Electronic supplementary information

for

Preparation of one-dimensional coordination polymers of a flexible tripyridyl disulfide with diverse topologies

Hyeong-Hwan Lee, ${ }^{\text {a }}$ Jihye Oh, ${ }^{\text {b }}$ Shim Sung Lee, ${ }^{\text {b }}$ and In-Hyeok Park*b

[^0]
Experimental section

General. All chemicals and solvents used in the syntheses were of reagent grade and were used without further purification. NMR spectra were recorded on a Bruker 300 spectrometer $(300 \mathrm{MHz})$. The FT-IR spectra were measured with a Nicolet iS 10 spectrometer. The elemental analysis was carried out on a LECO CHNS-932 elemental analyzer. The powder X-ray diffraction (PXRD) experiments were performed in a transmission mode with a Bruker GADDS diffractometer equipped with graphite monochromated $\mathrm{CuK} \alpha$ radiation ($\lambda=1.54073 \AA$). Thermogravimetric analyses (TGA) were performed under a nitrogen atmosphere with a heating rate of $10 \mathrm{~K} \mathrm{~min}^{-1}$ using a TA Instruments TGA-Q50 thermogravimetric analyzer.

CAUTION: The perchlorate-containing complex is potentially explosive and appropriate precautions should be taken during their preparation, handling and storage.

Preparation of $\left\{\left[\mathrm{Cu}(\mathrm{L})_{\mathbf{2}}\left(\mathrm{NO}_{3}\right)_{2}\right] \cdot \mathbf{C H}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}\right\}_{n}$ (1). A small amount of toluene was added to a dichloromethane (1 mL) solution of $\mathbf{L}(20.1 \mathrm{mg}, 0.061 \mathrm{mmol})$; then the required copper(II) nitrate $(16.0 \mathrm{mg}, 0.061 \mathrm{mmol})$ in acetonitrile was layered on the toluene phase; the (layered) mixture afforded a dark blue crystalline product suitable for X-ray analysis. Mp: $158-161{ }^{\circ} \mathrm{C}$. IR (KBr pellet): 3090, 3035, 2928, 1598, 1535, 1489, $1384\left(\mathrm{NO}_{3}{ }^{-}\right), 1304,1226,1115,1064$, 854, 819, $723 \mathrm{~cm}^{-1}$. Anal. Calcd for [$\left.\mathrm{C}_{17.7} \mathrm{H}_{15.8} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}_{2} \mathrm{Cu}\right]$: C, 46.20; H, 3.46; N, 12.17; S, 13.93. Found: C, $45.80 ; \mathrm{H}, 3.35$; N, 12.20; S, 14.21%.

Preparation of $\left\{\left[\mathrm{Ag}(\mathrm{L}) \mathrm{NO}_{3}\right] \cdot \mathbf{C H}_{2} \mathrm{Cl}_{2}\right\}_{n}$ (2). A small amount of toluene was added to a dichloromethane $(1 \mathrm{~mL})$ solution of $\mathbf{L}(20.0 \mathrm{mg}, 0.061 \mathrm{mmol})$; then the required silver (I) nitrate ($10.4 \mathrm{mg}, 0.061 \mathrm{mmol}$) in acetonitrile was layered on the toluene phase; the (layered) mixture afforded a colorless crystalline product suitable for X-ray analysis. Mp: 199-203 ${ }^{\circ} \mathrm{C}$ (decomp.). IR (KBr pellet): 3057, 2975, 2922, 1589, 1570, 1483, $1348\left(\mathrm{NO}_{3}{ }^{-}\right), 1216,1109,1011,800,760$, $723,711 \mathrm{~cm}^{-1}$; Anal. Calcd for $\left[\mathrm{C}_{20.25} \mathrm{H}_{21.7} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{AgCl}_{2.3}\right]$: C, 38.08; H, 3.42; N, 8.77. Found: C, 37.78; H, 3.05; N, 8.42\%.

Preparation of $\left\{\left[\mathbf{A g}(\mathbf{L})\left(\mathbf{C H}_{3} \mathbf{C N}\right)\right] \mathrm{PF}_{6}\right\}_{n}$ (3). A small amount of toluene was added to a dichloromethane (1 mL) solution of $\mathbf{L}(20.0 \mathrm{mg}, 0.061 \mathrm{mmol})$; then the required silver(I) hexafluorophosphate ($15.5 \mathrm{mg}, 0.061 \mathrm{mmol}$) in acetonitrile was layered on the toluene phase; the (layered) mixture afforded a colorless crystalline product suitable for X-ray analysis. Mp: $205-208{ }^{\circ} \mathrm{C}$ (decomp.). IR (KBr pellet): 3089, 3069, 3026, 2977, 1588, 1573, 1483, 1455, 1418,

1273, 1031, $841\left(\mathrm{PF}_{6}-\right) \mathrm{cm}^{-1}$. Anal. Calcd for $\left[\mathrm{C}_{19.8} \mathrm{H}_{18.7} \mathrm{~N}_{3.7} \mathrm{~S}_{2} \mathrm{AgPF}_{6}\right]: \mathrm{C}, 38.02 ; \mathrm{H}, 3.01 ; \mathrm{N}$, 8.29. Found: C, 37.78 ; H, 3.05; N, 8.42\%.

Preparation of $\left\{\left[\mathbf{A g}(\mathbf{L}) \mathbf{C l O}_{4}\right] \cdot \mathbf{C H}_{2} \mathbf{C l}_{2}\right\}_{n}$ (4). A small amount of toluene was added to a dichloromethane (1 mL) solution of $\mathbf{L}(20.2 \mathrm{mg}, 0.062 \mathrm{mmol})$; then the required silver(I) perchlorate ($12.9 \mathrm{mg}, 0.062 \mathrm{mmol}$) in acetonitrile was layered on the toluene phase; the (layered) mixture afforded a colorless crystalline product suitable for X-ray analysis. Mp: 188$191{ }^{\circ} \mathrm{C}$ (decomp.). IR (KBr pellet): 3085, 3058, 2908, 1585, 1482, 1449, 1449, 1417, 1107, $1085\left(\mathrm{ClO}_{4}^{-}\right), 806,621\left(\mathrm{ClO}_{4}^{-}\right) \mathrm{cm}^{-1}$. Anal. Calcd for $\left[\mathrm{C}_{17.8} \mathrm{H}_{16.6} \mathrm{AgCl}_{2.6} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2}\right]$ as $\left\{\left[\mathrm{Ag}(\mathrm{L}) \mathrm{ClO}_{4}\right] \cdot 0.9 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right\}_{n}: \mathrm{C}, 35.59 ; \mathrm{H}, 2.79 ; \mathrm{N}, 7.00$. Found: C, $35.71 ; \mathrm{H}, 2.53 ; \mathrm{N}, 7.16 \%$.

X-ray crystallographic analysis. Crystal data for \mathbf{L} and 1-4 were collected on a Bruker SMART APEX II ULTRA diffractometer equipped with graphite monochromated Mo $\mathrm{K} \alpha$ radiation $(\lambda=0.71073 \AA)$ generated by a rotating anode. The cell parameters for the compounds were obtained from a least-squares refinement of the spot (from 36 collected frames). Data collection, data reduction, and semi-empirical absorption correction were carried out using the software package of APEX2. ${ }^{\text {S }}$ All of the calculations for the structure determination were carried out using the SHELXTL package. ${ }^{52}$ In all cases, all nonhydrogen atoms were refined anisotropically and all hydrogen atoms except coordinated water molecules were placed in idealized positions and refined isotropically in a riding manner along with their respective parent atoms. Relevant crystal data collection and refinement data for the crystal structures of 1-4 are summarised in Tables 1-5.

References

S1. Bruker, APEX2 Version 2009.1-0 Data Collection and Processing Software; Bruker AXS Inc.: Madison, WI, 2008.

S2. Bruker, SHELXTL-PC Version 6.22 Program for Solution and Refinement of Crystal Structures; Bruker AXS Inc.: Madison, WI, 2001.

Fig. S1 ${ }^{1} \mathrm{H}$ NMR spectrum of \mathbf{L} in CDCl_{3}.

Fig. S2 ${ }^{13} \mathrm{C}$ NMR spectrum of \mathbf{L} in CDCl_{3}.
(a)

(b)

Fig. S3 NMR spectra of (a) 3 (PF_{6}-form) and (b) its anion-exchanged product [$\mathrm{PF}_{6}{ }^{-}$by $\mathrm{NO}_{3}{ }^{-}$] obtained after 48 h showing the removal of the coordinated acetonitrile molecules (singlet at 2.10 ppm).

Fig. S4 Single crystal X-ray structure of $\mathbf{1},\left\{\left[\mathrm{Cu}(\mathbf{L})_{2}\left(\mathrm{NO}_{3}\right)_{2}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}\right\}_{n}$.

Fig. S5 Single crystal X-ray structure of 2, $\left\{\left[\mathrm{Ag}(\mathbf{L}) \mathrm{NO}_{3}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}\right\}_{n}$.

Fig. S6 Single crystal X-ray structure of $\mathbf{4},\left\{\left[\mathrm{Ag}(\mathbf{L}) \mathrm{ClO}_{4}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}\right\}_{n}$.

Fig. S7 PXRD patterns for 1: (top) as synthesized and (bottom) simulated from the single crystal X-ray data. The discrepancies in the intensities may be due to preferred orientations of the powder or partial removal of solvents during grinding.

Fig. S8 PXRD patterns for 2: (top) as synthesized and (bottom) simulated from the single crystal X-ray data. The discrepancies in the intensities may be due to preferred orientations of the powder or partial removal of solvents during grinding.

Fig. S9 PXRD patterns for 3: (top) as synthesized and (bottom) simulated from the single crystal X-ray data. The discrepancies in the intensities may be due to preferred orientations of the powder or partial removal of solvents during grinding.

Fig. S10 PXRD patterns for 4: (top) as synthesized and (bottom) simulated from the single crystal X-ray data. The discrepancies in the intensities may be due to preferred orientations of the powder or partial removal of solvents during grinding.

Fig. S11 TGA curve of $\mathbf{1}$.

Fig. S12 TGA curve of $\mathbf{2}$.

Fig. S13 TGA curve of $\mathbf{3}$.

Table S1 Crystallographic data and refinement parameters of 1-4

	1	2	3	4
Formula	$\mathrm{C}_{70} \mathrm{H}_{64} \mathrm{Cl}_{4} \mathrm{Cu}_{2} \mathrm{~N}_{16} \mathrm{O}_{12} \mathrm{~S}_{8}$	$\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{AgCl}_{2} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}_{2}$	$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{AgF}_{6} \mathrm{~N}_{4} \mathrm{PS}_{2}$	$\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{AgCl}_{3} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2}$
Formula weight	1846.73	580.24	619.33	617.68
Temperature	173(2)	173(2)	173(2)	173(2)
Crystal system	Monoclinic	Monoclinic	Triclinic	Triclinic
Space group	C2/c	$P 2_{1} / \mathrm{n}$	$P-1$	$P-1$
a / \AA	18.6359(6)	7.9319(3)	8.05010(10)	9.8728(8)
b / \AA	11.9828(6)	23.0680(10)	12.5630(2)	10.2889(9)
c / \AA	17.9652(7)	$11.7359(5)$	12.6704(2)	10.9536(9)
$\alpha /$ deg	90	90	68.6860(10)	80.721(5)
$\beta /$ deg	103.225(3)	91.872(2)	78.0620(10)	87.251(5)
$\gamma /$ deg	90	90	89.6740(10)	73.377(4)
V / \AA^{3}	3905.4(3)	2146.21(15)	1164.54(3)	1052.22(15)
Z	2	4	2	2
$D_{\text {calc }} /\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	1.570	1.796	1.766	1.950
$\mu\left(\mathrm{mm}^{-1}\right)$	0.967	1.412	1.177	1.571
$2 \theta_{\text {max }}(\mathrm{deg})$	52	52	52.00	52.00
Reflections collected	31014	19736	19065	16013
Independent reflections	$3842\left[R_{\text {int }}=0.0815\right]$	4197 [$\left.\mathrm{R}_{\mathrm{int}}=0.0820\right]$	$4589\left[R_{\text {int }}=0.0256\right]$	$4122\left[R_{\text {int }}=0.0442\right]$
Goodness-of-fit on $F 2$	1.042	1.029	1.039	1.009
$R_{1}, w R_{2}[I>2 \sigma(I)]$	0.0437, 0.1027	0.1014, 0.2508	0.0293, 0.0678	0.1429, 0.4537
$R_{1}, w R_{2}$ [all data]	0.0641, 0.1122	0.1231, 0.2663	0.0358, 0.0705	0.1505, 0.4768

Table S2 Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for $\mathbf{1}^{a}$

Cu1-N1	$2.018(2)$	Cu1-N3A	$2.034(2)$
Cu1-O1	$2.885(7)$		
N1B-Cu1-N1	$180.000(1)$	N1B-Cu1-N3C	$90.00(10)$
N1-Cu1-N3A	$90.00(10)$	N1B-Cu1-N3C	$90.00(10)$
N1-Cu1-N3C	$90.00(10)$	N3A-Cu1-N3C	$180.000(1)$
N1B-Cu1-O1	$89.9(2)$	N1-Cu1-O1	$90.1(2)$
N3C-Cu1-O1	$88.6(2)$	N3B-Cu1-O1	$91.4(2)$

${ }^{a}$ Symmetry operations: (A) 1-x, y, 1.5-z; (B) 1-x, 1-y, 1-z; (C) x, 1-y, -0.5+z.

Table S3 Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for $\mathbf{2}^{a}$

Ag1-N1	$2.220(6)$	Ag1-N3A	$2.205(6)$
Ag1-O1	$2.683(8)$	Ag1-S2B	$2.886(2)$
N1-Ag1-O1	$91.2(3)$	N1-Ag1-S2B	$95.37(16)$
N3A-Ag1-O1	$88.3(3)$	N3A-Ag1-S2B	$104.06(17)$
N3A-Ag1-N1	$159.1(2)$	O1-Ag1-S2B	$112.71(18)$

${ }^{a}$ Symmetry operations: (A) 2-x, 2-y, -z; (B) 1-x, 2-y, -z.

Table S4 Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for 3^{a}

Ag1-N3A	$2.270(2)$	Ag1-N1B	$2.280(2)$
Ag1-N4	$2.595(3)$	Ag1-S2	$2.7428(7)$
Ag1-N2	$2.786(2)$		
N4-Ag1-N2	$160.92(8)$	S2-Ag1-N2	$72.85(5)$
N4-Ag1-S2	$88.53(7)$	N3A-Ag1-N4	$92.65(9)$
N3A-Ag1-N2	$89.09(7)$	N3A-Ag1-S2	$107.306)$
N3A-Ag1-N1B	$155.48(8)$	N1B-Ag1-N2	$94.87(7)$
N1B-Ag1-N4	$91.40(9)$	N1B-Ag1-S2	$96.97(6)$

${ }^{a}$ Symmetry operations: (A) 1+x, y, z; (B) 1-x, 2-y, 1-z.

Table S5 Selected bond lengths (\AA) and bond Angles $\left({ }^{\circ}\right)$ for $\mathbf{4}^{a}$

Ag1-S1	$2.865(3)$	Ag1-S2	$2.832(3)$
Ag1-N2	$2.744(9)$	Ag1-N1A	$2.297(10)$
Ag1-O1	$2.914(11)$	Ag1-N3B	$2.276(10)$
N3B-Ag1-N1A	$169.6(3)$	N3B-Ag1-N2	$96.2(3)$
N1A-Ag1-N2	$94.2(3)$	N3B-Ag1-S2	$94.7(2)$
N1A-Ag1-S2	$89.9(2)$	N2-Ag1-S2	$69.2(2)$
N3B-Ag1-S1	$89.7(3)$	N1A-Ag1-S1	$93.0(2)$
N2-Ag1-S1	$69.5(2)$	S2-Ag1-S1	$138.69(8)$
N3B-Ag1-O1	$83.2(4)$	N1A-Ag1-O1	$87.2(4)$
N2-Ag1-O1	$161.6(4)$	S2-Ag1-O1	$92.5(3)$
S1-Ag1-O1	$128.8(3)$		

${ }^{a}$ Symmetry operations: (A) -x, -y, 1-z; (B) 1-x, -y, 2-z.

[^0]: ${ }^{\text {a }}$ Division of Applied Life Science (BK21 Four), Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, S. Korea
 ${ }^{b}$ Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, S. Korea

