Supporting Information

Thiosulfate-Mediated Seeded Growth of Au@AuAg Yolk-Shell Nanocubes with Surface Concavity: Optical and Catalytic Properties

Yuanyuan Min,^a Xiaoyu Li,^a Yingying Wang,^{b*} Yan Zhao,^c Feng Liu,^d Maochang Liu,^d and Yiqun Zheng^{a*}

^a School of Chemistry, Chemical Engineering, and Materials, Jining University, Qufu, Shandong
273155, P. R. China

^b Health Management Department, Shandong Vocational College of Light Industry, Zibo 255300, China

^c College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong
273165, P. R. China

^d International Research Center for Renewable Energy, National Key Laboratory of Multiphase

Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China

* Corresponding authors: Prof. Dr. Y. Zheng, E-mail: <u>whzyq@163.com</u>; Prof. Y. Wang, E-mail: <u>hxwyy2005@mail.sdu.edu.cn</u>

Figure S1. SEM image of Au@Ag core-shell nanocubes.

Figure S2. SEM image of products obtained by treating Au@Ag core-shell nanocubes with $Na_2S_2O_3$ (25 pmol).

Figure S3. Effect of seed amount. SEM images of products obtained *via* the standard procedure, except that the volume of 10-nm Au seed stock solution was tuned to be a) 20 μ L, b) 50 μ L, and c) 100 μ L, respectively.

Figure S4. TEM image of an individual Au@AuAg YSCNC. The dash lines dictate the curved surface with the projection angle labeled.

Figure S5. XRD pattern of the products obtained *via* the standard procedure, except that no $HAuCl_4$ was added and the amount of $Na_2S_2O_3$ was varied.

Figure S6. XRD patterns of the products shown in Figure 4.

Figure S7. TEM image of Au@AuAg YSCNCs catalysts after the catalytic measurement.

Projection angle (°)	Facet index ({hkl})
23.2	730
12.5	920
16.0	720
20.6	830

Table S1. Summary of the relationship between projection angle and facet index.

Orbital	Sample	Binding Energy Peak (eV)	
Au 4f	Figure 4a	87.21	83.55
	Figure 4b	87.37	83.68
	Figure 4c	87.40	83.74
	Figure 4d	87.31	83.66
	Figure 4e	87.28	83.61
	Figure 4f	87.37	83.70
Ag 3d	Figure 4a	373.61	367.64
	Figure 4b	373.67	367.69
	Figure 4c	373.64	367.67
	Figure 4d	373.73	367.71
	Figure 4e	373.60	367.60
	Figure 4f	373.64	367.73
S 2p	Figure 4a	/	/
	Figure 4b	/	/
	Figure 4c	161.53	160.43
	Figure 4d	161.62	160.51
	Figure 4e	161.76	160.60
	Figure 4f	161.75	160.62

Table S2. Summary of binding energy peaks in XPS spectra.