Supplementary Information

The cooperation of charge transfer and electron transfer for manipulating photothermal behaviour of donor-acceptor co-crystals

Jia-Qi Pan, Yun-Rui Chen, Meng-Ze Jia, Xin-Rong Yao, Xiao-Li Miao, Jie Zhang*

MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China. E-mail: zhangjie68@bit.edu.cn

Table of content

Supplementary Table	2
Supplementary Figures	3

Supplementary Tables

X-ray crystallography

Compound name	СТС-10Н	СТС-2ОН
Structural formula	H ₂ BCbpe·2Hbdc- OH·0.5H ₂ bdc-OH·4H ₂ O	BCbpe·H ₂ bdc-(OH) ₂ ·H ₂ O
Empirical formula	$C_{40}H_{39}N_2O_{18.5}$	$C_{28}H_{24}N_2O_9$
Formula weight	843.73	532.49
Temperature (K)	298	298
Crystal system	triclinic	orthorhombic
Space group	<i>P</i> -1	$P2_{1}2_{1}2_{1}$
<i>a</i> (Å)	8.2694	4.7835
<i>b</i> (Å)	8.7155	43.651
<i>c</i> (Å)	26.765	11.3771
α (°)	87.121	90
β (°)	85.505	90
γ (°)	80.356	90
Volume (Å ³)	1894.6	2375.64
Z	2	4
D_{calcd} (g/cm ³)	1.479	1.489
Absorption coefficient (mm ⁻¹)	0.119	0.113
F (000)	882.0	1112.0
Reflections collected	22553/9057	23001/4156
GOOF on F^2	1.037	1.135
R_1 , $wR_2 (I \ge 2\sigma(I))$	$R_1 = 0.0551, wR_2 = 0.1372$	$R_1 = 0.1661, wR_2 = 0.4510$
R_1 , w R_2 (all data)	$R_1 = 0.0952, wR_2 = 0.1637$	$R_1 = 0.1739, wR_2 = 0.4690$

Supplementary Figures

Fig. S1 ¹H NMR spectra (400 MHz, d_6 -DMSO) of CTC-2OH (a) and CTC-1OH (b), and the attribution of characteristic peaks.

Fig. S2 FT-IR spectra of CTC-2OH (a) and CTC-1OH (b).

Fig. S3 ESR spectrum of CTC-2OH in the solid-state under an air atmosphere at room temperature.

Fig. S4 ESR spectra of CTC-1OH in the solid-state before and after 365 nm light irradiation.

Fig. S5 Time-dependent UV-Vis-NIR spectral change of **CTC-10H** in solid state upon 365 nm light irradiation.

Fig. S6 (a) IR and (b) ¹H NMR spectra of CTC-1OH before and after 365 nm light irradiation.

Fig. S7 The crystallographically asymmetric unit in **CTC-1OH** (The atoms marked # are generated by symmetric operation).

Fig. S8 The hydrogen bonds between adjacent H₂BCbpe²⁺, Hbdc-OH⁻ and H₂bdc-OH in CTC-1OH.

Fig. S9 (a) The crystallographically asymmetric unit and (b) three-dimensional supramolecular stacking of CTC-2OH.

Fig. S10 The-hydrogen bonds between adjacent BCbpe and H₂bdc-(OH)₂ in "Z" type chain. The "head" and "tail" moieties of BCbpe are connected to H₂bdc-(OH)₂ by two types of hydrogen bonds: O-H··O hydrogen bonds ($d_{O-O} = 2.53$ Å) and O-H··N hydrogen bonds ($d_{O-N} = 2.57$ Å) in **CTC-2OH**.

Fig. S11 The adjacent BCbpe ligands and H₂bdc-(OH)₂ ligands are connected by interchain hydrogen bonds: C-H· ·O hydrogen bonds ($d_{C-O} = 2.66$ Å) in **CTC-2OH**.

Fig. S12 pile-up sequences and Z-shaped arrangement in CTC-2OH.

Fig. S13 UV-Vis-NIR spectral change of CTC-2OH in the solid-state-upon 365 nm light irradiation.

Fig. S14 Photothermal conversion curves of CTC-1OH co-crystal upon exposure to NIR laser at varied power densities.

Fig. S15 Photothermal conversion curves of the photo-irradiated **CTC-1OH** (365 nm light for 30 min) during five cycles of heating and cooling processes.

Fig. S16 Temperature transformation curves of **CTC-2OH** co-crystal and its blank quartz substrate upon exposure to 808 nm laser with power density of $1.38 \text{ W} \cdot \text{cm}^{-2}$.

Fig. S17 ¹H NMR spectra and the attribution of characteristic peaks of **CTC-2OH** after 10 photothermal cycles via 808 nm laser.

Fig. S18 Thermogravimetric curve of CTC-2OH.

Fig. S19 Cooling curve (a) of the **CTC-2OH** irradiated by 808 nm laser (1.38 W·cm⁻²) and its corresponding time-ln θ linear curve; the calculated value of τ_s is 29.7 s.

Calculation of photothermal efficiency (η CTC-2OH)

The photothermal conversion efficiency (η) is obtained according to Equation (1).

$$\eta = \frac{hA(T_{Max} - T_{surr}) - Q_{Dis}}{I(1 - 10^{-A808})} \quad (1)$$

In equation (1), T_{Max} is the maximum steady-state temperature(123.4 °C), T_{surr} represents the surrounding temperature (20.1 °C); I represents the power of incident laser (0.39 w); A_{808} is the absorbance of the sample at 808 nm (0.19); h, the heat transfer coefficient; A, the surface area of the container and the value of hA is obtained by equation (2); Q_{Dis} is the heat dissipation of light absorbed by the quartz sample cell, obtained by formula (3).

$$hA = \frac{m_D C_D}{\tau_s} \quad (2)$$

$$Q_{Dis} = \frac{m_D C_D (T_{max} - T_{surr})}{\tau_s} \quad (3)$$

 m_D and C_D are the mass (8 mg) and heat capacity (0.8 J/g) of the sample respectively, τ_s (the time constant of heat transfer in the system) can be obtained from equation (4).

$$t = -\tau_s ln\theta = -\tau_s ln(\frac{T_t - T_{surr}}{T_{Max} - T_{surr}}) \quad (4)$$

The variable t in equation (4) is the cooling time point after continuous irradiation, T_t is the temperature at the corresponding time point in the cooling process, and τ_s is 29.7s. By calculation, the photothermal efficiency of compound **CTC-2OH** is 35.4 %.