Supporting Information

Metal-organic frameworks with open metal sites act as efficient heterogeneous catalysts for Knoevenagel condensation and Chan-Lam coupling reaction

Anindita Goswami, Prantik Dutta and Kumar Biradha*

Department of Chemistry, Indian Institute of Technology Kharagpur, 721302 Kharagpur, India E-mail: <u>kbiradha@chem.iitkgp.ernet.in</u>; Fax: +91-3222-282252; Tel: +91-3222-283346.

CCDC Numbers for the crystal structures are CCDC 2278988, 2278989

Contents:

<u>Section S1</u>: Pertinent crystallographic parameter for Cd-CDA-MOF and Cu-CDA-MOF.

<u>Section S2</u>: Thermogravimetric Analyses

Section S3: FESEM analysis of Cd-CDA-MOF and Cu-CDA-MOF.

<u>Section S4</u>: A comparison of CO₂ uptake capacity of Cu-CDA-MOF with some recently reported MOFs.

Section S5: Knoevenagel Condensation Reaction Catalyzed by Cd-CDA-MOF

Section S6: Chan-Lam Coupling Reaction Catalyzed by Cu-CDA-MOF

Section S7: Representative ¹H and ¹³C NMR Spectra

<u>Section S8</u>: Comparison Table for Catalytic Activity and Conversion Efficiency of Cd-CDA-MOF and Cu-CDA-MOF with the recently reported MOF catalysts

Section S1:

	Cd-CDA-MOF	Cu-CDA-MOF		
CCDC Number	2278988	2278989		
Formula	$C_{52}H_{84}Cd_3N_6O_{36}\$$	$C_{312}H_{276}Cu_{24}N_{30}O_{144}\$$		
Mol.Wt.	1706.45	8274.57		
T (k)	300(2)	120(2)		
Crystal System	Monoclinic	Tetragonal		
Space group	C2/c	I4/m		
a (Å)	36.833(5)	30.4107(13)		
b (Å)	10.2950(14)	30.4107(13)		
c (Å)	20.105(3)	30.414		
α (°)	90	90		
β (°)	102.065(6)	90		
γ (°)	90	90		
V (Å ³)	7455.3(17)	28127(2)		
Z	4	2		
D (g/cm ³)	1.492	1.009		
$R_1[I > 2\sigma(I)]$	0.0896	0.0585		
wR ₂ (on F ² , all data)	0.2476	0.2118		

Table S1. Pertinent Crystallographic Parameters for Cd-CDA-MOF and Cu-CDA-MOF

Section S2: Thermogravimetric Analyses

Figure S1. Thermogravimetric Analyses: (a) Cd-CDA-MOF; (b) Cu-CDA-MOF.

Section S3: FESEM analysis of Cd-CDA-MOF and Cu-CDA-MOF.

Figure S2. FESEM Analyses of (a) Cd-CDA-MOF; and (b) Cu-CDA-MOF.

<u>Section S4</u>: A comparison of CO₂ uptake capacity of Cu-CDA-MOF with some recently reported MOFs.

Compounds	CO ₂ uptake	Condition	References
(MOFs)	capacity		
SNU-5	38.5 %	273 K	<i>Angew. Chem., Int. Ed.</i> 2008 , <i>47</i> , 7741–7745.
Cu-MOF	$162.2 \text{ cm}^3 \text{ g}^{-1}$	273 K	<i>Chem. Mater.</i> 2017 , <i>29</i> , 9256-9261.
Cu-MOF	160.8 cm ³ g ⁻¹	273 K	J. Am. Chem. Soc. 2016, 138, 2142-2145.
Cu-eea-1	$66.9 \text{ cm}^3 \text{ g}^{-1}$	298 K	<i>Chem. Eur. J.</i> 2019 , <i>25</i> , 14500-14505.
Cu-eea-2	60 cm ³ g ⁻¹	298 K	<i>Chem. Eur. J.</i> 2019 , <i>25</i> , 14500-14505.
Cu-eea-3	81.7 cm ³ g ⁻¹	298 K	<i>Chem. Eur. J.</i> 2019 , <i>25</i> , 14500-14505.
UTSA-74a	90 cm ³ g ⁻¹	298 K	J. Am. Chem. Soc. 2016, 138, 5678-5684.
Mn-act	$43.5 \text{ cm}^3 \text{ g}^{-1}$	298 K	<i>Chem. Eur. J.</i> 2016 , <i>22</i> , 7444-7451.
Co-act	$42.0 \text{ cm}^3 \text{ g}^{-1}$	298 K	<i>Chem. Eur. J.</i> 2016 , <i>22</i> , 7444-7451.
Ni-act	60.18 cm ³ g ⁻¹	298 K	<i>Chem. Eur. J.</i> 2016 , <i>22</i> , 7444-7451.
Zn-act	$31.4 \text{ cm}^3 \text{ g}^{-1}$	298 K	<i>Chem. Eur. J.</i> 2016 , <i>22</i> , 7444-7451.
Cd-MOF	16.8 cm ³ g ⁻¹	298 K	J. Solid State Chem, 2021, 295, 121890.
Cu-CDA-MOF	$45 \text{ cm}^3 \text{ g}^{-1}$	298 K	This work

Table S2. Comparison table of CO_2 uptake capacity of Cu-CDA-MOF

Figure S3. (a) Recyclability experiment of Cd-CDA-MOF catalyst for Knoevenagel condensation reaction; (b) comparison of PXRD pattern after successive five cycles of reactions.

Scheme S1. A schematic for plausible mechanism of Knoevenagel condensation reaction catalyzed by Cd-CDA-MOF.

Section S6: Chan-Lam Coupling Reaction Catalyzed by Cu-CDA-MOF

Figure S4. (a) Recyclability experiment of **Cu-CDA-MOF** catalyst for Chan-Lam coupling reaction; (b) comparison of PXRD pattern after successive five cycles of reactions.

Scheme S2. A schematic for plausible mechanism of Chan-Lam coupling reaction catalyzed by Cu-CDA-MOF.

Section S7: Representative ¹H and ¹³C NMR Spectra

<u>Section S7a</u>: Representative ¹H and ¹³C NMR Spectra of Knoevenagel Condensation Products

Figure S5. (a) ¹H NMR (CDCl₃, 500 MHz) and (b) ¹³C (CDCl₃, 500 MHz) of Knoevenagel Condensation product of benzaldehyde and malononitrile catalyzed by **Cd-CDA-MOF**

Figure S6. (a) ¹H NMR (CDCl₃, 400 MHz) and (b) ¹³C (CDCl₃, 500 MHz) of Knoevenagel Condensation product of 4-fluorobenzaldehyde and malononitrile catalyzed by Cd-CDA-MOF.

Figure S7. (a) ¹H NMR (CDCl₃, 500 MHz) and (b) ¹³C (CDCl₃, 500 MHz) of Knoevenagel Condensation product of 4-chlorobenzaldehyde and malononitrile catalyzed by **Cd-CDA-MOF.**

Figure S8. (a) ¹H NMR (CDCl₃, 400 MHz) and (b) ¹³C (CDCl₃, 500 MHz) of Knoevenagel Condensation product of 4-bromobenzaldehyde and malononitrile catalyzed by Cd-CDA-MOF.

Figure S9. (a) ¹H NMR (CDCl₃, 400 MHz) and (b) ¹³C (CDCl₃, 500 MHz) of Knoevenagel Condensation product of 3,4-dichlorobenzaldehyde and malononitrile catalyzed by **Cd-CDA-MOF**.

Figure S10. (a) ¹H NMR (CDCl₃, 400 MHz) and (b) ¹³C (CDCl₃, 500 MHz) of Knoevenagel Condensation product of 2,4-dichlorobenzaldehyde and malononitrile catalyzed by **Cd-CDA-MOF**.

Figure S11. (a) ¹H NMR (CDCl₃, 400 MHz) and (b) ¹³C (CDCl₃, 500 MHz) of Knoevenagel Condensation product of 4-cyanobenzaldehyde and malononitrile catalyzed by **Cd-CDA-MOF**.

Figure S12. (a) ¹H NMR (CDCl₃, 400 MHz) and (b) ¹³C (CDCl₃, 500 MHz) of Knoevenagel Condensation product of 3-cyanobenzaldehyde and malononitrile catalyzed by **Cd-CDA-MOF.**

Figure S13. (a) ¹H NMR (CDCl₃, 400 MHz) and (b) ¹³C (CDCl₃, 500 MHz) of Knoevenagel Condensation product of 4-nitrobenzaldehyde and malononitrile catalyzed by Cd-CDA-MOF.

Figure S14. (a) ¹H NMR (CDCl₃, 400 MHz) and (b) ¹³C (CDCl₃, 500 MHz) of Knoevenagel Condensation product of 3-nitrobenzaldehyde and malononitrile catalyzed by Cd-CDA-MOF.

Figure S15. (a) ¹H NMR (CDCl₃, 500 MHz) and (b) ¹³C (CDCl₃, 500 MHz) of Knoevenagel Condensation product of 4-phenylbenzaldehyde and malononitrile catalyzed by **Cd-CDA-MOF**.

Figure S16. (a) ¹H NMR (CDCl₃, 400 MHz) and (b) ¹³C (CDCl₃, 500 MHz) of Knoevenagel Condensation product of 4-methylbenzaldehyde and malononitrile catalyzed by **Cd-CDA-MOF**.

Figure S17. (a) ¹H NMR (CDCl₃, 500 MHz) and (b) ¹³C (CDCl₃, 500 MHz) of Knoevenagel Condensation product of 4-methoxybenzaldehyde and malononitrile catalyzed by **Cd-CDA-MOF**

Figure S18. (a) ¹H NMR (CDCl₃, 500 MHz) and (b) ¹³C (CDCl₃, 500 MHz) of Knoevenagel Condensation product of 3-methoxybenzaldehyde and malononitrile catalyzed by **Cd-CDA-MOF**.

Figure S19. (a) ¹H NMR (CDCl₃, 500 MHz) and (b) ¹³C (CDCl₃, 500 MHz) of Knoevenagel Condensation product of 1-napthaldehyde and malononitrile catalyzed by **Cd-CDA-MOF**.

Section S7b: Representative ¹H and ¹³C NMR Spectra of Chan-Lam Coupling Products

Figure S20. (a) ¹H NMR (CDCl₃, 400 MHz) and (b) ¹³C (CDCl₃, 500 MHz) of Chan-Lam coupling product of 4-fluoroaniline and phenylboronic acid catalyzed by **Cu-CDA-MOF**.

Figure S21. (a) ¹H NMR (CDCl₃, 400 MHz) and (b) ¹³C (CDCl₃, 500 MHz) of Chan-Lam coupling product of 4-bromoaniline and phenylboronic acid catalyzed by **Cu-CDA-MOF.**

Figure S22. (a) ¹H NMR (CDCl₃, 500 MHz) and (b) ¹³C (CDCl₃, 500 MHz) of Chan-Lam coupling product of 3-chloro-4-fluoroaniline and phenylboronic acid catalyzed by **Cu-CDA-MOF.**

Figure S23. (a) ¹H NMR (CDCl₃, 500 MHz) and (b) ¹³C (CDCl₃, 500 MHz) of Chan-Lam coupling product of 3,4-dicholoroaniline and phenylboronic acid catalyzed by **Cu-CDA-MOF.**

Figure S24. (a) ¹H NMR (CDCl₃, 400 MHz) and (b) ¹³C (CDCl₃, 500 MHz) of Chan-Lam coupling product of 4-nitroaniline and phenylboronic acid catalyzed by **Cu-CDA-MOF.**

Figure S25. (a) ¹H NMR (CDCl₃, 500 MHz) and (b) ¹³C (CDCl₃, 500 MHz) of Chan-Lam coupling product of 4-methoxyaniline and phenylboronic acid catalyzed by **Cu-CDA-MOF**.

Section S8: Comparison Table for Catalytic Activity and Conversion Efficiency of Cd-CDA-MOF and Cu-CDA-MOF with the recently reported MOF catalysts

Table	S3 .	Comparison	table	of Catalytic	Activity	and	Conversion	Efficiency	of	Cd-CDA-
MOF	towa	urds Knoeven	agel C	ondensation	Reaction	L				

MOFs	Temp. (° C)	Yield	TON	TOF	References
		(%)		(h ⁻¹)	
Ni-MOF nanosheets	RT	99 %	-	-	Nano Res.,
					2019 , <i>12</i> , 437
TMU-41	RT	98 %	-	-	Polyhedron,
					2019 , <i>159</i> , 72.
V-Zn-MOF	60 °C	99 %	-	-	ACS
					Sustainable
					Chem. Eng.,
					2021 , <i>9</i> , 4660.
Zn-MOF	60 °C	99 %	-	167	Inorg. Chem.
					2018, 57,
					11157
Cd-PBA	RT	91 %	-	-	Cryst. Growth
					Des.2018, 18,
					2883.
[Cd(4-	RT	98 %	-	-	J. Am. Chem.
$btapa)_2(NO_3)_2]\cdot 6H_2O\cdot 2DMF$					Soc., 2007,
					<i>129</i> , p. 2607.
CAU-1-NH ₂	40 °C	94 %	-	-	Cryst Eng
					Comm, 2017 ,
					<i>19</i> , 4187.
Cd-CDA-MOF	RT	>99	182.49	15.21	This work

Table S4. Comparison table of Catalytic Activity and Conversion Efficiency of Cu-CDA-**MOF** towards Chan-Lam Coupling Reaction

MOFs	Temp. (° C)	Isolated	TOF (h-1)	References
		Yield (%)		
Cu ₂ (BDC) ₂ (BPY)-MOF	RT	85 %	-	<i>RSC Adv.</i> , 2017 , <i>7</i> , 46022.
Cu-MOF {[Cu(4-tba) ₂](solvent)} _n	40° C	98 %	-	Inorg. Chem. Commun 2015 , 61, 13.
Cu(tpa)-MOF	RT	76 %	-	Chem Cat Chem., 2016, 8, 2953.
URJC-1-MOF	60° C	79 %	-	<i>Chem Cat Chem.</i> , 2019 , <i>11</i> , 3376.
Cu(II)-complexes	RT	64 %	-	Chem Cat Chem., 2020, 12, 3010
Cu-CDA-MOF	60° C	70 %	350	This work.