Molecular simulation studies on the design of multicomponents

Sorbic acid crystals for tuning solubility

Chang Li^{a#}, Di Wu^{a#}, Zhenguo Gao^{a*}, Wei Chen^{a,b*}

^a National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China;

^b Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China;

AUTHOR INFORMATION

* Corresponding author.

E-mail address: chenwei@tju.edu.cn (Wei Chen)

Telephone number: (86) 13820153932

[#]Chang Li and Di Wu contributed equally to this work

Contents

Figure S1. FTIR spectra of SA, NIA and SA-NIA.

Figure S2. FTIR spectra of SA, PIP and SA-PIP.

Figure S3. FTIR spectra of SA, 2,6-DAP and SA-2,6-DAP-H₂O.

Figure S4. PXRD patterns of SA and its multicomponent crystals before and after equilibrium solubility experiments (SE).

Figure S5. HPLC standard curve of SA.

Figure S6. HPLC standard curve of NIA.

Figure S7. Percentage contributions of molecular contact interactions to the Hirshfield surface in three multicomponent crystals.

Figure S8. HOMO–LUMO plot of NIA, PIP and 2,6-DAP with orbital involved in electronic transitions.

Table S1. SA, Salt/Cocrystal FTIR Stretching Frequency.

 Table S2. Parameters (Å, Degree) of the Hydrogen Bonds for Multicomponent Crystals

 of SA.

 Table S3. Experimental solid–liquid equilibrium data (mass fraction) for SA-NIA at

 20°Cand 30°C.

Figure S1. FTIR spectra of SA, NIA and SA-NIA.

Figure S2. FTIR spectra of SA, PIP and SA-PIP.

Figure S3. FTIR spectra of SA, 2,6-DAP and SA-2,6-DAP-H₂O.

Figure S4. PXRD patterns of SA and its multicomponent crystals before and after equilibrium solubility experiments (SE).

Figure S6. HPLC standard curve of NIA.

Figure S7. Percentage contributions of molecular contact interactions to the Hirshfield surface in three multicomponent crystals.

Figure S8. HOMO–LUMO plot of NIA, PIP and 2,6-DAP with orbital involved in electronic transitions.

compound	-C=O(cm ⁻¹)	-OH (cm ⁻¹)	-NH (cm ⁻¹)
SA	1674	3383	/
NIA	1674	/	3354
PIP	/	/	3216
2,6-DAP	/	/	3206
SA- NIA	1641	3383	3140
SA- PIP	1647	3391	3016

Table S1. SA, Salt/Cocrystal FTIR Stretching Frequency

SA-2,6-DAP-H ₂ O	1643	3381	3156

Table S2. Parameters (Å, Degree) of the Hydrogen Bonds for Multicomponent

D–H···A	D–H	$H \cdots A$	$D \cdots A$	D−H…A	symmetry
SA-NIA					
O_2 - H_2 ··· N_1	1.01	1.62	2.63	175	
$N_2 – H_{2C} \cdots O_1$	0.90	2.15	3.04	172	-1+x, y, z
$N_2 – H_{2B} \cdots O_3$	0.91	1.97	2.88	176	-1-x,1-y,1-z
$C_{11}\!\!-\!\!H_{11}\!\cdots\!O_1$	0.95	2.57	3.40	146	x, -1+y, z
SA-PIP					
$N_1\!\!-\!\!H_{1A}\!\cdots\!O_1$	0.97	1.71	2.68	177	
$N_1 – H_{1A} \cdots O_2$	0.97	2.52	3.16	123	
$N_1 – H_{1B} \cdots O_2$	0.99	1.69	2.67	173	-1+x, y, z
C_2 - H_2 ··· O_1	0.93	2.56	3.49	174	1+x, y, z
C_3 - H_3 ···O_1	0.93	2.50	2.82	100	
$C_7\!\!-\!\!H_{7A}\!\cdots\!O_1$	0.97	2.37	3.33	169	-x,1-y,1-z
SA-2,6-DAP-H ₂	0				
$N_1 – H_1 \cdots O_2$	0.92	1.82	2.74	178	
$N_2 – H_{2A} \cdots O_3$	0.90	1.99	2.89	172	-1/2+x,1/2-y,1/2+z
$N_2 – H_{2B} \cdots O_1$	0.91	1.99	2.90	178	
$N_3 – H_{3A} \cdots O_3$	0.90	2.07	2.96	171	
N_3 – H_{3B} ···· O_1	0.89	2.19	3.04	159	-1/2+x,1/2-y, - 1/2+z
O_3 - H_{3C} ··· O_2	0.89	1.84	2.68	158	
O_3 - H_{3D} ··· O_1	0.86	1.89	2.73	169	3/2-x, -1/2+y,3/2-z

Crystals of SA.

	Mass fraction				
T/°C	SA	NIA	EtOH	Equilibrium solid phase ^b	
20	0	0.10944	0.89056	NIA	
	0.02242	0.11059	0.86699	NIA	
	0.05273	0.10938	0.83789	NIA	
	0.06245	0.10684	0.83071	NIA+1:1SA-NIA	
	0.06972	0.09998	0.8303	1:1SA-NIA	
	0.09215	0.06287	0.84499	1:1SA-NIA	
	0.10266	0.05759	0.83976	1:1SA-NIA	
	0.11828	0.04771	0.83401	SA+1:1SA-NIA	
	0.12356	0.04049	0.83595	SA	
	0.12684	0	0.87316	SA	
30	0	0.11823	0.88177	NIA	
	0.02158	0.12365	0.85477	NIA	
	0.0631	0.12694	0.80996	NIA	
	0.07318	0.12189	0.80493	NIA+1:1SA-NIA	
	0.08000	0.11214	0.80786	1:1SA-NIA	
	0.11137	0.07722	0.81141	1:1SA-NIA	
	0.13871	0.06069	0.8006	SA+1:1SA-NIA	
	0.14337	0.04538	0.81125	SA	
	0.12986	0	0.87014	SA	

Table S3. Experimental solid-liquid equilibrium data (mass fraction) for SA-NIA at

20°Cand 30°Cand pressure p = 101.3 kPa.^a

^a Standard uncertainty u is u(T) = 0.01 K, u(p) = 10 kPa; the relative standard uncertainty of mass

fraction $u_r(\mathbf{x}) = 0.05$.

^b Mole ratio of SA-to-NIA in cocrystal is 1:1.