Electronic Supplementary Information (ESI):

for

Phase stability studies on transition metal phosphates aided by an automated synthesis

Stephanos Karafiludis^{1,2*}, Tom William Ryll^{1,2}, Ana G. Buzanich¹, Franziska Emmerling^{1,2}, and Tomasz M. Stawski^{1*}

¹Federal Institute for Materials Research and Testing, Richard Willstätter Str. 11 10249 Berlin, Germany

²Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin

Stephanos Karafiludis: <u>https://orcid.org/0000-0002-7257-6311;</u> Ana G. Buzanich: <u>https://orcid.org/0000-0001-5543-9924</u>; Franziska Emmerling: <u>https://orcid.org/0000-0001-8528-0301;</u> Tomasz M. Stawski: <u>https://orcid.org/0000-0002-0881-5808;</u>

Corresponding authors: *tomasz.stawski@bam.de;* stephanos.karafiludis@bam.de

List of Figures

Figure S1: Diffractograms of Co-phosphates synthesized at different pH and Ni-phosphates	
synthesized at different temperatures (25°C and 80°C)	3
Figure S2: SE images of Ni-samples	4
Figure S3: SE images of Co-samples	6
Figure S4: Exemplary size distribution histograms from selected Ni-samples	8
Figure S5: Exemplary size distribution histograms from selected Co-samples	9
Figure S6: FT-IR spectra of TMP phases	. 10
Figure S7: XANES spectra of pre-peak region, integration of Gaussian fits and associated baselines	for
Ni-phosphates and Co-phosphates.	. 10
Figure S8: Ni- and Co-K-edge EXAFS data and fits shown in imaginary space	. 11

List of Tables

Table S1: Calculated pre-peak integration results	12
Table S2: Fit parameter for the amorphous Ni-PO₄ phase, R-factor= 0.018	12
Table S3: Fit parameter for Ni-phosphate octahydrate Ni ₃ (PO ₄) ₂ ·8H ₂ O, R-factor= 0.014	13
Table S4: Fit parameter for Co-phosphate octahydrate Co ₃ (PO ₄) ₂ ·8H ₂ O, R-factor= 0.013	13
Table S5: Fit parameter for Ni-struvite NH ₄ NiPO ₄ ·6H ₂ O, R-factor= 0.014	14
Table S6: Fit parameter for Co-struvite NH ₄ CoPO ₄ ·6H ₂ O, R-factor= 0.014	14

Supplementary Note 1: Evaluation of automated synthesis and experimental error propagation

In automated synthesis, an assessment of possible sources of uncertainty should be considered. Due to the complex design of the Chemputer, a large number of mechanical parts such as tubes, valves, syringes, etc. could have an influence on the uncertainty of the concentrations used. In each synthesis, syringe pumps transport the chemicals from one chemical container into another. The accuracy of the pumps is given as ±0.1 ml for a volume of 10 ml, giving a relative uncertainty of 1%. Considering different tube lengths, the associated dead volumes would effectively reduce our reaction volume. Therefore, to solve this issue we implemented a pre-flushing of the tubes with 3 ml of a given solution in the synthesis procedure. As we always rinsed the system after each step, we were able to avoid any residual liquid throughout the synthesis. In the uncertainty propagation, we calculated the relative uncertainty in the synthesis of the stock solutions with 0.1% due to slight deviations in removing process of the solution and of the deionized water. For the dilution of each reactant solution, we determined the relative deviation to be 0.5% for most reactant concentrations, based on the differences in volume for the same reason as for the stock solution. Higher concentrations have a slightly higher relative uncertainty (0.7%) than lower concentrations (0.2%) as here the volume uncertainty contributes more to the absolute uncertainty. In a typical synthesis, the absolute volume uncertainty for a three-reactant synthesis is experimentally determined to be ±0.3 ml, which is 1% relative uncertainty for a reaction volume 30 ml. In the case of multicomponent synthesis with more than three reactants, a similar relative uncertainty can be expected, as the uncertainty of the syringe and of the two dilution steps would be low compared to the uncertainty propagation in a classical manual laboratory approach.

Figure S1: Diffractograms of (A) Co-phosphates synthesized at different pH. (B) Amorphous NH₄-series of Ni phosphate in absolute Intensities with detailed view of the background as inset and (C) Ni-phosphates synthesized at different temperatures (25°C and 80°C) and with different phosphate reactants (DAP = diammoniumphosphate (NH₄)₂HPO₄ or DSP = disodiumhydrogenphosphate Na₂HPO₄); Ni-struvite (NIS) reference database ICSD 403058; Co-struvite reference ICSD 170042; Ni-phosphate octahydrate ICSD 240946; Co-phosphate octahydrate COD 2020362.

Figure S2: SE images of Ni-samples with an overview [30 μ m] and more detailed photograph [5 μ m] of the crystals/particles. The letters (A-I) are representative for a given reaction conditions, additionally described in the upper-left corner with the respective N:M:P ratio. The overview image is marked with 1 while the detailed photograph next to it is referred with 2. (A) 0.2 mM NH₄, 0.1 M Ni, 0.1 M PO₄; (B) 0.02 M NH₄, 0.1 M Ni, 0.1 M PO₄; (C) 0.04 M NH₄, 0.1 M Ni, 0.1 M PO₄; (C) 0.04 M NH₄, 0.1 M Ni, 0.1 M PO₄; (D) 0.06 M NH₄, 0.1 M Ni, 0.1 M PO₄; (E) 0.1 M NH₄, 0.1 M Ni, 0.1 M PO₄; (F) 0.1 M NH₄, 0.02 M Ni, 0.1 M PO₄; (G) 0.1 M NH₄, 0.2 M Ni, 0.1 M PO₄; (H) 0.1 M NH₄, 0.1 M Ni, 0.02 M PO₄; (I) 0.1 M NH₄, 0.1 M Ni, 0.2 M PO₄; (I) 0.1 M NI₄, 0.1 M NI

Continuation of Figure S2 from the previous page.

Figure S3: SE images of Co-samples with an overview [30 μ m] and more detailed photograph [5 μ m] of the crystals/particles. The letters (A-K) are representative for a given reaction conditions, additionally described in the upper-left corner with the respective N:M:P ratio. The overview image is marked with 1 while the detailed photograph next to it is referred with 2. (A) 1.0 M NH₄, 0.06 M Co, 0.1 M PO₄; (B) 0.5 M NH₄, 0.06 M Co, 0.1 M PO₄; (C) 0.15 M NH₄, 0.06 M Co, 0.1 M NH₄, 0.06 M Co, 0.1 M NH₄, 0.06 M Co, 0.3 M PO₄; (F) 0.1 M NH₄, 0.06 M Co, 0.15 M NH₄, 0.06 M Co, 0.08 M PO₄; (H) 0.1 M NH₄, 0.06 M Co, 0.15 M NH₄, 0.06 M Co, 0.15 M NH₄, 0.06 M Co, 0.08 M PO₄; (H) 0.1 M NH₄, 0.06 M Co, 0.15 M NH₄, 0.06 M Co, 0.08 M PO₄; (H) 0.1 M NH₄, 0.06 M Co, 0.15 M PO₄; (G) 0.1 M NH₄, 0.06 M Co, 0.08 M PO₄; (H) 0.1 M NH₄, 0.06 M Co, 0.05 M PO₄; (H) 0.1 M NH₄, 0.06 M Co, 0.05 M PO₄; (H) 0.1 M NH₄, 0.06 M Co, 0.15 M PO₄; (H) 0.1 M NH₄, 0.06 M CO, 0.05 M PO₄; (H) 0.1 M NH₄, 0.06 M CO, 0.05 M PO₄; (H) 0.1 M NH₄, 0.06 M CO, 0.05 M PO₄; (H) 0.1 M NH₄, 0.06 M CO, 0.05 M PO₄; (H) 0.1 M NH₄, 0.06 M CO, 0.05 M PO₄; (H) 0.1 M NH₄, 0.06 M CO, 0.05 M PO₄; (H) 0.1 M NH₄, 0.06 M CO, 0.05 M PO₄; (H) 0.1 M NH₄, 0.06 M CO, 0.05 M PO₄; (H) 0.1 M NH₄, 0.06 M CO, 0.05 M PO₄; (H) 0.1 M NH₄, 0.06 M CO, 0.05 M

0.06 M PO₄; (I) 0.1 M NH₄, 0.15 M Co, 0.1 M PO₄; (J) 0.1 M NH₄, 0.04 M Co, 0.1 M PO₄; (K) 0.1 M NH₄, 0.02 M Co, 0.1 M PO₄.

Continuation of Figure S3.

Figure S4: Exemplary size distribution histograms from selected Ni-samples (A) Histogram of 0.1 mM NH₄⁺, 0.1 M Ni²⁺, 0.1 M PO₄³⁻ with a total sample population of 408, $\mu \pm \sigma = 15 \pm 11 \mu$ m, (B) Histogram of 0.1 M NH₄⁺, 0.1 M Ni²⁺, 0.1 M PO₄³⁻ with a total sample population of 400, $\mu \pm \sigma = 15 \pm 5 \mu$ m, (C) Histogram of 0.1 M NH₄⁺, 0.02 M Ni²⁺, 0.1 M PO₄³⁻ with a total sample population of 384, $\mu \pm \sigma = 11 \pm 4 \mu$ m, (D) Histogram of 0.1 M NH₄⁺, 0.2 M Ni²⁺, 0.1 M PO₄³⁻ with a total sample population of 392, $\mu \pm \sigma = 24 \pm 16 \mu$ m, (E) Histogram of 0.1 M NH₄⁺, 0.1 M Ni²⁺, 0.02 M PO₄³⁻ with a total sample population of 386, $\mu \pm \sigma = 11 \pm 3 \mu$ m, (F) Histogram of 0.1 M NH₄⁺, 0.1 M Ni²⁺, 0.2 M PO₄³⁻ with a total sample population of 386, $\mu \pm \sigma = 11 \pm 3 \mu$ m, (F) Histogram of 0.1 M NH₄⁺, 0.1 M Ni²⁺, 0.2 M PO₄³⁻ with a total sample population of 408, $\mu \pm \sigma = 11 \pm 3 \mu$ m, (F) Histogram of 0.1 M NH₄⁺, 0.1 M Ni²⁺, 0.2 M PO₄³⁻ with a total sample population of 408, $\mu \pm \sigma = 11 \pm 3 \mu$ m, (F) Histogram of 0.1 M NH₄⁺, 0.1 M Ni²⁺, 0.2 M PO₄³⁻ with a total sample population of 408, $\mu \pm \sigma = 17 \pm 6 \mu$ m.

Figure S5: Exemplary size distribution histograms from selected Co-samples. (A) Histogram of 0.1 M NH₄⁺, 0.06 M Co²⁺, 0.1 M PO4³⁻ with a total sample population of 404, $\mu \pm \sigma = 4 \pm 4 \mu m$, (B) Histogram of 1.0 M NH₄⁺, 0.06 M Co²⁺, 0.1 M PO4³⁻ with a total sample population of 404, $\mu \pm \sigma = 17 \pm 5 \mu m$, (C) Histogram of 0.1 M NH₄⁺, 0.02 M Co²⁺, 0.1 M PO4³⁻ with a total sample population of 408, $\mu \pm \sigma = 4 \pm 2 \mu m$, (D) Histogram of 0.1 M NH₄⁺, 0.15 M Co²⁺, 0.1 M PO4³⁻ with a total sample population of 406, $\mu \pm \sigma = 3 \pm 2 \mu m$, (E) Histogram of 0.1 M NH₄⁺, 0.06 M Co²⁺, 0.06 M PO4³⁻ with a total sample population of 407, $\mu \pm \sigma = 4 \pm 2 \mu m$, (E) Histogram of 0.1 M NH₄⁺, 0.06 M Co²⁺, 0.06 M PO4³⁻ with a total sample population of 407, $\mu \pm \sigma = 4 \pm 2 \mu m$, (F) Histogram of 0.1 M NH₄⁺, 0.06 M Co²⁺, 0.3 M PO4³⁻ with a total sample population of 408, $\mu \pm \sigma = 4 \pm 2 \mu m$, (F) Histogram of 0.1 M NH₄⁺, 0.06 M Co²⁺, 0.3 M PO4³⁻ with a total sample population of 408, $\mu \pm \sigma = 4 \pm 2 \mu m$, (F) Histogram of 0.1 M NH₄⁺, 0.06 M Co²⁺, 0.3 M PO4³⁻ with a total sample population of 408, $\mu \pm \sigma = 4 \pm 2$.

Figure S6: Fourier transformed-infrared (FT-IR) spectra of crystalline Ni-, Co- struvite and phosphate octahydrate in juxtaposition with the amorphous Ni-PO₄ phase.

Figure S7: XANES spectra of pre-peak region, integration of Gaussian fits and associated baselines for (A) Ni-phosphates and (B) Co-phosphates.

Radial distance from absorber atom [Å]

Figure S8: Ni- and Co-K-edge EXAFS data and fits shown in imaginary space for (A) Ni-struvite NH₄NiPO₄·6H₂O with R-factor = 0.014, (B) Co-struvite NH₄CoPO₄·6H₂O with R = 0.014, (C) Ni-phosphate octahydrate Ni₃(PO₄)₂·8H₂O with R = 0.014, (D) Co-phosphate octahydrate Co₃(PO₄)₂·8H₂O with R = 0.013 and (E) amorphous Ni-PO₄ phase with R = 0.018.

Table S1: Calculated pre-peak integration results [R^2 , integrated area A_{pp} , Full Width Half Maximum (FWHM), centre of the peak and maximum height] from the pre-peak region of Ni- and Co-Phosphate samples with their respective chemical composition. The distinct peak was fitted by a Gaussian model and then integrated over this region. The calculated pre-peak area values A_{pp} represent more semi-quantitative and are of a comparative purpose rather than show absolute values.

Pr	fit function: Gaussian					
Sample	chemical formula	R ² value	Pre-peak Area A _{pp} (err)	FWHM	Center	Max. Height
Ni-struvite	NH₄NiPO₄·6H₂O	0.998	0.025(2)	1.80	8333.8	0.013
Ni-phosphate octahydrate	Ni ₃ (PO ₄) ₂ ·8H ₂ O	0.999	0.030(1)	1.69	8334	0.014
amorphous Ni-PO ₄	Ni-PO ₄	0.997	0.024(2)	1.67	8333.8	0.013
Co-struvite	NH ₄ CoPO ₄ ·6H ₂ O	0.996	0.027(1)	2.17	7711.1	0.011
Co-phosphate octahydrate	Co ₃ (PO ₄) ₂ ·8H ₂ O	0.994	0.035(2)	2.05	7711	0.013

Table S2: Fit parameter for the amorphous Ni-PO₄ phase, R-factor= 0.018.

Sample	scattering path	Ν	σ²	R _{diff} [Å]	R _{diff} ^² [Ų]	R _{model} [Å]	R _{fit} [Å]
amorphous	Ni1-01	2	0.005	-2.58E-02	6.63E-04	2.030	2.004
	Ni1-02	4	0.005	-2.58E-02	6.63E-04	2.105	2.079
INI-PO4	Ni1-H1	4	0.003	-6.15E-02	3.78E-03	2.502	2.440
R-factor	Ni1-H2	4	0.003	-6.15E-02	3.78E-03	2.549	2.487
0.018	Ni1-P1	2	0.000	2.56E-02	6.54E-04	3.189	3.214
So ² (err)	Ni1-03	4	0.003	-6.15E-02	3.78E-03	3.567	3.506
0.89(9)	Ni1-04	2	0.003	-6.15E-02	3.78E-03	3.621	3.559
ΔE	Ni1-05	2	0.003	-6.15E-02	3.78E-03	3.941	3.879
-1.7(8)	Ni1-O6-H3	16	-0.005	-2.72E-01	7.40E-02	4.003	3.731
	Ni1-03-07	8	-0.005	-2.72E-01	7.40E-02	4.051	3.778
	Ni1-07-07	2	-0.005	-2.72E-01	7.40E-02	4.060	3.788
	Ni1-08	2	0.003	-6.15E-02	3.78E-03	4.060	3.999
	Ni1-09	4	0.003	-6.15E-02	3.78E-03	4.461	4.399

Sample	scattering path	Ν	σ²	R _{diff} [Å]	R _{diff} ^² [Ų]	R _{model} [Å]	R _{fit} [Å]
Ni-octa	Ni1-01	4	0.007	-1.01E-02	1.01E-04	2.062	2.059
	Ni1-02	2	0.007	-1.01E-02	1.01E-04	2.097	2.094
NI3(PU4)2'0H2U	Ni1-H1	4	0.009	-9.06E-02	8.20E-03	2.517	2.427
R-factor	Ni1-Ni2	2	0.016	4.51E-02	2.04E-03	2.909	2.962
0.014	Ni1-P1	3	0.016	4.51E-02	2.04E-03	3.220	3.274
S _o ² (err)	Ni1-03	2	0.009	-9.06E-02	8.20E-03	3.449	3.360
1.1(1)	Ni1-P2	2	0.016	4.51E-02	2.04E-03	3.319	3.372
ΔΕ	Ni1-04	2	0.009	-9.06E-02	8.20E-03	3.521	3.432
-0.7(9)	Ni1-05	2	0.009	-9.06E-02	8.20E-03	3.882	3.793
	Ni1-06	2	0.009	-9.06E-02	8.20E-03	3.932	3.843
	Ni1-07	2	0.009	-9.06E-02	8.20E-03	3.992	3.903
	Ni1-08	4	0.009	-9.06E-02	8.20E-03	4.034	3.944
	Ni1-09	2	0.009	-9.06E-02	8.20E-03	4.137	4.048
	Ni1-010	16	0.017	-1.38E-02	1.91E-04	4.460	4.455

Table S3: Fit parameter for Ni-phosphate octahydrate Ni₃(PO₄)₂·8H₂O, R-factor= 0.014.

Table S4: Fit parameter for Co-phosphate octahydrate $Co_3(PO_4)_2 \cdot 8H_2O$, R-factor= 0.013.

Sample	scattering path	N	σ²	R _{diff} [Å]	R _{diff} ^² [Ų]	R _{model} [Å]	R _{fit} [Å]
Co-octa	Ni1-01	4	0.008	4.61E-02	2.13E-03	2.021	2.068
	Ni1-02	2	0.008	4.61E-02	2.13E-03	2.158	2.204
С03(РО4)2.0П2О	Ni1-H1	4	0.012	-6.19E-02	3.83E-03	2.451	2.389
R-factor	Ni1-02-H2	8	-0.002	4.28E-01	1.83E-01	2.593	3.021
0.013	Ni1-P1	2	0.012	2.21E-02	4.86E-04	3.194	3.216
S ₀ ² (err)	Ni1-H3	4	0.012	-6.19E-02	3.83E-03	3.226	3.164
1.2(1)	Ni1-H4	8	0.012	-6.19E-02	3.83E-03	3.319	3.257
ΔΕ	Ni1-P1-O2	4	0.021	1.77E-02	3.14E-04	3.389	3.406
4.3(7)	Ni1-01-02	8	0.021	1.77E-02	3.14E-04	3.553	3.570
	Ni1-03	4	0.012	-6.19E-02	3.83E-03	3.579	3.517
	Ni1-01-03	8	0.021	1.77E-02	3.14E-04	3.584	3.602
	Ni1-04	2	0.012	-6.19E-02	3.83E-03	3.675	3.613
	Ni1-02-02	8	0.021	1.77E-02	3.14E-04	3.684	3.702
	Ni1-05	8	0.012	-6.19E-02	3.83E-03	3.950	3.888
	Ni1-H4-O5	16	-0.002	4.28E-01	1.83E-01	4.014	4.442

Sample	scattering	Ν	σ²	R _{diff} [Å]	R _{diff} ²	R _{model}	R _{fit}
Ni-struvite	Ni1-01	4	0.008	-3.97E-03	1.58E-05	2.046	2.042
	Ni1-02	2	0.008	-3.97E-03	1.58E-05	2.089	2.085
	Ni1-H1	4	0.001	-2.11E-01	4.46E-02	2.560	2.349
R-factor	Ni1-H2	5	0.014	-2.18E-01	4.76E-02	2.586	2.368
0.014	Ni1-H3	2	0.014	-2.18E-01	4.76E-02	2.627	2.409
S _o ² (err)	Ni1-H4	2	0.014	-2.18E-01	4.76E-02	2.668	2.450
1.3(1)	Ni1-01-01	6	0.001	-2.11E-01	4.46E-02	3.465	3.254
ΔE	Ni1-02-03	16	0.001	-2.11E-01	4.46E-02	3.530	3.318
2.9(7)	Ni1-Ni2	2	0.004	-2.18E-01	4.74E-02	4.111	3.893
	Ni1-04	4	0.005	2.45E-01	5.98E-02	4.084	4.329
	Ni1-05	2	0.005	2.45E-01	5.98E-02	4.162	4.406
	Ni1-06	2	0.005	2.45E-01	5.98E-02	4.200	4.444
	Ni1-07	3	0.005	2.45E-01	5.98E-02	4.272	4.517
	Ni1-08	2	0.005	2.45E-01	5.98E-02	4.329	4.574

Table S5: Fit parameter for Ni-struvite NH₄NiPO₄·6H₂O, R-factor= 0.014.

Table S6: Fit parameter for Co-struvite NH₄CoPO₄·6H₂O, R-factor= 0.014.

Sample	scattering path	N	σ²	R _{diff} [Å]	R _{diff} ^² [Ų]	R _{model} [Å]	R _{fit} [Å]
Co-struvite	Ni1-01	2	0.007	-8.00E-03	6.40E-05	2.058	2.050
	Ni1-02	2	0.007	-8.00E-03	6.40E-05	2.089	2.081
NH4C0PO4'0H2O	Ni1-03	2	0.007	-8.00E-03	6.40E-05	2.129	2.121
R-factor	Ni1-H5	2	0.003	-9.42E-02	8.87E-03	2.616	2.522
0.014	Ni1-H1	2	0.002	3.20E-01	1.02E-01	2.211	2.531
S ₀ ² (err)	Ni1-H2	2	0.002	3.20E-01	1.02E-01	2.451	2.771
1.0(1)	Ni1-H3	1	0.002	3.20E-01	1.02E-01	2.507	2.826
ΔΕ	Ni1-H4	4	0.002	3.20E-01	1.02E-01	2.549	2.869
3.2(6)	Ni1-N1	1	0.003	-9.42E-02	8.87E-03	4.027	3.932
	Ni1-N2	2	0.003	-9.42E-02	8.87E-03	4.133	4.038
	Ni1-04	4	0.001	3.48E-01	1.21E-01	4.105	4.453
	Ni1-05	4	0.001	3.48E-01	1.21E-01	4.199	4.547
	Ni1-06	3	0.001	3.48E-01	1.21E-01	4.288	4.636
	Ni1-07	1	0.001	3.48E-01	1.21E-01	4.362	4.710