Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Information

Cellulose-templated Bi₂SiO₅ nanorods with enhanced UV/Vis light utilization for high-performance photocatalytic degradation of organic contaminants

Yiyan Cai,^a Shuo Zhang,^a Weizhi Zhu,^a Haohang Fang,^a Hongjie Wang,^a Shaohong

Shi,^a Jianping Sun,^a Yiqiang Wu,^b Fangchao Cheng^{a,b*}

^a State Key Laboratory of Featured Metal Materials and Life-cycle Safety for

Composite Structures, School of Resources, Environment and Materials, Guangxi

University, Nanning 530004, China

^b College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China

* Corresponding author: fangchaocheng@gxu.edu.cn

Fig. S1 The digital photograph of the photocatalysts.

Fig. S2 Experimental apparatuses for RhB degradation (Left: light off; Right: light on.).

Fig. S3 XRD patterns of CBSO samples prepared with different pH values.

Fig. S4 UV-Vis absorption spectra of (a) RhB and (b) TC in the presence of the CBOS-600 under visible light.

Fig. S5 The reusability of the CBOS-600 catalyst.

Table of the twitter and erystal size of Di ₂ 0105 erystal						
Crystal Face	Photocatalysts	2 Theta/degree	FWHM	Crystal size/nm*		
(311)	CBSO	29.38	0.35	24.20		
(011)	BSO	29.38	0.29	29.31		

Table S1 The FWHM and crystal size of Bi₂SiO₅ crystal

*The crystal size was calculated with the Scherrer formula:

$D = K\lambda/\beta cos\theta$

where D is crystalline size, K is a constant (0.9), λ represents the wavelength of the incident X-rays (1.5406 Å), β is the full width at half maximum (FWHM) and θ is the Bragg angle for the diffraction peaks.

Samples	BET (m ² .g ⁻¹)	Pore volume	Average pore size	
		(cm ³ .g ⁻¹)	(nm)	
BSO	20.775	0.148	7.264	
CBSO-600	50.143	0.207	3.007	
Bi ₂ SiO ₅ /Bi ₁₂ SiO ₂₀ ¹	20.7	0.05	4.4	
Bi ₂ SiO ₅ ²	44.7	0.32	28.8	
OVs-Bi ₂ SiO ₅ ³	44.2	0.24	10.9	

Table S2 Structural parameters of the BSO and CBSO.

Ref	Photocatalyst	Catalyst dosage (g/L)	Concentration (mg/L)	Reaction Time (min)	Degradation (%)	Light source
This Bi ₂ SiO ₅ na work		2	100	120	99.88	Xenon lamp, 300 W Vis
	Bi ₂ SiO ₅ nanoparticles	2	100	60	100	Xenon lamp, 300 W UV+Vis
4	Bi_2S_3/Bi_4O_7	0.5	10	60	99.2	Xenon lamp, 500 W Vis
5	C-WO ₃	0.5	20	180	95	Xenon lamp, 300 W Vis+UV
6	Fe-g-C ₃ N ₄	0.4	10	150	100	Xenon lamp, 300 W Vis
7	Au-SiO ₂ /g-C ₃ N ₄	1	10	90	99.8	Xenon lamp, 150 W Vis
8	P-ZnO	0.5	5	180	100	Halogen lamp, 300 W Vis
9	Fe ₃ O ₄ /SiO ₂ /TiO ₂	0.5	20	180	92.8	Xenon lamp, 300 W UV

 Table S3 Comparison of RhB degradation using various photocatalysts.

10	TiO ₂ /WO ₃ -x	1.5	10	100	97.4	Xenon lamp, 500 W Vis
11	TiO ₂ /ZnO-g-C ₃ N ₄	0.5	5	120	99.6	Mercury lamps 19 W UV
12	ZnO-SiO ₂	0.5	7.2	60	74	UV lamp, 300 W UV
13	TiO ₂	1	10	60	95	UV lamp, 7 W UV
14	B/W-TiO ₂	0.4	5	60	90.4	Xenon lamp, 500 W Sunlight
15	ZnO/G/C ₃ N ₄	1	10	80	100	Xenon lamp, 200 W Vis
16	WO_3/g - C_3N_4	0.5	5	90	91	Tungsten lamp, 500 W Sunlight

References

- 1. Q. Zhang, Ravindra, H. Xia, L. Zhang, K. Zeng, Y. Xu and C. Xin, *Applied Surface Science*, 2022, **581**, 152337.
- L. Dou, J. Zhong, J. Li, J. Luo and Y. Zeng, *Materials Research Bulletin*, 2019, 116, 50-58.
- 3. L. Dou, J. Li, N. Long, C. Lai, J. Zhong, J. Li and S. Huang, *Surfaces and Interfaces*, 2022, **29**, 101787.
- 4. F. Mu, B. Dai, W. Zhao, X. Yang, X. Zhao and X. Guo, *Chinese Chemical Letters*, 2021, **32**, 2539-2543.
- 5. Y. Zheng, G. Chen, Y. Yu, Y. Zhou and F. He, *Applied Surface Science*, 2016, **362**, 182-190.
- 6. T. Ma, Q. Shen, B. Z. J. Xue, R. Guan, X. Liu, H. Jia and B. Xu, *Inorganic Chemistry Communications*, 2019, **107**, 107451.
- 7. X. Zhou, G. Zhang, C. Shao, X. Li, X. Jiang and Y. Liu, *Ceramics International*, 2017, **43**, 15699-15707.
- 8. R. Saffari, Z. Shariatinia and M. Jourshabani, *Environ Pollut*, 2020, **259**, 113902.
- 9. K.-H. Han, Y.-H. Kim, M.-H. Mun, J.-H. Yu and R.-H. Han, *Materials Research Express*, 2022, **9**, 025007.
- Z. Liu, F. Zhang, C. Li and C. Inoue, *Catalysis Letters*, 2022, DOI: 10.1007/s10562-022-04079-z, <u>https://doi.org/10.1007/s10562-10022-04079-z</u>.
- 11. J. Hongxia, G. Yanlin, L. Longxiang, W. Xu and P. Wangjun, *Environmental Progress & Sustainable Energy*, 2023, **42**, e13968.
- 12. W. Ahmad, M. A. Basit, M. S. Khan, I. Ali and T. J. Park, *Physica E: Lowdimensional Systems and Nanostructures*, 2020, **124**, 114308.
- 13. W. Nachit, H. Ait Ahsaine, Z. Ramzi, S. Touhtouh, I. Goncharova and K. Benkhouja, *Optical Materials*, 2022, **129**, 112256.
- 14. Z. Miao, G. Wang, L. Li, C. Wang and X. Zhang, *Journal of Materials Science*, 2019, **54**, 14320-14329.
- 15. H. Osman, Z. Su and X. Ma, *Environmental Chemistry Letters*, 2017, **15**, 435-441.
- 16. J. Zhao, Z. Ji, X. Shen, H. Zhou and L. Ma, *Ceramics International*, 2015, **41**, 5600-5606.