Supplementary Information

Multiple intermolecular interactions in guest inclusion by acyclic host compoundsMasatoshi Kawahata, ${ }^{\text {a* }}$ Haruka Yamamoto, ${ }^{\text {b }}$ Masahide Tominaga ${ }^{\text {b }}$ and KentaroYamaguchi*b
${ }^{\text {a }}$ Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
${ }^{\mathrm{b}}$ Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, Sanuki, Kagawa 769-2193, Japan
E-mail: kawahatam@ac.shoyaku.ac.jp and kyamaguchi@kph.bunri-u.ac.jp
Table of Contents

- ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2}$ S2
- Single crystal X-ray diffraction experiment for crystal 1a (Fig. S1) S3
- Single crystal X-ray diffraction experiment for crystal 1b (Fig. S2) S4
- Single crystal X-ray diffraction experiment for crystal 1c (Fig. S3) S5
- Single crystal X-ray diffraction experiment for crystal 1d (Fig. S4) S6
- Single crystal X-ray diffraction experiment for crystal 2a (Fig. S5) S7
- Single crystal X-ray diffraction experiment for crystal 3a (Fig. S6) S8
- References S9

${ }^{13} \mathrm{C}$ NMR spectrum of $2\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

General procedure of single crystal X-ray diffraction experiment

A single crystal was immersed in Paratone-N oil and placed in the N_{2} cold stream at 100 K . Data were collected using diffractometer with PHOTON II 14 CPAD detector (Bruker D8 VENTURE, CuK $\alpha: \lambda=1.54178 \AA$). Absorption correction was performed by an empirical method implemented in SADABS. ${ }^{1}$ Structure solution and refinement were performed by using SHELXT-2018/2 2^{2} and SHELXL-2018/3 ${ }^{3}$.

Single crystal X-ray diffraction experiment for crystal 1a

The low diffracting yellow plate crystal $\left(0.100 \times 0.100 \times 0.050 \mathrm{~mm}^{3}\right)$ was obtained from slow evaporation of an acetone solution of $\mathbf{1}$.
$\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{7}, M \mathrm{r}=468.49$; triclinic, space group $P-1, Z=2, D_{\text {calc }}=1.387 \mathrm{~g} \cdot \mathrm{~cm}^{-3}, a=$ 6.9004(7), $b=10.5029(11), c=15.8453(17) \AA$, $\alpha=95.066(4), \beta=92.516(4), \gamma=$ $100.761(3)^{\circ}, V=1121.6(2) \AA^{3}, 16169$ observed and $3983[I>2 \sigma(I)], 4439$ [all data] independent reflections, 315 parameters, final $R_{1}=0.0375, w R_{2}=0.1040, S=1.058[I>$ $2 \sigma(I)]$ and $R_{1}=0.0414, w R_{2}=0.1075, S=1.058$ [all data]. CCDC 2267699.

All non-hydrogen atoms were refined anisotropically. The O-H hydrogen atoms were assigned from the difference Fourier map and refined isotropically. Another hydrogen atoms were refined isotropically on the calculated positions using a riding model (AFIX 13, 137, 23 and 43) with $U_{\text {iso }}$ values constrained to $1.2 / 1.5 U_{\text {eq }}$ of their parent atoms.

Fig. S1 ORTEP drawing of $\mathbf{1}$ and acetone in crystal 1 a (asymmetric unit, 50% probability).

Single crystal X-ray diffraction experiment for crystal 1b

The low diffracting colorless prismatic crystal $\left(0.150 \times 0.100 \times 0.100 \mathrm{~mm}^{3}\right)$ was obtained from vapor diffusion of hexane into a 2-butanone solution of $\mathbf{1}$.
$\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{7}, M \mathrm{r}=482.52$; triclinic, space group $P-1, Z=2, D_{\text {calc }}=1.387 \mathrm{~g} \cdot \mathrm{~cm}^{-3}, a=$ 7.0766(14), $b=10.505(2), c=15.939(3) \AA, \alpha=95.513(6), \beta=93.850(6), \gamma=$ $100.486(5)^{\circ}, V=1155.4(4) \AA^{3}, 15824$ observed and $4385[I>2 \sigma(I)], 4522$ [all data] independent reflections, 372 parameters, 24 restraints, final $R_{1}=0.0381$, $w R_{2}=0.1028$, $S=1.057[I>2 \sigma(I)]$ and $R_{1}=0.0389, w R_{2}=0.1040, S=1.058$ [all data]. CCDC 2267700.

All non-hydrogen atoms were refined anisotropically. The O-H hydrogen atoms were assigned from the difference Fourier map and refined isotropically. Another hydrogen atoms were refined isotropically on the calculated positions using a riding model (AFIX 13, 137, 23 and 43) with $U_{\text {iso }}$ values constrained to 1.2/1.5 $U_{\text {eq }}$ of their parent atoms.

A pair of disordered 2-butanone molecules were refined with PART n and each free variable (21/-21). Occupancy ratio was $81 / 19$. The minor 2-butanone molecule (C23B, C24B, C25B, C26B and O7B) was also applied to SIMU.

Fig. S2 ORTEP drawing of $\mathbf{1}$ and 2-butanone in crystal 1b (asymmetric unit, 50\% probability).

Single crystal X-ray diffraction experiment for 1c

The low diffracting colorless prismatic crystal $\left(0.120 \times 0.120 \times 0.100 \mathrm{~mm}^{3}\right)$ was obtained from vapor diffusion of hexane into a methyl acetate solution of $\mathbf{1}$.
$\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{8}, M \mathrm{r}=484.49$; triclinic, space group $P-1, Z=2, D_{\text {calc }}=1.416 \mathrm{~g} \cdot \mathrm{~cm}^{-3}, a=$ $7.0715(10), b=10.4603(14), c=15.710(2) \AA, \alpha=95.120(4), \beta=94.102(5), \gamma=$ 99.743(4) ${ }^{\circ}, V=1136.3(3) \AA^{3}, 14281$ observed and $3956[I>2 \sigma(I)], 4426$ [all data] independent reflections, 372 parameters, 24 restraints, final $R_{1}=0.0462, w R_{2}=0.1347$, $S=1.131[I>2 \sigma(I)]$ and $R_{1}=0.0501, w R_{2}=0.1389, S=1.134$ [all data]. CCDC 2267701.

All non-hydrogen atoms were refined anisotropically. The O-H hydrogen atoms were assigned from the difference Fourier map and refined isotropically. Another hydrogen atoms were refined isotropically on the calculated positions using a riding model (AFIX 13, 137, 23 and 43) with $U_{\text {iso }}$ values constrained to 1.2/1.5 $U_{\text {eq }}$ of their parent atoms.

A pair of disordered methyl acetate molecules were refined with PART n and each free variable (21/-21). Occupancy ratio was 70/30. The minor methyl acetate molecule (C23B, C24B, C25B, O7B and O8B) was also applied to SIMU.

Fig. S3 ORTEP drawing of $\mathbf{1}$ and methyl acetate in crystal 1c (asymmetric unit, 50\% probability).

Single crystal X-ray diffraction experiment for 1d

The colorless prismatic crystal $\left(0.200 \times 0.200 \times 0.200 \mathrm{~mm}^{3}\right)$ was obtained from vapor diffusion of hexane into a bromoform solution of $\mathbf{1}$.
$\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6}, M \mathrm{r}=410.41$; monoclinic, space group $P 2_{1} / n, Z=4, D_{\text {calc }}=1.463 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$, $a=10.8801(12), b=12.8327(14), c=13.3727(14) \AA, \beta=93.490(4)^{\circ}, V=1863.6(3) \AA^{3}$, 22303 observed and 3827 [$I>2 \sigma(I)$], 3832 [all data] independent reflections, 278 parameters, final $R_{1}=0.0350, w R_{2}=0.0874, S=1.039[I>2 \sigma(I)]$ and $R_{1}=0.0350, w R_{2}$ $=0.0874, S=1.039$ [all data]. CCDC 2267702.

All non-hydrogen atoms were refined anisotropically. The O-H hydrogen atoms were assigned from the difference Fourier map and refined isotropically. Another hydrogen atoms were refined isotropically on the calculated positions using a riding model (AFIX 13, 23 and 43) with $U_{\text {iso }}$ values constrained to $1.2 U_{\text {eq }}$ of their parent atoms.

Fig. S4 ORTEP drawing of $\mathbf{1}$ in crystal $1 d$ (50% probability).

Single crystal X-ray diffraction experiment for crystal 2a

The yellow prismatic crystal $\left(0.100 \times 0.100 \times 0.080 \mathrm{~mm}^{3}\right)$ was obtained from slow evaporation of an acetone solution of $\mathbf{2}$.
$\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6}, \mathrm{Mr}=410.41$; orthorhombic, space group Cmcm, $Z=4, D_{\text {calc }}=1.489$ $\mathrm{g} \cdot \mathrm{cm}^{-3}, a=6.6173(6), b=13.6049(11), c=20.3294(17) \AA, V=1830.2(3) \AA^{3}, 11088$ observed and $1028[I>2 \sigma(I)], 1079$ [all data] independent reflections, 92 parameters, final $R_{1}=0.0389, w R_{2}=0.1129, S=1.101[I>2 \sigma(I)]$ and $R_{1}=0.0403, w R_{2}=0.1149, S$ $=1.101$ [all data]. CCDC 2267703 .

All non-hydrogen atoms were refined anisotropically. The O-H hydrogen atom was assigned from the difference Fourier map and refined isotropically. Another hydrogen atoms were refined isotropically on the calculated positions using a riding model (AFIX 13, 23 and 43) with $U_{\text {iso }}$ values constrained to $1.2 U_{\text {eq }}$ of their parent atoms.

Fig. S5 ORTEP drawing of $\mathbf{2}$ in crystal 2a (asymmetric unit, 50% probability).

Single crystal X-ray diffraction experiment for crystal 3a

The colourless prismatic crystal $\left(0.140 \times 0.100 \times 0.080 \mathrm{~mm}^{3}\right)$ was obtained from slow evaporation of an acetone solution of $\mathbf{3}$.
$\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{6}, M \mathrm{r}=466.52$; triclinic, space group $P-1, Z=2, D_{\text {calc }}=1.356 \mathrm{~g} \cdot \mathrm{~cm}^{-3}, a=$ 7.1643(12), $b=9.8755(16), c=17.073(3) \AA, \alpha=84.131(5), \beta=85.474(5), \gamma=$ $72.254(5)^{\circ}, V=1142.9(3) \AA^{3}, 16106$ observed and $4225[I>2 \sigma(I)], 4521$ [all data] independent reflections, 309 parameters, final $R_{1}=0.0342, w R_{2}=0.0905, S=1.055[I>$ $2 \sigma(I)]$ and $R_{1}=0.0362, w R_{2}=0.0920, S=1.055$ [all data]. CCDC 2267704.

All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined isotropically on the calculated positions using a riding model (AFIX 13, 137, 23 and 43) with $U_{\text {iso }}$ values constrained to $1.2 / 1.5 U_{\text {eq }}$ of their parent atoms.

Fig. S6 ORTEP drawing of $\mathbf{3}$ in crystal $\mathbf{3 a}$ (50% probability).

References

(1) G. M. Sheldrick, SADABS. University of Göttingen, Germany, 1996.
(2) G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Adv., 2015, 71, 3-8.
(3) G. M. Sheldrick, Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71, 3-8.

