Supplementary information

A transparent room-temperature ferromagnetic semiconductor on glass: anatase Co-doped TiO₂ oriented thin films with improved electrical conduction

Jiyang Huang,^a Daichi Oka,^{*ab} Yasushi Hirose,^{bc} Masamichi Negishi,^a and Tomoteru Fukumura^{adef}

^a Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan

^bDepartment of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397 Japan

^c Department of Chemistry, School of Science, The University of Tokyo, Tokyo 113-0033, Japan

^d Advanced Institute for Materials Research (WPI-AIMR) and Core Research Cluster, Tohoku University, Sendai 980-8577, Japan

^eCenter for Science and Innovation in Spintronics, Organization for Advanced Studies, Tohoku University, Sendai 980-8577, Japan

^fCenter for Spintronics Research Network, Tohoku University, Sendai 980-8577, Japan

*E-mail: daichi.oka@tmu.ac.jp

Fig. S1. X-ray diffraction θ -2 θ patterns for Ti_{0.95}Co_{0.05}O_{2- δ} thin films grown at 450 °C and 5 × 10⁻⁷ Torr of O₂ partial pressure on rigid and flexible glass substrates with 10 nm-thick TiO₂ buffer layers.

Fig. S2. (a, c) Atomic force microscope images and (b, d) polarized optical microscope images for $Ti_{0.95}Co_{0.05}O_{2-\delta}$ thin films grown at 450 °C and O₂ partial pressure of 5×10^{-7} Torr with 10 nm-thick TiO₂ seed layer on (a, b) rigid and (c, d) flexible glass substrates. A crystal domain is highlighted by red polygon in (b) and (d).

Fig. S3. Grazing incidence X-ray diffraction patterns measured with incident angle of 0.3° for Ti_{0.95}Co_{0.05}O_{2- δ} thin films on TiO₂ seed layers deposited (a) at oxygen partial pressure of 3.0×10^{-4} Torr and (b) with thickness of 15 nm on rigid glass substrate. Powder X-ray diffraction patterns of anatase and rutile TiO₂ are also presented as references.^{S1,S2}

Fig. S4. Polarized optical microscope images for $Ti_{0.95}Co_{0.05}O_{2-\delta}$ thin films on (a) 10 nm-thick TiO₂ seed layers deposited at various P_{O2} on rigid glass substrates, and (b) TiO₂ seed layers with various thicknesses deposited at P_{O2} of 3×10^{-5} Torr on rigid glass substrates.

Fig. S5. (a, c) Atomic force microscope images and (b, d) polarized optical microscope images for 10 nmthick TiO₂ seed layers grown at O₂ partial pressure of 3×10^{-5} Torr, followed by *in-situ* annealing at 600 °C for 60 minutes, on (a, b) rigid and (c, d) flexible glass substrates.

Fig. S6. Scaling relationship between electrical conductivity σ and saturated anomalous Hall conductivity $|\sigma_{AHE}|$ for Ti_{0.95}Co_{0.05}O_{2- δ} thin films on rigid and flexible glass substrates at 100 K, 200 K and 300 K.

Fig. S7. Tauc plots to determine the bandgaps E_g for Ti_{0.95}Co_{0.05}O_{2- δ} thin films on (a) rigid and (b) flexible glass substrates.

References

- **S1.** M. Horn, C. F. Schwerdtfeger and E. P. Meagher, *Z. für Krist.*, 1972, **136**, 273.
- **S2.** W. H. Baur and A. A. Khan, *Acta Cryst.*, 1971, **B27**, 2133.