Supporting Information for

In the pursuit of a 'disappearing' anhydrous phase of antipyrine-dipicolinic acid (ANT-DPA) co-crystal: explained through relative stability and charge density analyses

Sehrish Akram^a, Arshad Mehmood*^b, Sajida Noureen^a, Maqsood Ahmed*^a

^aMaterials Chemistry Laboratory, Institute of Chemistry, The Islamia University of Bahawalpur, Baghdad-ul-Jadeed Campus 63100, Pakistan.

^bDepartment of Chemistry and Biochemistry, Texas Christian University, Fort Worth, Texas 76129, USA.

Correspondence : arshad.mehmood@stonybrook.edu; magsood.ahmed@iub.edu.pk

Table S1 Experimental and theoretical lattice parameters of both cocrystals. Theoretical

 parameters are obtained from periodic DFT calculations.

Denometer	Hydrat	ed form	Anhydrous form			
Parameter	Experiment	Theory	Experiment	Theory		
<i>a</i> (Å)	18.4087	18.2524	6.6207	6.5349		
b (Å)	8.0394	8.0759	13.4523	13.3528		
<i>c</i> (Å)	23.69	23.2077	36.69120	36.6821		
β (°)	91.284	89.5857	-	-		
Volume (Å ³)	3505.1	3420.81	3267.9	3051.88		

Table S2. Bader charges of individual atoms of both cocrystals obtained from periodic DFT calculations.

Hydrat	ed form	Anhydro	ous form
Atom	Charge	Atom	Charge
01	-1.199	01	-1.223
O2	-1.196	O2	-1.179
03	-1.200	N3	-1.130
O4	-1.177	N1	-0.822
05	-1.174	O4	-1.165
O6	-1.213	N2	-0.810
N1	-0.820	03	-1.197
N2	-0.801	C2	-0.002
N3	-1.119	H2A	0.087
C1	0.296	C3	0.407
C2	-0.017	C14	0.508
H2	0.064	C1	1.208
C3	-0.033	05	-1.192

H3	0.062	C6	0.312
C4	-0.043	C10	0.505
H4a	0.077	C4	-0.019
C5	-0.028	C15	1.561
H5	0.075	C13	0.002
C6	0.004	H13	0.076
H6	0.078	C5	0.330
C7	0.420	C12	0.001
C8	-0.005	H12	0.130
H8	0.092	С9	-0.026
С9	1.174	Н9	0.073
C10	0.302	C11	-0.002
C11	0.000	H11	0.089
C12	0.496	C16	1.582
C13	-0.003	C7	-0.012
H13	0.108	H7	0.096
C14	-0.009	C8	-0.017
H14	0.072	H8	0.019
C15	-0.011	H2	0.662
H15	0.106	H4	0.659
C16	0.490	H1	0.047
C17	1.568	Н3	0.109
C18	1.602	Н5	0.070
H6a	0.611	H6	0.057
H1	0.655		
H6b	0.615		
H4	0.662		
H11a	0.068		
H11b	0.063		
H11c	0.072		
H10a	0.083		
H10b	0.061		
H10c	0.081		

Table S3

<i>D</i> —H··· <i>A</i>	D—H	H···A	D····A	D—H···A							
C4—H4 <i>a</i> ···O5 ⁱ	1.09	2.42	3.348 (2)	142 (1)							
С6—Н6…О1	1.09	2.58	3.007 (2)	102 (1)							
O2—H1…O1	1.11	1.38	2.4378 (17)	157 (1)							
O2—H1…C8	1.11	2.51	3.265 (2)	124 (1)							
O2—H1…C9	1.11	2.06	3.089 (2)	154 (1)							
O6—H6 <i>b</i> ⋯O3	0.99	1.89	2.8767 (17)	176 (1)							
O6—H6 <i>b</i> ⋯N3	0.99	2.44	2.9060 (18)	108 (1)							
O4—H4…O6	1.02	1.74	2.6588 (17)	148 (1)							
O4—H4…N3	1.02	2.14	2.7132 (18)	114 (1)							
C10—H10 <i>c</i> ···C11	1.09	2.62	3.036 (3)	102 (1)							
С11—Н11с…ОЗіі	1.10	2.60	3.560 (2)	147 (1)							
C10—H10 <i>c</i> ···C5 ⁱⁱ	1.09	2.42	3.423 (3)	152 (1)							
С15—Н15…С3ііі	1.09	2.78	3.565 (3)	129 (1)							
O6—H6a…O3 ^{iv}	0.98	1.95	2.8604 (17)	153 (1)							
C3—H3…N3 ^v	1.09	2.38	3.328 (2)	144 (1)							
C6—H6…C14 ^{vi}	1.09	2.67	3.564 (3)	139 (1)							
Symmetry c	$x - \frac{1}{2}, -y + \frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, (ii) + \frac{1}{2}, \frac{1}{2}, (iii) + \frac{1}{2}, 1$										

Hydrogen-bond geometry (Å, °) of hydrated form

 $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}, (ii) \quad x, y + 1, z; (iii) \quad x + \frac{1}{2}, -y = \frac{1}{2}, (ii) \quad x, y + 1, z; (iii) \quad x + \frac{1}{2}, -y = \frac{1}{2}, (iv) \quad x + \frac{3}{2}, -y + \frac{1}{2}, -z + 1, (v) - x + 1, -y + 1, -z + 1; (v) - x + \frac{3}{2}, -y + \frac{3}{2}, -z + 1$

Table S4

Topological properties of (3,-1) CPs in the intermolecular interactions of hydrated form calculated based on a multipolar atom model refinement using theoretically generated structure factors. distances (Å), electron density (eÅ⁻³), Laplacian (eÅ⁻⁵), Hessian eigenvalues (eÅ⁻⁵), $\varepsilon =$ ellipticity, G_{CP} = bond kineticenergy density (kJ mol⁻¹ Bohr⁻³) and V_{CP} = bond potential-energy density (kJ mol⁻¹ Bohr⁻³).

No	Bonds	d ₁₂	d _{1CP}	d _{2CP}	ρ _{BCP} (r)	$ \nabla^2 \rho_{BCP} $ (r)	λ ₁	λ_2	λ3	3	G _{CP}	V _{CP}
1	02 - 11101	1.334	0.977	0.357	0.730	2.43	-7.176	-7.113	16.72	0.009	229.2	-392.2
$1 02^{-}H1^{-}01$	1.334	0.942	0.393	0.894	-4.264	-8.942	-8.887	13.57	0.006	182.1	-480.3	
2	0.4 - 114	1.687	1.130	0.560	0.331	1.578	-2.323	-2.289	6.19	0.015	78.32	-113.6
2	04 H4 06	1.687	1.118	0.572	0.357	1.188	-2.287	-2.285	5.76	0.001	77.68	-123.0
2	O(-U(1))	1.894	1.193	0.702	0.241	1.155	-1.509	-1.509	4.172	0	50.15	-68.84
3	O6 - H6bO3	1.894	1.191	0.704	0.228	1.069	-1.312	-1.308	3.688	0.003	45.96	-62.81

1	$O6 = H6a \cdots O2iv$	1.938	0.738	1.208	0.204	1.299	-1.2	-1.172	3.671	0.024	45.65	-55.93
4	00 Hoa 05"	1.938	0.737	1.209	0.204	1.297	-1.2	-1.17	3.67	0.025	45.64	-55.95
5	$C_2 = U_2 \cdots V_2 v$	2.397	0.948	1.449	0.075	0.963	-0.278	-0.227	1.467	0.225	21.7	-17.17
5	C5 H5 N5	2.397	0.948	1.449	0.075	0.964	-0.28	-0.23	1.47	0.225	21.72	-17.19
6	C10 - H10c····C5	2.447	0.969	1.478	0.074	0.817	-0.24	-0.182	1.239	0.322	18.9	-15.54
0	ii	2.447	0.969	1.479	0.074	0.817	-0.24	-0.18	1.24	0.321	18.91	-15.56
7		2.394	0.969	1.426	0.064	0.899	-0.252	-0.24	1.391	0.052	19.53	-14.56
/	$C4 = H4a^{-1}O5^{-1}$	2.394	0.969	1.426	0.064	0.903	-0.25	-0.24	1.4	0.051	19.59	-14.58
0	$C(-1)(\cdots C14)$	2.659	1.061	1.613	0.051	0.553	-0.155	-0.08	0.788	0.932	12.25	-9.44
0	C0 H0 C14"	2.659	1.061	1.613	0.051	0.554	-0.16	-0.08	0.79	0.934	12.28	-9.46
0	C11 - H11cO3	2.582	1.080	1.504	0.044	0.589	-0.164	-0.139	0.892	0.182	12.43	-8.82
9	ii	2.582	1.079	1.504	0.044	0.592	-0.16	-0.14	0.9	0.182	12.48	-8.84
10	С15 – Ц15…С2ії	2.769	1.124	1.647	0.037	0.472	-0.097	-0.056	0.626	0.734	9.85	-6.84
10		2.769	1.124	1.648	0.037	0.473	-0.1	-0.06	0.63	0.734	9.87	-6.86
11	C11 - H11b…O1	2.688	1.137	1.552	0.035	0.516	-0.112	-0.068	0.696	0.637	10.53	-7
11		2.688	1.137	1.552	0.035	0.519	-0.11	-0.07	0.7	0.638	10.57	-7.02
12	С3 – Ц3…Обу	2.683	1.126	1.564	0.034	0.545	-0.093	-0.049	0.686	0.901	10.98	-7.13
12		2.683	1.126	1.564	0.033	0.547	-0.09	-0.05	0.69	0.894	11.02	-7.14
13	C8 - H806	2.756	1.157	1.600	0.033	0.382	-0.112	-0.101	0.594	0.111	7.99	-5.59
15		2.756	1.157	1.600	0.033	0.383	-0.11	-0.1	0.6	0.11	8.02	-5.6
14	C5 - H5O5	2.767	1.169	1.598	0.031	0.364	-0.107	-0.092	0.563	0.166	7.59	-5.26
14		2.767	1.169	1.598	0.031	0.366	-0.11	-0.09	0.56	0.164	7.62	-5.26
15	C8 - H8O3	2.836	1.342	1.590	0.031	0.478	-0.076	-0.051	0.604	0.491	9.62	-6.23
15		2.836	1.342	1.590	0.031	0.48	-0.08	-0.05	0.61	0.489	9.66	-6.25
16	С11 - Н11С6	2.912	1.195	1.721	0.031	0.339	-0.081	-0.053	0.473	0.537	7.08	-4.94
10		2.912	1.195	1.721	0.031	0.339	-0.08	-0.05	0.47	0.534	7.1	-4.95
17	C10 - H10905	2.742	1.242	1.540	0.030	0.56	-0.09	-0.064	0.714	0.406	11.06	-6.88
17		2.742	1.242	1.54	0.030	0.562	-0.09	-0.06	0.72	0.406	11.11	-6.9
18	С13 - Н13…06	2.739	1.157	1.585	0.029	0.403	-0.099	-0.087	0.589	0.135	8.18	-5.4
10		2.739	1.157	1.585	0.029	0.405	-0.1	-0.09	0.59	0.136	8.22	-5.41
19	С5 - Н5…О4	2.789	1.182	1.609	0.026	0.456	-0.081	-0.035	0.572	1.312	9.01	-5.59
	05 115 04	2.789	1.182	1.609	0.026	0.458	-0.08	-0.04	0.57	1.295	9.04	-5.6
20	C10 = H10bO2	2.769	1.168	1.604	0.026	0.424	-0.087	-0.063	0.574	0.389	8.43	-5.3
	010 11100 02	2.769	1.168	1.604	0.026	0.426	-0.09	-0.06	0.58	0.390	8.46	-5.3
21	$C_{11} = H_{11} \cdots O_{1}$	2.84	1.254	1.607	0.026	0.469	-0.082	-0.041	0.592	1.016	9.22	-5.65
21		2.84	1.255	1.606	0.025	0.472	-0.08	-0.04	0.59	1.016	9.25	-5.66
- 22		2.895	1.203	1.730	0.025	0.392	-0.063	-0.029	0.485	1.145	7.8	-4.9
22	C10 - H10a05	2.895	1.204	1.730	0.025	0.394	-0.06	-0.03	0.49	1.162	7.82	-4.91
- 22		2.842	1.219	1.630	0.024	0.438	-0.068	-0.037	0.543	0.872	8.57	-5.21
23	C2 - H2···O6	2.842	1.219	1.630	0.024	0.44	-0.07	-0.04	0.54	0.877	8.6	-5.22
24		3.068	1.236	1.837	0.021	0.336	-0.053	-0.024	0.414	1.202	6.6	-4.04
24	C14 - H14····C4	3.068	1.236	1.837	0.021	0.337	-0.05	-0.02	0.42	1.201	6.62	-4.05
25	C11 H11	2.903	1.243	1.660	0.021	0.332	-0.058	-0.04	0.43	0.457	6.51	-3.99
25	CII - HIIa O4	2.903	1.243	1.659	0.021	0.333	-0.06	-0.04	0.43	0.457	6.53	-3.99
26		3.160	1.318	1.853	0.017	0.255	-0.032	-0.017	0.304	0.920	4.99	-3.04
26	CII-HIIc···C2	3.160	1.318	1.853	0.017	0.256	-0.03	-0.02	0.3	0.923	5.01	-3.05
27		3.052	1.392	1.707	0.015	0.278	-0.043	-0.022	0.343	0.966	5.35	-3.12
27	C14 - H14O4	3.052	1.393	1.707	0.015	0.279	-0.04	-0.02	0.34	0.967	5.36	-3.13
L	1											

Symmetry codes: (i) *x*-1/2, -*y*+1/2, *z*-1/2; (ii) *x*, *y*+1, *z*; (iii) *x*+1/2, -*y*+3/2, *z*+1/2; (iv) –*x*+3/2, -*y*+1/2, -*z*+1; (v) –*x*+1, -*y*+1, -*z*+1; (vi) –*x*+3/2, -*y*+3/2, -*z*+1

Table S5

Topological properties of (3,-1) CPs in the intermolecular interactions of hydrated form in the gas phase using the isolated crystal geometry and calculated using Multiwfn: distances (Å), electron density (eÅ⁻³), Laplacian (eÅ⁻⁵), Hessian eigenvalues (eÅ⁻⁵), $\varepsilon =$ ellipticity, G_{CP} = bond kinetic-energy density (kJ mol⁻¹ Bohr⁻³) and V_{CP} = bond potential-energy density (kJ mol⁻¹ Bohr⁻³).

No	Bonds	d ₁₂	d _{1CP}	d _{2CP}	ρ _{BCP} (r)	$\nabla^2 \rho_{BCP}$ (r)	λ ₁	λ_2	λ3	3	G _{CP}	V _{CP}
1	O2 - H1…O1	1.282	0.947	0.336	0.870	0.673	-9.116	-8.962	17.41	0.017	233.3	-448.3
2	O4 - H4…O6	1.836	1.190	0.647	0.226	2.867	-1.230	-1.166	5.26	0.055	81.19	-84.28
3	O6 - H6b…O3	1.997	1.268	0.729	0.155	1.892	-0.746	-0.731	3.369	0.020	53.01	-54.47

<i>D</i> —H··· <i>A</i>	D—H	$H \cdots A$	$D \cdots A$	D—H···A
C15—H15…C11 ⁱ	0.99	2.75	3.571 (3)	141 (1)
C14—H14…O3 ⁱⁱ	1.04	2.43	3.472 (3)	175 (1)
C2—H2···O5 ⁱⁱⁱ	0.98	2.46	3.202 (3)	132 (1)
C10—H10C…C11	0.99	2.62	3.049 (3)	107 (1)
O4—H4A…O1	0.91	1.82	2.672 (2)	157 (1)
O4—H4 <i>A</i> …N3	0.91	2.21	2.683 (2)	112 (1)
O2—H2A⋯C9	0.93	2.70	3.416 (3)	135 (1)
O2—H2A…O1	0.93	1.80	2.681 (2)	158 (1)
O2—H2A…N3	0.93	2.21	2.695 (2)	112 (1)
C11—H11 <i>C</i> ···O3 ^{iv}	0.97	2.39	3.351 (3)	169 (1)
C11—H11 <i>B</i> ····O1 ^v	1.02	2.55	3.535 (3)	163 (1)
С6—Н6…О5 ^v	0.98	2.26	3.215 (3)	166 (1)

Table S6Hydrogen-bond geometry (Å, °) of an anhydrous form

Symmetry codes: (i) x, y-1, z; (ii) -x+1/2, y-1/2, z; (iii) x, y+1/2, z-1/2; (iv) -x+1/2, y+1/2, z; (v) x, y+1/2, z+1/2.

Table S7

Topological properties of (3,-1) CPs in the intermolecular interactions of an anhydrous form experimental values (above) and theoretical values (below): distances (Å), electron density (eÅ⁻³), Laplacian (eÅ⁻⁵), Hessian eigenvalues (eÅ⁻⁵), ε = ellipticity, G_{CP} = bond kinetic-energy density (kJ mol⁻¹ Bohr⁻³) and V_{CP} = bond potential-energy density (kJ mol⁻¹ Bohr⁻³).

No	Bonds	d ₁₂	d _{1CP}	d _{2CP}	ρ _{BCP} (r)	$ abla^2 \rho_{BCP} $ (r)	λ ₁	λ_2	λ3	3	G _{CP}	V _{CP}
1	04 14401	1.686	1.120	0.567	0.324	1.497	-2.256	-2.142	5.895	0.053	75	-109.2
1	04—114А…01	1.686	1.124	0.562	0.313	2.102	-1.912	-1.837	5.851	0.041	83.21	-109.2
2	02 112401	1.726	1.153	0.576	0.311	1.59	-2.168	-2.024	5.783	0.071	73.62	-103.9
2	02—п2А…01	1.726	1.135	0.592	0.301	1.81	-1.883	-1.783	5.475	0.056	75.09	-100.9
2		2.219	0.893	1.327	0.097	1.182	-0.42	-0.413	2.014	0.017	27.91	-23.62
3	Со—по…Оз	2.219	0.910	1.309	0.107	1.186	-0.47	-0.462	2.118	0.018	29.09	-25.86
4		2.309	0.946	1.364	0.080	0.979	-0.335	-0.329	1.644	0.016	22.44	-18.21
4		2.309	0.948	1.362	0.080	0.922	-0.333	-0.333	1.589	0.0002	21.38	-17.63
5	C14 U14 O2ii	2.384	0.959	1.425	0.070	0.829	-0.294	-0.29	1.413	0.014	18.79	-14.99
3	C14—H14····O3"	2.384	0.980	1.404	0.071	0.858	-0.285	-0.276	1.419	0.032	19.36	-15.34
6	C2—H2···O5 ⁱⁱⁱ	2.401	0.993	1.409	0.061	0.988	-0.231	-0.171	1.39	0.352	20.86	-14.81

		2.401	1.005	1.397	0.065	0.97	-0.235	-0.194	1.399	0.211	20.89	-15.35
7	C11 U11DO1v	2.484	1.022	1.463	0.059	0.703	-0.215	-0.211	1.129	0.021	15.54	-11.93
/	CII—HIIB…OI	2.484	1.029	1.456	0.057	0.688	-0.209	-0.194	1.09	0.076	15.13	-11.54
0	C11 U11A 04	2.645	1.111	1.536	0.040	0.628	-0.129	-0.082	0.838	0.584	12.88	-8.67
0	CII—HIIA····04	2.645	1.108	1.541	0.041	0.617	-0.119	-0.078	0.814	0.531	12.74	-8.68
0	C10 U10405	2.630	1.104	1.534	0.037	0.666	-0.12	-0.06	0.847	0.992	13.4	-8.67
9	C10—H10A…05	2.630	1.122	1.522	0.041	0.644	-0.121	-0.061	0.826	0.983	13.24	-8.93
10	C11 111D N2	2.803	1.235	1.609	0.037	0.598	-0.09	-0.044	0.731	1.061	12.14	-8.01
10	CII—HIIB····N3	2.803	1.271	1.602	0.039	0.561	-0.089	-0.039	0.689	1.279	11.58	-7.89
11	C15 1115 C11i	2.698	1.104	1.634	0.036	0.563	-0.122	-0.059	0.744	1.069	11.47	-7.61
11	CIS—HIS…CII	2.698	1.085	1.617	0.046	0.574	-0.119	-0.084	0.777	0.425	12.24	-8.85
12	C4 114 05	2.802	1.185	1.618	0.026	0.41	-0.082	-0.058	0.551	0.399	8.16	-5.13
12	С4—п4…03	2.802	1.211	1.592	0.027	0.409	-0.078	-0.065	0.552	0.213	8.19	-5.24
12	C12 U12C12	3.186	1.363	1.841	0.018	0.251	-0.034	-0.016	0.301	1.114	4.94	-3.03
13		3.186	1.387	1.815	0.020	0.239	-0.035	-0.024	0.298	0.416	4.78	-3.07

Symmetry codes: (i) *x*, *y*-1, *z*; (ii) -*x*+1/2, *y*-1/2, *z*; (iii) *x*, *y*+1/2, *z*-1/2; (iv) -*x*+1/2, *y*+1/2, *z*; (v) *x*, *y*+1/2, *z*_+1/2.

Table S8

Topological properties of (3,-1) CPs in the intermolecular interactions of an anhydrous form in the gas phase using the isolated crystal geometry and calculated using Multiwfn: distances (Å), electron density (eÅ⁻³), Laplacian (eÅ⁻⁵), Hessian eigenvalues (eÅ⁻⁵), $\varepsilon =$ ellipticity, G_{CP} = bond kinetic-energy density (kJ mol⁻¹ Bohr⁻³) and V_{CP} = bond potential-energy density (kJ mol⁻¹ Bohr⁻³).

No	Bonds	d ₁₂	d _{1CP}	d _{2CP}	$\rho_{BCP}(r)$	$ \nabla^2 \rho_{BCP} $ (r)	λ ₁	λ_2	λ3	3	G _{CP}	V _{CP}
1	O4—H4A…O1	1.801	1.174	0.628	0.237	2.997	-1.296	-1.279	5.571	0.013	83.7	-85.80
2	O2—H2A…O1	1.816	1.175	0.643	0.222	2.973	-1.185	-1.165	5.323	0.017	81.6	-81.74

Figure S1: TGA/DSC pattern (upto 500 °C) of the co-crystals showing the events of dehydration, melting and decomposition, (a) hydrated form (b) anhydrous form

Figure S2: A repetition of the above mentioned TGA/DSC pattern with higher substrate weight for better visualization of the co-crystals showing the event of dehydration (a) hydrated form (upto 150°C) (b) anhydrous form (upto 250°C)

Figure S3: A diagram showing the cluster of hydrated form around reference molecule, green lines show bond path and the black dots shows the critical points. Symmetry codes are same as in Table S3.

Figure S4: A diagram showing the cluster of an anhydrous form around reference molecule, green lines show bond path and the red cross shows the critical points. Symmetry codes are same as in Table S5.

Figure S5: A Hirshfeld surface calculated for individual fragments (a) hydrated form of **ANT-DPA** cocrystal and (b) anhydrous form of **ANT-DPA** cocrystal, showing the sites of interactions interacting.

Figure S6: Fingerprint plots showing percentage contribution of various interactions (a) hydrated form of **ANT-DPA-w** cocrystal (A) antipyrine, (B) dipicolinic acid and (C) water molecule (b) anhydrous form of **ANT-DPA** cocrystal (A) antipyrine, (B) dipicolinic acid.