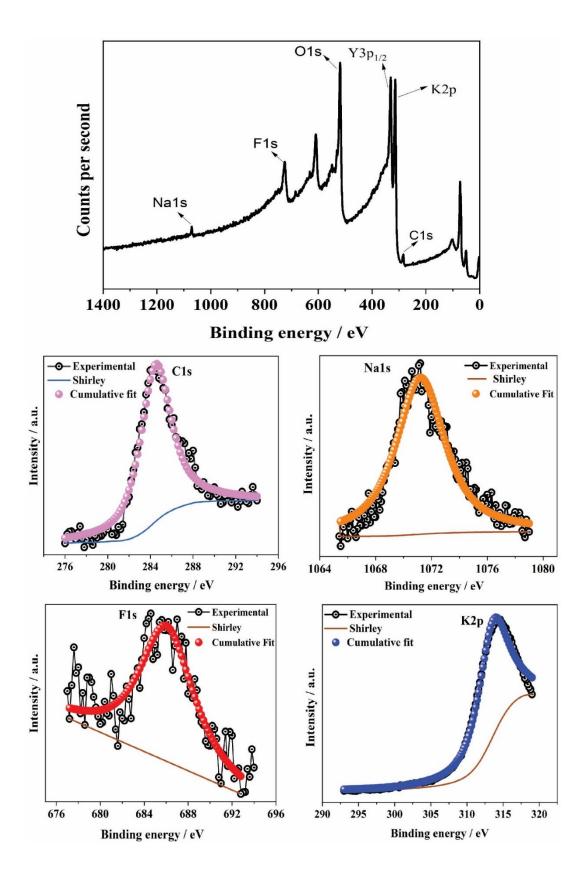
K⁺-Doped P6⁻Crystals of NIR-Upconverting NaYF₄:Yb³⁺/Ho³⁺ conforms to the 'Strain-Intensity' Relationship

Amreeta Swain[†], Preeti Verma[†], Manvendra Narayan Singh[§], Parasmani Rajput^{¶,¥}, Rajendra Sharma[⊥] and Supratim Giri^{*,†,£}

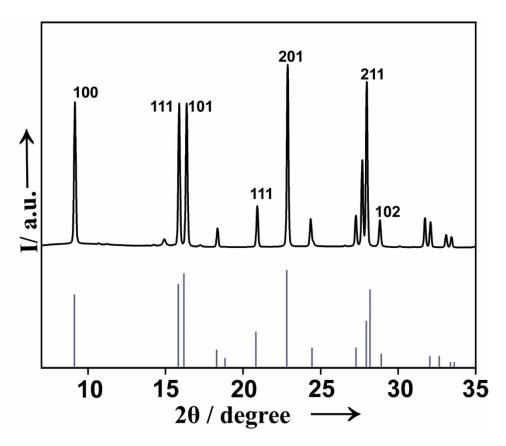
†Department of Chemistry, National Institute of Technology, Rourkela, 769008, India

£Centre for Nanomaterials, National Institute of Technology, Rourkela, 769008, India

§ Hard X-ray Applications Lab, Accelerator Physics and Synchrotrons Utilization Division,


Raja Ramanna Centre for Advanced Technology, Indore - 452013, India

Beamline Development and Application Section, Bhabha Atomic Research Centre

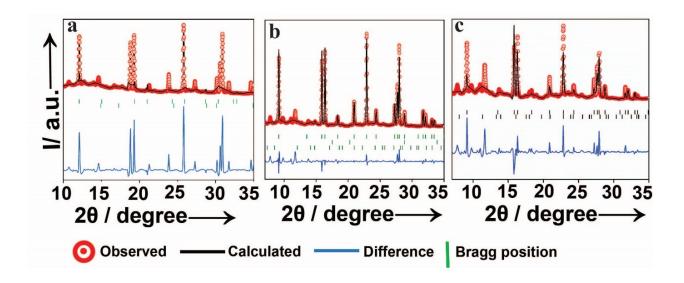
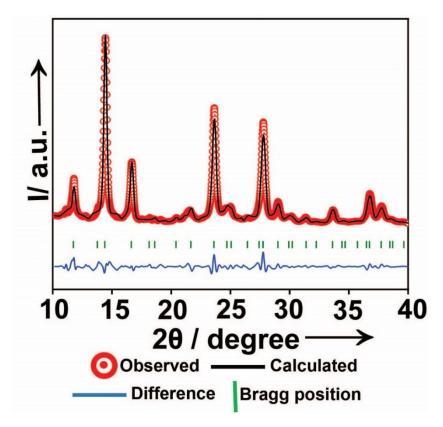
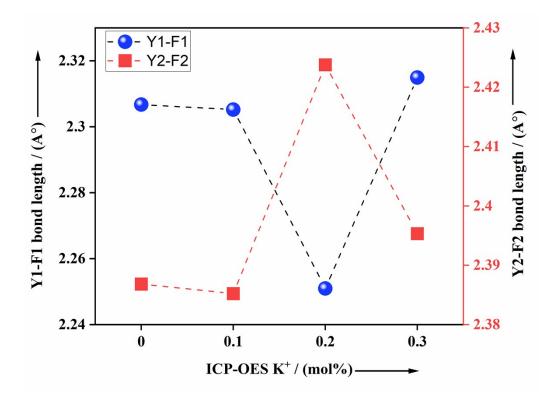

Trombay, Mumbai-400085, India

¥Homi Bhabha National Institute, Anushakti Nagar, Mumbai-400094, India

⊥Technical Physics Division, Bhabha Atomic Research Centre, Trombay Mumbai-400085, India

Figure S1. XPS spectrum of oleic acid capped sample K1 synthesized by thermal decomposition method and cumulative peak fit.

Figure S2: XRD pattern of as synthesized β -NaYF₄:Yb³⁺/Ho³⁺ matching with the standard diffraction pattern of β -NaYF₄ (JCPDS No-16-0334).

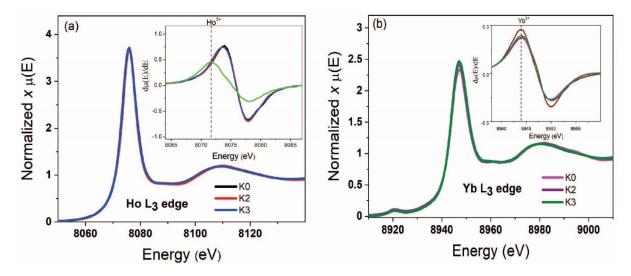

Figure S3: Rietveld refinement plots of ADXRD data of (a) K6 (b) K7 and (c) K8.

Figure S4: Rietveld refinement plot of cubic KYb₃F₁₀ (K48).

Figure S5: Y1-F1 and Y2-F2 bond lengths obtained from Rietveld refinement analysis of samples K0, K1, K2 and K3.

Figure S6. The normalized XANES spectra of samples K0, K2 and K3 at (a) Ho L_3 edge and (b) Yb L_3 edge. The inset shows the 1st derivative along with the reference's oxide (+3 state).

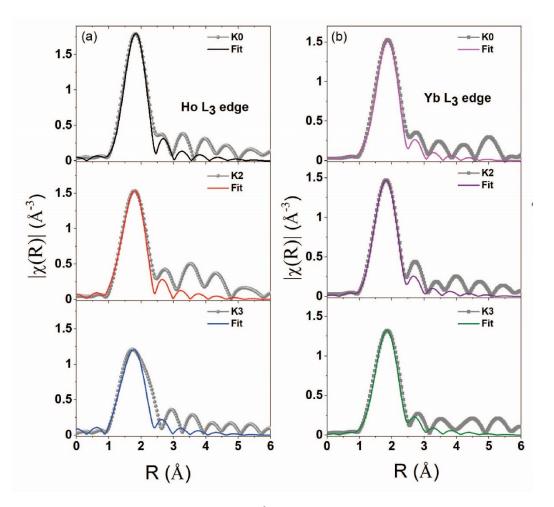


Figure S7. The Fourier Transform (FT) of k^2 -weighted $\chi(k)$ spectra of K0, K2 and K3 at (a) Ho L₃ edge and, (b) Yb L₃ edges, respectively.

	Ho L ₃ -edge			Y K-edge			Yb L ₃ -edge		
Sampl e	CN _{Ho-} F	R _{Ho-F} (Å)	σ ² _{Ho-} _F (Å ²)	CN _{Y-F}	R _{Y-F} (Å)	$\sigma^2{}_{Y\text{-}F}(\text{\AA}^2)$	CN _{Yb-} F	R _{Yb-F} (Å)	σ² _{Yb-F} (Ų)
K-0	8.6	2.274	0.0032 (3)	7.2	2.379	0.0091	8.2	2.277	0.0064
K-20	(2) 7.8	(2) 2.235	0.0046 (3)	(2)	(3) 2.293	(3) 0.0085	(2)	(2) 2.249	(3) 0.0064
K-30	(2) 7.4	(3) 2.232	0.0072	(2) 7.5	(2) 2.211	(3) 0.0088	(2) 7.8	(3) 2.271	(3) 0.0076
	(2)	(3)	(3)	(2)	(2)	(3)	(2)	(3)	(3)

Table S1. Shows the variation of CN (coordination number), R (bond distance) and σ^2 (DebyeWaller factor) by EXAFS data fitting at Ho L₃-edge, Y K-edge and Yb L₃-edge. The numbers in parentheses indicate the uncertainty in the last digit.

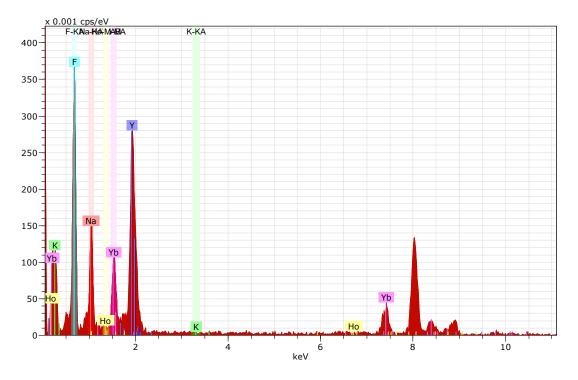


Figure S8: EDS spectra of sample K1.

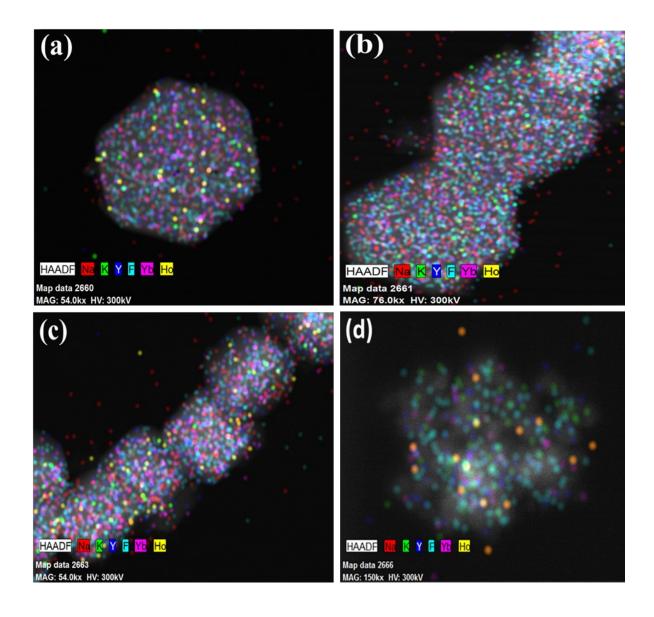


Figure S9: EDS-based elemental mapping of sample (a) K1, (b) K2, (c) K3, (d) K48

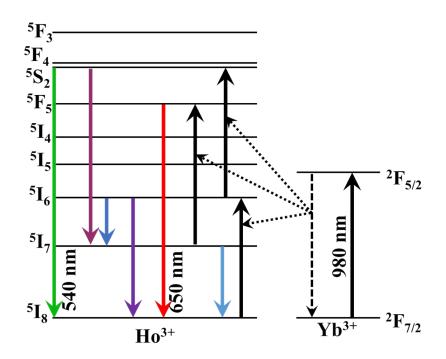
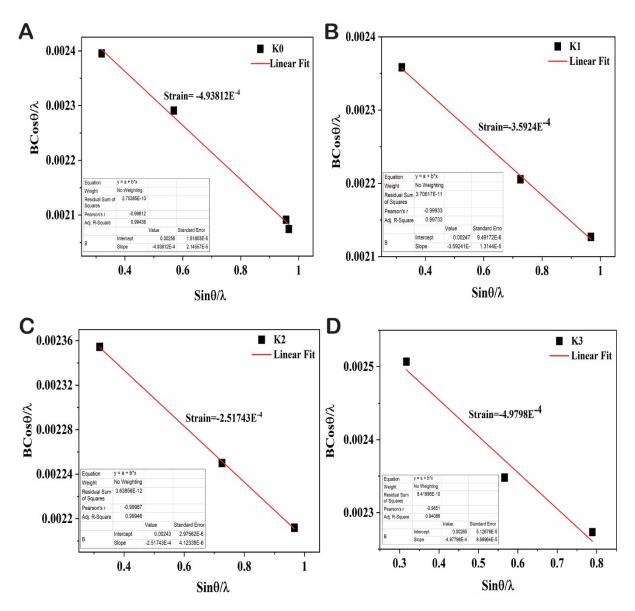



Figure S10: Schematic of energy-level diagram of upconversion luminescence in $NaYF_4$: Yb^{3+}/Ho^{3+} involving Yb^{3+} (sensitiser) and Ho^{3+} (activator), and the proposed mechanism of upconversion luminescence.

Figure S11: Williamson-Hall plots of samples K0 to K3 UC crystals. Strain is obtained from the slope of the fit.

Lattice strain calculation using Williamson hall Plot

The micro strain present in the lattice of materials were calculated by Williamson Hall (W-H) plot governed by the mathematical equation:

$$\frac{\beta \cos\theta}{\lambda} = \frac{1}{D} + \frac{\varepsilon \sin\theta}{\lambda}$$

Where, λ is the wavelength of radiation (x-ray from synchrotron radiation= 0.75428 Å), β is full width at half maximum (FWHM) of diffraction peak, D is the crystallite size in Å, θ is the peak position and ε is the micro strain present in the sample. Plots are drawn between $\sin\theta/\lambda$ and $\beta\cos\theta/\lambda$ and micro strain is calculated from slope and particle size from intercept at Y-axis of the fit.