Effect of twisted molecular geometry on the solid-state emissions of an anthracene fluorophore

G. Gogoi and R. J. Sarma*
Department of Chemistry, Gauhati University, Guwahati, 781014 Assam, India
E-mail: ris@gauhati.ac.in, rupam.sarma@gmail.com

Table of Contents

1	General information and methods.	P2
2	Details of synthesis, characterization of A-4OHand crystal formation procedure (Scheme S1)	P2
3	${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ NMR spectra of A-4OH (Figures S1, S2) ...	P3
4	ES mass spectrum of A-4OH (Figure S3).	P4
5	Solvent dependent UV-vis and fluorescence spectra of A-40H (Figure S4)	P4
6	Relative orientations of the anthracene and the hydroxy phenyl group in A-4OH-NE, A-4OH\mathbf{O} and $\mathbf{A - 4 O H}-\mathbf{G}$ (Figure S5).	P4
7	Side view and top view stacking structures of A-4OH-G, A-4OH-O and A-4OH-NE (Figure S6).	P5
8	Packing structures showing aromatic $\pi-\pi$ interactions of A-4OH-G,A-4OH-Oand A-4OH-NE (Figure S7)......	P6
9	Solid state UV-vis and fluorescence spectra of A-4OH-NE, A-4OH-O, A-4OH-G and pristine form (Figure S8).	P6
10	Overlay of the FT-IR spectra of A-4OH-Pristine, A-4OH-NE, A-4OH-O and A-4OH-G (Figure S9) \qquad	P7
11	Simulated and experimental powder XRD patterns and TGA graph ofA-4OH-NE, A-4OH-O and A-4OH-G (Figure S10) .	P7
12	Solid state UV-visible and Fluorescence spectra ofA-4OH-NEbefore and after heating process (Figure S11)	P8
13	FTIR spectra ofA-4OH-NEbefore and after heating process (Figure S12)	P8
14	Time resolved photoluminescence spectra ofA-4OH-NE, A-4OH-NE-heated(Figure S13)..	P9
15	Time resolved photoluminescence spectra ofA-4OH-G,A-4OH-Oand pristine form (Figure S14) \qquad	P9
16	Average fluorescence lifetime of A-4OH-NE, A-4OH-NE-heated,A-4OH-O,A-4OHGand pristine form (Table S1).	P10
17	HOMO-LUMO energy diagram of A-4OH molecule, A-4OH-NE, A-4OH-O and A-4OHGusing DFT (B3LYP/6-31G) (Figure S15).	P10
18	Crystallographic data and refinement parameters for A-4OH-NE, A-4OH-O and A-4OHG(Table S2)	P11

1. General experimental techniques.

All chemicals were commercially available from Sigma-Aldrich or Merck (India) and used as received. Solvents for spectroscopic experiments were distilled under nitrogen atmosphere before use. All ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR were measured on a 300 MHz Bruker spectrometer, and reported in δ / ppm. The absorption spectra were recorded on a Shimadzu UV-vis spectrophotometer (Model UV-1800), and fluorescence spectra were recorded using a Hitachi F2500 fluorimeter

2. Synthetic Procedures

Synthesis of $\mathbf{A - 4 O H}$: Compound $\mathbf{A - 4 O H}$ was synthesized by reacting anthracene-9-aldehyde with 4hydroxylbenzohydrazide, according to Scheme 1:

Scheme 1: Synthesis of A-4OH

Synthesis of ligand A-4OH. To a solution of anthracene-9-aldehyde ($0.206 \mathrm{~g}, 1.0 \mathrm{mmol}$) in chloroform (5 mL), was added 4-benzoylhydrazide ($0.242 \mathrm{~g}, 1.0 \mathrm{mmol}$) in methanol $(5 \mathrm{~mL})$ and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 8 h . When the reaction was complete, the reaction mixture was concentrated under vacuum and desired compound precipitated out. This residue was rinsed with methanol $(5 \mathrm{~mL})$ to afford a yellow-coloured productA-4OH. Yield $\sim 84 \%$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d ${ }_{6}$) $\delta_{\mathrm{H}} 11.95(1 \mathrm{H}$, s, amide NH), $10.33(1 \mathrm{H}, \mathrm{s}$, $\mathrm{OH}), 9.60(1 \mathrm{H}, \mathrm{s}, \mathrm{N}=\mathrm{CH}), 8.74(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}), 8.71-8.69$ ($2 \mathrm{H}, \mathrm{d}, \mathrm{Ar}-\mathrm{H}$), 8.14-8.12 (2H, d, Ar-H), 7.92-7.89 ($2 \mathrm{H}, \mathrm{d}, \mathrm{Ar}-\mathrm{H}$), 7.64-7.56 ($4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$), 6.93-6.90 ($2 \mathrm{H}, \mathrm{d}, \mathrm{Ar}-\mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO-d $_{6}$) 162.50, 160.57, 145.90, 130.76, 129.60, 129.40, 128.86, 127.02, 125.45, 125.09, 124.76, 123.63, 114.99. ES-MS: m/z 341.13 calc. for $\left(\mathrm{M}+\mathrm{H}^{+}\right)$.

Crystal formation procedure

A-4OH-G: Approximately 0.5 mg of C were taken in a glass vial and dissolved in $200 \mu \mathrm{~L}$ THF. The glass vial was capped for slow evaporation of the solvent. After 2-3 weeks green emissive crystals were obtained.
$\mathbf{A - 4 O H}-\mathbf{N E}$: A very concentrated solution of A-4OH in distilled N, N-dimethyl formamide ($1 \mathrm{mg} / 50 \mu \mathrm{~L}$) was prepared and kept for crystallization on a watch glass. After 1 day block like crystals were obtained.

A-4OH-O: 3 mg of A-4OH were taken in a glass sample vial and dissolved in 1 mL Methanol and DMSO separately. After 1-2 week prism like orange emissive crystals were obtained.

Figure S1: ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{A - 4 O H}$ in DMSO- d_{6}

Figure S2: ${ }^{13} \mathrm{C}$ NMR spectra of $\mathrm{A}-\mathbf{4 O H}$ in DMSO- d_{6}

Figure S3: ES-MS spectra of $\mathbf{A - 4 O H}$

Figure S4: Solvent dependent (a) UV-vis, and (b) fluorescence spectra of $\mathbf{A - 4 O H}$ (conc. $<0.1 \mathrm{mM}$); (c) Changes in the UV-vis spectra of $\mathbf{A - 4 O H}$ in DMF arising from photochemical trans-cis isomerization following exposure to 365 nm UV-light (recorded at intervals of 1 min); (b) Thermal cis-trans isomerization which occurs spontaneously in the dark.

Figure S5: Relative orientations of the anthracene and the hydroxy phenyl group in (a) A-4OH-NE; (b) A-4OH-O; and (c)A-4OH-G.

Figure S6: Side view and top view stacking structures of $\mathbf{A - 4 O H}$ crystals showing (a) $\mathrm{CH}-\pi$ interaction between two symmetric independent units of $\mathbf{A - 4 O H}-\mathbf{G}$, (b) $\pi-\pi$ interaction between two symmetric related units of $\mathbf{A - 4 O H}-\mathbf{G}$, (c) and (d) $\pi-\pi$ interaction between anthracene motifs of $\mathbf{A - 4 O H}-\mathbf{O}$ and $\mathbf{A - 4 O H}-\mathrm{NE}$ respectively; (inset: top view stacking mode of anthracene dimer)

Figure S7: Packing structures showing aromatic $\pi-\pi$ interactions of (a) A-4OH-G along b-axis, (b) A-4OH-O along a-axis, and (c) A-4OH-NE along b-axis
(a)

(b)

Figure S8: Solid state (a) UV-vis, and (b) fluorescence spectra of A-4OH-NE, A-4OH-O, A-4OH-G and pristine form

Figure S9: Overlay of the FT-IR spectra of pristine form, $\mathbf{A - 4 O H}-\mathbf{N E}, \mathbf{A - 4 O H - O}$ and $\mathbf{A - 4 O H}-\mathbf{G}$ forms.
a)

b)

Figure S10: (a)Simulated and experimental powder XRD pattern of A-4OH-NE, A-4OH-O, A-4OH-G and PXRD pattern of pristine form;(b)TGA graph of A-4OH-NE, A-4OH-O and A-4OH-G.
(a)

(b)

Figure S11: Solid state (a) UV-visible and (b) fluorescence spectra of A-4OH-NE before and after thermal stimulation.

Figure S12: (a) Overlay of the (a) FTIR spectra and (b) thermogravimetric analysise of A-4OH-NE before and after thermal stimulation, viz. A-4OH-F.
a)

* Exponential Components Analysis (Reconvolution)

Fitting range : [140; 2050] channels
$\chi^{2} \quad$:

	B_{i}	$\Delta \mathrm{B}_{\mathrm{i}}$	$\mathrm{f}_{\mathrm{i}}(\%)$	$\Delta \mathrm{f}_{\mathrm{i}}(\%)$	$\tau_{\mathrm{i}}(\mathrm{ns})$	$\Delta \tau_{\mathrm{i}}(\mathrm{ns})$
1	0.4997	0.0428	46.125	7.262	0.591	0.042
2	0.0620	0.0032	25.591	1.474	2.643	0.015
3	0.0193	0.0008	28.284	1.173	9.400	0.002

Shift $:-0.694 \mathrm{~ns}(\pm 1.002 \mathrm{~ns})$
Decay Background : $0.943 \quad(\pm 0.076)$
IRF background : 0
b)

* Exponential Components Analysis (Reconvolution)

Fitting range : [139; 2100] channels

	B_{i}	$\Delta \mathrm{B}_{\mathrm{i}}$	$\mathrm{f}_{\mathrm{i}}(\%)$	$\Delta \mathrm{f}_{\mathrm{i}}(\%)$	$\tau_{\mathrm{i}}(\mathrm{ns})$	$\Delta \tau_{\mathrm{i}}(\mathrm{ns})$
1	0.2306	0.0111	21.396	5.331	0.432	0.087
2	0.0615	0.0017	31.472	1.022	2.384	0.013
3	0.0229	0.0006	47.132	1.185	9.594	0.001

Shift $\quad:-0.098 \mathrm{~ns}(\pm 0.860 \mathrm{~ns})$
Decay Background : $1.213 \quad(\pm 0.076)$
IRF background : 0

Figure S13: Time resolved photoluminescence spectra of (a) A-4OH-NE and (b) A-4OH-NE heated form
a)

※ Exponential Components Analysis (Reconvolution)

Fitting range

$\chi^{2} \quad[100$

	B_{i}	$\Delta \mathrm{B}_{\mathrm{i}}$	$\mathrm{f}_{\mathrm{i}}(\%)$	$\Delta \mathrm{f}_{\mathrm{i}}(\%)$	$\tau_{\mathrm{i}}(\mathrm{ns})$	$\Delta \tau_{\mathrm{i}}(\mathrm{ns})$
1	0.2287	0.0568	33.251	8.614	1.433	0.015
2	0.1200	0.0083	66.749	4.609	5.483	0.001

Shift $:-1.074 \mathrm{~ns}(\pm 7.766 \mathrm{~ns})$
Decay Background : $0.922 \quad(\pm 0.113)$
IRF background : 0
c)

* Exponential Components Analysis (Reconvolution)

Fitting range
: [147; 4096] channels
χ^{2}

	B_{i}	$\Delta \mathrm{B}_{\mathrm{i}}$	$\mathrm{f}_{\mathrm{i}}(\%)$	$\Delta \mathrm{f}_{\mathrm{i}}(\%)$	$\tau_{\mathrm{i}}(\mathrm{ns})$	$\Delta \tau_{\mathrm{i}}(\mathrm{ns})$
1	0.0507	0.0009	19.500	2.830	0.490	0.063
2	0.0482	0.0008	63.668	1.404	1.681	0.008
3	0.0033	0.0002	16.832	0.787	6.591	0.003

Shift : $-0.049 \mathrm{~ns}(\pm 0.870 \mathrm{~ns})$
Decay Background : $1.292 \quad(\pm 0.072)$
IRF background : 0.100
b)

\approx Exponential Components Analysis (Reconvolution)
Fitting range : [154; 4096] channels

$\chi^{2}: 1.176$
B_{i} ΔB_{i} $\mathrm{f}_{\mathrm{i}}(\%)$ $\Delta \mathrm{f}_{\mathrm{i}}(\%)$ $\tau_{\mathrm{i}}(\mathrm{ns})$ $\Delta \tau_{\mathrm{i}}(\mathrm{ns})$ 1 0.0538 0.0022 18.481 2.366 0.768 0.067 2 0.0376 0.0018 38.178 2.123 2.273 0.016 3 0.0122 0.0004 43.341 1.348 7.948 0.002$\quad:-0.103 \mathrm{~ns}(\pm 2.207 \mathrm{~ns})$
Shift $\quad(\pm 0.156)$
Decay Background : $3.259 \quad\left(\begin{array}{ll} \\ \text { IRF background } \quad: 0.100\end{array}\right.$

Figure S14: Time resolved luminescence spectra of (a) A-4OH-G, (b) A-4OH-O and (c) pristine form.

Table S1. Comparison of the average fluorescence lifetime of A-4OH-NE, A-4OH-NE (heated), A-4OH-O and pristine sample

	$\mathbf{f 1}$	$\tau \mathbf{1}$	$\mathbf{f} \mathbf{2}$	$\tau \mathbf{2}$	$\mathbf{f 3}$	$\tau \mathbf{3}$	$\mathbf{n s}$
A-4OH-NE	0.46125	0.59	0.25598	2.643	0.28284	9.4	3.604
A-4OH-NE (heated)	0.21396	0.432	0.31472	2.384	0.47132	9.594	5.364
A-4OH-O	0.18481	0.768	0.38178	2.273	0.43341	7.948	4.454
A-4OH-G	0.33251	1.433	0.66749	5.483			4.136
Pristine	0.195	0.49	0.63668	1.681	0.16832	6.591	2.275

Figure S15: HOMO-LUMO energy diagram of A-4OH, A-4OH-NE, A-4OH-O and A-4OH-G as obtained from DFT calculations (using B3LYP/6-31G level of theory).

Figure S16. Calculated structures of the transition states (TS) for the photochemically induced trans-cis isomerisation of $\mathbf{A - 4 O H}$, corresponding to an energy barrier of $62.0 \mathrm{kcal} / \mathrm{mol}$.

Table S2. Crystallographicdata and refinement parameters of A-4OH-NE, A-4OH-O and A-4OH-G

	A-4-OH-NE	A-4OH-O	A-4OH-G
Empirical formula	$\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3}$	$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}$	$\mathrm{C}_{44} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{4}$
Formula weight	413.48	358.38	680.73
Temperature	296(2) K	296(2) K	296(2) K
Wavelength	0.71073 §	0.71073 A	0.71073 Å
Crystal system	Triclinic	Orthorhombic	Triclinic
Space group	$P-1$	Pbca	$P-1$
Unit cell dimensions	$\begin{aligned} & \mathrm{a}=8.5226(3) \AA, \\ & \mathrm{b}=10.0347(4) \AA, \\ & \mathrm{c}=12.5476(5) \AA, \\ & \alpha=77.009(2)^{\circ} \\ & \beta=81.678(2)^{\circ} \\ & \gamma=86.510(2)^{\circ} \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.5066(4) \AA, \\ & \mathrm{b}=14.8096(5) \AA, \\ & \mathrm{c}=18.3306(7) \AA, \\ & \alpha=90^{\circ} \\ & \beta=90^{\circ} \\ & \gamma=90^{\circ} \end{aligned}$	$\begin{aligned} & \mathrm{a}=11.3394(8) \AA, \\ & \mathrm{b}=11.3450(8) \AA, \\ & \mathrm{c}=14.9825(10) \AA, \\ & \alpha=77.424(5)^{\circ} \\ & \beta=86.116(4)^{\circ} \\ & \gamma=67.045(4)^{\circ} \end{aligned}$
Volume	1034.17(7) £	3395.2(2) \AA	1731.9(2) \AA
Z	2	8	2
Density (calculated)	1.184	1.402	1.305
Absorption coefficient	0.089	$0.094 \mathrm{~mm}^{-1}$	0.085
$\mathrm{F}(000)$	436.2039	1504	712
Theta range for data collection	2.95 to 29.08°	2.404to 29.082 ${ }^{\circ}$	1.393° to 26.596°
Index ranges	$\begin{aligned} & -11<=\mathrm{h}<=11, \\ & -13<=\mathrm{k}<=13, \\ & -17<=1<=17 \end{aligned}$	$\begin{aligned} & -17<=\mathrm{h}<=11, \\ & -20<=\mathrm{k}<=20, \\ & -25<=\mathrm{l}<=21 \end{aligned}$	$\begin{gathered} -14<=\mathrm{h}<=14, \\ -14<=k<=14, \\ -18<=1<=17 \end{gathered}$
Reflections collected	20541	18823	27578
Independent reflections	[R (int) =]	[R (int) $=$]	[R (int) $=$]
Completeness to theta 25.242°	25.242°	25.242°	25.242°
Refinement method	Full-matrix least-squares on F^{2}	Full-matrix leastsquares on F^{2}	Full-matrix leastsquares on F^{2}
Data / restraints / parameters	5514 / 0 / 283	4469 / 0 / 273	7160 / 0 / 486
Goodness-of-fit on F^{2}	1.0544	1.063	1.061
Final R indices [I>2sigma(I)]	$\begin{aligned} & \mathrm{R} 1=0.0508, \mathrm{wR} 2= \\ & 0.1411 \end{aligned}$	$\begin{aligned} & \mathrm{R} 1=0.0466, \mathrm{wR} 2= \\ & 0.1152 \end{aligned}$	$\begin{aligned} & \mathrm{R} 1=0.0723, \mathrm{wR} 2 \\ & =0.1724 \end{aligned}$
R indices (all data)	$\begin{aligned} & \mathrm{R} 1=0.0708, \mathrm{wR} 2= \\ & 0.1589 \end{aligned}$	$\begin{aligned} & \text { R1 }=0.0678, \mathrm{wR} 2 \\ & =0.1278 \end{aligned}$	$\begin{aligned} & \mathrm{R} 1=0.1413, \text { wR2 } \\ & =0.2116 \end{aligned}$
Largest diff. peak and hole	e. $A^{8}{ }^{-3}$	e. \AA^{-3}	e. \AA^{-3}

