Supplementary Information

K₅Yb_{1-x}Eu_x(MoO₄)₄ phosphors: aperiodic structures and luminescence properties.

Svetlana M. Posokhova,^{*,1} Vladimir A. Morozov,¹ Egor M. Zonov,¹ Dina V. Deyneko,¹ Dmitry A. Spassky,^{2,3} Fedor D. Fedyunin,⁴ Alexei A. Belik,⁵ Erzhena T. Pavlova,⁶ Andrey A. Vasin,⁷ Bogdan I. Lazoryak¹

 ¹ Chemistry Department, Moscow State University, 119991, Moscow, Russia.
 ² Skobeltsyn Institute of Nuclear Physics, Moscow State University, 119991, Moscow, Russia
 ³ Institute of Physics, University of Tartu, W. Ostwald str. 1, 50411 Tartu, Estonia
 ⁴Physics Department, Moscow State University, Leninskiye Gory 1-2, 11991 Moscow, Russia
 ⁵ International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
 ⁶ Buryat State University, Smolin St. 24a, Ulan-Ude, 670000 Buryat Republic, Russia
 ⁷ Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences, Ekaterinburg 620990, Russia

*Corresponding author:	Svetlana M. Posokhova
	Tel.: +74959392138
	E-mail: posohovasm@gmail.ru
	Chemistry Department, Lomonosov Moscow State University,
	119991, Moscow, Russia

Table S1. Element analysis results	s of α -K ₅ Yb _{1-x} Eu _x (MoO ₄) ₄ ($0 \le x \le 1$).
------------------------------------	---

x	K, at.%	Mo, at.%	Yb, at.%	Eu, at.%	Yb:Eu ratio	Method
0.1	47.80±0.18	41.50±0.40	9.71±0.53	0.99±0.07	0.91:0.09	SEM-EDX
0.3					0.73:0.27	ICP-MS
0.4	48.60±0.37	41.55±0.26	6.12±0.40	3.73±0.10	0.62:0.38	SEM-EDX
			60.05±1.27	39.95±1.27	0.60:0.40	TEM-EDX
0.5	48.33±0.18	41.76±0.16	5.39±0.20	4.53±0.14	0.54:0.46	SEM-EDX
0.7					0.33:0.67	ICP-MS
0.9	48.97±0.18	41.53±0.10	1.36±0.05	8.14±0.07	0.14:0.86	SEM-EDX

Figure S1. HAADF-STEM images of the particles in the $K_5Yb_{0.6}Eu_{0.4}(MoO_4)_4$ sample along with the corresponding color-coded elemental maps and the mixed EDX map for K, Mo, Yb, Eu.

Figure S2. Parts of PXRD patterns for γ -, β - and α -modification of K₅Yb(MoO₄)₄. The inset shows fragments in 2θ ranges of 25-32°. Tick marks denote the peak positions of possible Bragg reflections for γ - (PDF#49-1228) and α -K₅Yb(MoO₄)₄ (PDF#49-1785).

Figure S3. Parts of PXRD patterns for α -K₅Yb_{1-x}Eu_x(MoO₄)₄ (*x*: 0(1)-1(11), step 0.1) annealing at 1123±10 K followed by quenching to the liquid nitrogen temperature. Tick marks denote the peak positions of possible Bragg reflections for α -K₅Yb(MoO₄)₄ (PDF#49-1785).

Figure S4. The lattice cell parameters of α -K₅Yb_{1-x}Eu_x(MoO₄)₄ (*x*=0.1–1).

X	<i>a</i> , Å	<i>c</i> , Å	<i>V</i> , Å ³	<i>V</i> / <i>Z</i> , Å ³	Ref.
0	6.0372(1)	20.4045(2)	644.06(1)	429.37	[14]
0	6.0312(2)	20.4499(8)	644.21(4)	429.47	
0.1	6.0290(2)	20.4606(7)	644.07(4)	429.38	
0.2	6.0231(1)	20.4731(4)	643.21(1)	428.81	
0.3	6.0232(1)	20.4890(5)	643.74(1)	429.16	
0.4	6.0142(2)	20.5316(7)	643.14(4)	428.76	
0.5	6.0090(1)	20.5692(6)	643.22(3)	428.81	
0.6	6.0039(1)	20.5983(5)	643.03(2)	428.69	
0.7	5.9969(1)	20.6335(5)	642.63(3)	428.42	
0.8	5.9901(2)	20.6654(7)	642.15(4)	428.10	
0.9	5.9859(2)	20.6954(8)	642.20(4)	428.13	
1	5.9785(1)	20.7253(5)	641.53(3)	427.69	
1	5.9785(1)	20.7254(5)	641.54(3)	427.69	[12]
1	5.980	20.74	642.53	428.35	PDF-2, №45–0340

Table S2. Unit cell parameters for α -K₅Yb_{1-x}Eu_x(MoO₄)₄ (0 $\leq x\leq 1$, SG $R\overline{3}m$, Z=1.5 (α -phase)) annealed at 1123±10 K samples followed by quenching from the high to the liquid nitrogen temperature.

Figure S5. Parts of PXRD patterns for IM-K₅Yb_{1-x}Eu_x(MoO₄)₄ (*x*: 0(1)-0.9(10), step 0.1) annealing at 1123±10 K then slow cooling. Positions of main (black) and satellite (green) reflections for incommensurately modulated β -K₅Yb(MoO₄)₄ also are presented by bars.

x	SG	<i>a</i> , Å	b, Å	<i>c</i> , Å	β	<i>V</i> , Å ³	Ref.
0	<i>C</i> 2/ <i>c</i>	14.8236(1)	12.1293(1)	10.5151(1)	114.559(1)	1719.58(3)	[14]
0	C2/c	14.8550(1)	12.1449(4)	10.5270(3)	114.576(1)	1727.17(4)	
0.1	C2/c	14.8777(9)	12.1309(3)	10.5141(2)	114.645(1)	1724.73(5)	
	<i>C</i> 2/ <i>m</i>	10.4950(2)	6.0504(1)	7.7753(6)	118.309(7)	434.67(2)	
0.2	C2/c	14.9154(5)	12.0864(5)	10.5586(1)	115.021(4)	1724.8(1)	
	<i>C</i> 2/ <i>m</i>	10.6573(3)	6.0394(3)	7.8377(5)	119.455(9)	439.30(6)	
0.3	C2/m	10.4554(8)	6.0303(4)	7.7138(4)	117.906(2)	430.06(1)	
0.4	C2/m	10.4400(2)	6.0223(8)	7.7180(9)	117.610(1)	430.00(1)	
0.5	C2/m	10.4312(6)	6.0154(1)	7.7257(3)	117.547(1)	429.81(1)	
0.6	C2/m	10.4217(1)	6.0074(7)	7.7238(7)	117.335(1)	429.50(9)	
0.7	C2/m	10.3985(4)	6.0014(4)	7.7173(2)	117.042(1)	429.00(2)	
0.8	$R\overline{3}m$	5.9906(1)		20.6622(5)		642.15(1)	
0.9	R3m	5.9918(1)		20.7176(8)		643.96(1)	
1	R3m	5.9795(3)		20.7348(5)		642.00(1)	
1	R3m	5.9780(2)		20.7257(7)		641.44(3)	[12]

Table S3. Unit cell parameters for LT-K₅Yb_{1-x}Eu_x(MoO₄)₄ ($0 \le x \le 1$) samples synthesized by a solid state reaction at 893±10 K followed by slow cooling to T_R.

Table S4. Unit cell parameters for $IM-K_5Yb_{1-x}Eu_x(MoO_4)_4$ ($0 \le x \le 1$) samples synthesized by annealing at 1123±10 K for 3 h in air followed by slow cooling to T_{R} .

x	SG	<i>a</i> , Å	b, Å	<i>c</i> , Å	β	<i>V</i> , Å ³	Ref.
0	<i>X</i> 2/ <i>m</i> (0β0)00	10.405(2)	6.118(1)	19.775(2)	136.63(1)	864.2(3)	[15]
0	$X2/m(0\beta 0)00$	10.428(2)	6.0819(4)	19.693(3)	136.292(5)	863.0(2)	
0.1	<i>X</i> 2/ <i>m</i> (0β0)00	10.266(3)	6.0680(7)	19.558(3)	135.772(7)	849.8(3)	
	C2/m	10.456(1)	6.0246(7)	7.6820(7)	117.799(8)	428.1(2)	
0.2	<i>X</i> 2/ <i>m</i> (0β0)00	10.106(1)	6.0554(4)	19.422(3)	135.339(5)	835.4(2)	
	C2/m	10.4191(9)	6.0202(6)	7.6453(5)	117.418(6)	425.7(2)	
0.3	C2/m	10.444(1)	6.0252(7)	7.6866(8)	117.799(7)	427.86(9)	
0.4	<i>C2/m</i>	10.419(1)	6.0185(8)	7.6794(6)	117.35(1)	427.72(8)	
0.5	<i>C2/m</i>	10.419(2)	6.0040(9)	7.7070(7)	117.097(9)	429.18(4)	
0.6	<i>C2/m</i>	10.409(1)	6.0066(6)	7.6922(3)	117.077(8)	428.21(3)	
0.7	<i>C2/m</i>	10.399(1)	5.9976(5)	7.7107(6)	117.101(5)	428.11(7)	
0.8	R3m	5.9929(2)		20.6360(8)		641.84(4)	
0.9	$R\overline{3}m$	5.9877(1)		20.6825(6)		642.17(2)	

Table S5. Final coordinates, amplitudes of Fourier components for the occupational¹ and displacive² modulation functions and isotropic atomic displacement parameters for β -K₅Yb_{0.3}Eu_{0.7}(MoO₄)₄. Only waves with non-zero amplitudes are shown. The *s* and *c* symbols stand for the sine and cosine components, respectively.

Atom	Occupation; parameters of atomic domains	Wave	x/a	y/b	<i>z/c</i>	$U_{iso},{ m \AA}^2$
<i>M</i> 1	$0.5K+0.5(Eu1+Yb1= \delta_{K1} + \delta_{(Yb1+Eu1)}; \\ \delta_{K1} = 0.5, x_4^0(K1) = 0, \\ \delta_{(Yb1+Eu1)} = 0.5, \\ x_4^0(Yb1+Eu1) = 0.5$	S	0 0	0 0.030(2)	0 0	0.0304(9)
K2	1 K		0.8038(4)	0	0.4159(5)	0.0343(9)
Mo	1 Mo		0.3996(2)	0	0.1972(2)	0.0186(8)
		S	0	0.0070(15)	0	
		С	-0.0040(7)	0	0	
01	10		0.3106(12)	0	0.9556(11)	0.023(5)
		S	0	-0.075(3)	0	
		С	-0.054(2)	0	0	
O2	1 O		0.0056(5)	0.2606(7)	0.2673(6)	0.015(3)
		S	-0.0103(17)	-0.027(2)	-0.0646(17)	
		С	0.010(2)	0.032(5)	0	
O3	1 O		0.2671(10)	0	0.2732(11)	0.031(6)
		S	0	-0.035(6)	0	
		С	-0.048(2)	0	-0.074(3)	

¹ δ_{M1} and $x_4^0(M1)$ parameters define the length and the center coordinate x_4 , respectively, for the atomic domain of *M*1-cation.

² The displacive modulation function for the atom λ is defined as $U^{\lambda}(x_4) = A_s^{\lambda} \sin(2\pi x_4) + B_c^{\lambda} \cos(2\pi x_4)$, $x_4 = \mathbf{q} \mathbf{r}^{\lambda} + t$.

	U ¹¹	U ²²	U ³³	U ¹²	U ¹³	U ²³
<i>M</i> 1	0.043(2)	0.025(3)	0.020(2)	0	0.0116(17)	0
Mo	0.0168(11)	0.0202(12)	0.0190(11)	0	0.0084(9)	0

Table S6. Anisotropic atomic displacement parameters in β -K₅Yb_{0.3}Eu_{0.7}(MoO₄)₄.

Table S7. Main interatomic distances for β -K₅Yb_{0.3}Eu_{0.7}(MoO₄)₄ (Å).

distances	average	min.	max.
K1-O1×2	3.08(2)	2.85(2)	3.46(2)
K1-O1×4	3.232(14)	3.02(2)	3.71(2)
K1-O2×4	2.34(2)	2.04(2)	2.96(2)
K1-O3×2	2.297(14)	2.09(2)	2.64(2)
Eu1/Yb1-O1×2	3.775(17)	3.46(2)	3.96(2)
Eu1/Yb1- O1×4	3.830(15)	3.38(2)	4.03(2)
Eu1/Yb1-O2×4	2.820(17)	2.21(2)	3.11(2)
Eu1/Yb1-O3×2	2.957(13)	2.64(2)	3.15(2)
K2-O1	2.607(9)	2.588(11)	2.643(11)
K2-O2×2	2.840(15)	2.62(2)	3.07(2)
K2-O2×2	3.14(2)	2.92(2)	3.35(2)
K2-O2×2	3.24(2)	2.99(3)	3.47(3)
K2-O3×2	3.18(2)	2.92(4)	3.42(4)
K2-O3	2.846(19)	2.63(3)	3.10(3)
Mo-O1	1.737(9)	1.719(10)	1.762(10)
Mo-O2×2	1.78(2)	1.67(3)	1.89(3)
Mo-O3	1.78(2)	1.74(3)	1.84(3)

Figure S6. *t*-plots of Mo–O and K2–O (*a*), K1–O (*a*) and Eu1/Yb1–O (*b*) bond lengths for the β-K₅Yb_{0.3}Eu_{0.7}(MoO₄)₄ structure.

Figure S7. Decay curve of the Eu^{3+} emission of α -K₅Yb_{0.3}Eu_{0.7}(MoO₄)₄ at T_R.