Electronic Supporting Information for

Effect of twisted molecular geometry on the solid-state emissions of an anthracene fluorophore

G. Gogoi and R. J. Sarma*

Department of Chemistry, Gauhati University, Guwahati, 781014 Assam, India

E-mail: rjs@gauhati.ac.in, rupam.sarma@gmail.com

Table of Contents

1	General information and methods	P2		
2	Details of synthesis, characterization of A-4OHand crystal formation procedure (Scheme S1)			
3	¹ H/ ¹³ C NMR spectra of A-4OH (Figures S1, S2)	P3		
4	ES mass spectrum of A-4OH (Figure S3)			
5	Solvent dependent UV-vis and fluorescence spectra of A-4OH (Figure S4)	P4		
6	Relative orientations of the anthracene and the hydroxy phenyl group in A-4OH-NE, A-4OH- O and A-4OH-G (Figure S5)			
7	Side view and top view stacking structures of A-4OH-G, A-4OH-O and A-4OH-NE (Figure S6)	Р5		
8	Packing structures showing aromatic π - π interactions of A-4OH-G,A-4OH-Oand A-4OH-NE (Figure S7)	Р6		
9	Solid state UV-vis and fluorescence spectra of A-4OH-NE , A-4OH-O , A-4OH-G and pristine form (Figure S8)			
10	Overlay of the FT-IR spectra of A-4OH-Pristine, A-4OH-NE, A-4OH-O and A-4OH-G (Figure S9)	P7		
11	Simulated and experimental powder XRD patterns and TGA graph of A-4OH-NE , A-4OH-O and A-4OH-G (Figure S10)			
12	Solid state UV-visible and Fluorescence spectra of A-4OH-NE before and after heating process (Figure S11)			
13	FTIR spectra of A-4OH-NE before and after heating process (Figure S12)	P8		
14	Time resolved photoluminescence spectra of A-4OH-NE, A-4OH-NE-heated (Figure S13)	P9		
15	Time resolved photoluminescence spectra of A-4OH-G , A-4OH-O and pristine form (Figure S14)			
16	Average fluorescence lifetime of A-4OH-NE, A-4OH-NE-heated, A-4OH-O, A-4OH-Gand pristine form (Table S1)			
17	HOMO-LUMO energy diagram of A-4OH molecule, A-4OH-NE, A-4OH-O and A-4OH-Gusing DFT (B3LYP/6-31G) (Figure S15)			
18	Crystallographic data and refinement parameters for A-4OH-NE, A-4OH-O and A-4OH-G(Table S2)	P11		

1. General experimental techniques.

All chemicals were commercially available from Sigma-Aldrich or Merck (India) and used as received. Solvents for spectroscopic experiments were distilled under nitrogen atmosphere before use. All ¹H and ¹³C NMR were measured on a 300 MHz Bruker spectrometer, and reported in δ /ppm. The absorption spectra were recorded on a Shimadzu UV-vis spectrophotometer (Model UV-1800), and fluorescence spectra were recorded using a Hitachi F2500 fluorimeter

2. Synthetic Procedures

Synthesis of A-4OH: Compound **A-4OH**was synthesized by reacting anthracene-9-aldehyde with 4-hydroxylbenzohydrazide, according to Scheme 1:

Scheme 1: Synthesis of A-4OH

Synthesis of ligand A-4OH. To a solution of anthracene-9-aldehyde (0.206 g,1.0 mmol) in chloroform (5 mL), was added 4-benzoylhydrazide (0.242g,1.0 mmol) in methanol (5 mL) and the mixture was stirred at 80°C for 8 h. When the reaction was complete, the reaction mixture was concentrated under vacuum and desired compound precipitated out. This residue was rinsed with methanol(5 mL)to afford a yellow-coloured productA-4OH. Yield ~ 84%; ¹H NMR(300MHz, DMSO-d₆) $\delta_{\rm H}$ 11.95 (1H, s, amide NH),10.33 (1H, s, - OH), 9.60 (1H, s, N=CH), 8.74 (1H, s, Ar-H), 8.71-8.69 (2H, d, Ar-H), 8.14-8.12 (2H, d, Ar-H), 7.92-7.89 (2H, d, Ar-H), 7.64-7.56 (4H, m, Ar-H), 6.93-6.90 (2H, d, Ar-H). ¹³C NMR (75MHz, DMSO-d₆) 162.50, 160.57, 145.90, 130.76, 129.60, 129.40, 128.86, 127.02, 125.45, 125.09, 124.76, 123.63, 114.99. ES-MS: m/z 341.13 calc. for (M+H⁺).

Crystal formation procedure

A-4OH-G: Approximately 0.5 mg of C were taken in a glass vial and dissolved in 200 μL THF. The glass vial was capped for slow evaporation of the solvent. After 2-3 weeks green emissive crystals were obtained. **A-4OH-NE**: A very concentrated solution of **A-4OH** in distilled N,N-dimethyl formamide (1mg/50μL) was prepared and kept for crystallization on a watch glass. After 1 day block like crystals were obtained. **A-4OH-O**: 3 mg of **A-4OH** were taken in a glass sample vial and dissolved in 1 mL Methanol and DMSO separately. After 1-2 week prism like orange emissive crystals were obtained.

Figure S2: ¹³C NMR spectra of **A-4OH** in DMSO-d₆

Figure S4: Solvent dependent (a) UV-vis, and (b) fluorescence spectra of A-4OH (conc. <0.1mM); (c) Changes in the UV-vis spectra of A-4OH in DMF arising from photochemical *trans-cis* isomerization following exposure to 365 nm UV-light (recorded at intervals of 1 min); (b) Thermal *cis–trans* isomerization which occurs spontaneously in the dark.

Figure S5: Relative orientations of the anthracene and the hydroxy phenyl group in (a) **A-4OH-NE**; (b) **A-4OH-O**; and (c)**A-4OH-G**.

Figure S6: Side view and top view stacking structures of **A-4OH** crystals showing (a) CH $-\pi$ interaction between two symmetric independent units of **A-4OH-G**, (b) $\pi-\pi$ interaction between two symmetric related units of **A-4OH-G**, (c) and (d) $\pi-\pi$ interaction between anthracene motifs of **A-4OH-O** and **A-4OH-NE** respectively; (inset: top view stacking mode of anthracene dimer)

Figure S7: Packing structures showing aromatic π - π interactions of (a) **A-4OH-G** along b-axis, (b) **A-4OH-O** along a-axis, and (c) **A-4OH-NE** along b-axis

Figure S8: Solid state (a) UV-vis, and (b) fluorescence spectra of **A-4OH-NE**, **A-4OH-O**, **A-4OH-G** and pristine form

Figure S9: Overlay of the FT-IR spectra of pristine form, A-4OH-NE, A-4OH-O and A-4OH-G forms.

Figure S10: (a)Simulated and experimental powder XRD pattern of **A-4OH-NE**, **A-4OH-O**, **A-4OH-G** and PXRD pattern of pristine form;(b)TGA graph of **A-4OH-NE**, **A-4OH-O** and **A-4OH-G**.

Figure S11: Solid state (a) UV-visible and (b) fluorescence spectra of **A-4OH-NE** before and after thermal stimulation.

Figure S12: (a) Overlay of the (a) FTIR spectra and (b) thermogravimetric analysise of **A-4OH-NE** before and after thermal stimulation, viz. **A-4OH-F**.

Figure S13: Time resolved photoluminescence spectra of (a) A-4OH-NE and (b) A-4OH-NE heated form

Data a

1000

100

10

Fitting range

3

Shift

 γ^2

10 15 20 25 30 35 40

* Exponential Components Analysis (Reconvolution)

: 1.176

B;

0.0538

0.0376

Decay Background: 3.259

IRF background : 0.100

: [154; 4096] channels

 ΔB_i

0.0022

0.0018

0.0122 0.0004 43.341

-0.103 ns (± 2.207 ns)

(±0.156)

f_i(%)

38.178

 $\Delta f_i(\%)$

18.481 2.366 0.768

2.123

1.348

 τ_i (ns)

2.273

7.948

45 Tir

 $\Delta \tau_{i}$ (ns)

0.067

0.016

0.002

b)

Table S1. Comparison of the average fluorescence lifetime of A-4OH-NE, A-4OH-NE (heated), A-4OH-O and pristine sample f3 f1 τ1 f2 τ2 τ3 ns 0.25598 9.4 A-40H-NE 0.46125 0.59 2.643 0.28284 3.604 A-4OH-NE (heated) 0.21396 0.432 0.31472 2.384 0.47132 9.594 5.364 2.273 A-40H-0 0.18481 0.768 0.38178 0.43341 7.948 4.454 A-40H-G 0.33251 1.433 0.66749 5.483 4.136 0.195 0.49 0.63668 1.681 0.16832 6.591 2.275 Pristine

Figure S15: HOMO-LUMO energy diagram of **A-4OH**, **A-4OH-NE**, **A-4OH-O** and **A-4OH-G** as obtained from DFT calculations (using B3LYP/6-31G level of theory).

Figure S16. Calculated structures of the transition states (TS) for the photochemically induced *trans-cis* isomerisation of **A-4OH**, corresponding to an energy barrier of 62.0 kcal/mol.

	A-4-OH-NE	А-40Н-0	A-4OH-G
Empirical formula	C ₂₅ H ₂₃ N ₃ O ₃	$C_{22} H_{18} N_2 O_3$	C ₄₄ H ₃₂ N ₄ O ₄
Formula weight	413.48	358.38	680.73
Temperature	296(2) K	296(2) K	296(2) K
Wavelength	0.71073 Å	0.71073 Å	0.71073 Å
Crystal system	Triclinic	Orthorhombic	Triclinic
Space group	P-1	Pbca	P-1
Unit cell dimensions	a = 8.5226(3) Å,	a = 12.5066(4)Å,	a = 11.3394(8) Å,
	b = 10.0347(4) Å,	b = 14.8096(5)Å,	b = 11.3450(8) Å,
	c = 12.5476(5) Å,	c = 18.3306(7)Å,	c = 14.9825(10) Å,
	$\alpha = 77.009(2)^{\circ}$	$\alpha = 90^{\circ}$	$\alpha = 77.424(5)^{\circ}$
	$\beta = 81.678(2)^{\circ}$	$\beta = 90^{\circ}$	$\beta = 86.116(4)^{\circ}$
	$\gamma = 86.510(2)^{\circ}$	$\gamma = 90^{\circ}$	$\gamma = 67.045(4)^{\circ}$
Volume	1034.17(7) Å	3395.2(2)Å	1731.9(2)Å
Ζ	2	8	2
Density (calculated)	1.184	1.402	1.305
Absorption coefficient	0.089	0.094 mm ⁻¹	0.085
F(000)	436.2039	1504	712
Theta range for data collection	2.95 to 29.08°	2.404to 29.082°	1.393° to 26.596°
	-11<=h<=11,	-17<=h<=11,	-14<=h<=14,
Index ranges	-13<=k<=13,	-20<=k<=20,	-14<=k<=14,
	-17<=1<=17	-25<=l<=21	-18<=1<=17
Reflections collected	20541	18823	27578
Independent reflections	[R(int) =]	[R(int) =]	[R(int) =]
Completeness to theta25.242°	25.242°	25.242°	25.242°
Definement method	Full-matrix least-squares	Full-matrix least-	Full-matrix least-
Refinement method	on F^2	squares on F^2	squares on F^2
Data / restraints / parameters	5514 / 0 / 283	4469 / 0 / 273	7160 / 0 / 486
Goodness-of-fit on F^2	1.0544	1.063	1.061
Final R indices [I>2sigma(I)]	R1 =0.0508, wR2 = 0.1411	R1 =0.0466, wR2 = 0.1152	R1 =0.0723, wR2
	R1 = 0.0708 wR2 =	R1 = 0.0678 wR2	R1 = 0.1413 wR2
R indices (all data)	0.1589	=0.1278	=0.2116
Largest diff. peak and hole	e.Å ⁻³	e.Å ⁻³	e.Å ⁻³

Table S2. Crystallographic and refinement parameters of A-4OH-NE, A-4OH-O and A-4OH-G