Supplementary Information

Multiple intermolecular interactions in guest inclusion by acyclic host compounds

Masatoshi Kawahata,^{a*} Haruka Yamamoto,^b Masahide Tominaga^b and Kentaro Yamaguchi^{*b}

^a Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan

^b Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University,

Sanuki, Kagawa 769-2193, Japan

E-mail: kawahatam@ac.shoyaku.ac.jp and kyamaguchi@kph.bunri-u.ac.jp

Table of Contents

• ¹ H and ¹³ C NMR spectra of 2	S2
• Single crystal X-ray diffraction experiment for crystal 1a (Fig. S1)	S3
• Single crystal X-ray diffraction experiment for crystal 1b (Fig. S2)	S4
• Single crystal X-ray diffraction experiment for crystal 1c (Fig. S3)	S5
• Single crystal X-ray diffraction experiment for crystal 1d (Fig. S4)	S6
• Single crystal X-ray diffraction experiment for crystal 2a (Fig. S5)	S7
• Single crystal X-ray diffraction experiment for crystal 3a (Fig. S6)	S8
• References	S9

General procedure of single crystal X-ray diffraction experiment

A single crystal was immersed in Paratone-N oil and placed in the N₂ cold stream at 100 K. Data were collected using diffractometer with PHOTON II 14 CPAD detector (Bruker D8 VENTURE, CuK α : $\lambda = 1.54178$ Å). Absorption correction was performed by an empirical method implemented in SADABS.¹ Structure solution and refinement were performed by using SHELXT-2018/2² and SHELXL-2018/3³.

Single crystal X-ray diffraction experiment for crystal 1a

The low diffracting yellow plate crystal $(0.100 \times 0.100 \times 0.050 \text{ mm}^3)$ was obtained from slow evaporation of an acetone solution of **1**.

 $C_{25}H_{28}N_2O_7$, Mr = 468.49; triclinic, space group *P*-1, Z = 2, $D_{calc} = 1.387$ g·cm⁻³, a = 6.9004(7), b = 10.5029(11), c = 15.8453(17) Å, $\alpha = 95.066(4)$, $\beta = 92.516(4)$, $\gamma = 100.761(3)^\circ$, V = 1121.6(2) Å³, 16169 observed and 3983 [$I > 2\sigma(I)$], 4439 [all data] independent reflections, 315 parameters, final $R_1 = 0.0375$, $wR_2 = 0.1040$, S = 1.058 [$I > 2\sigma(I)$] and $R_1 = 0.0414$, $wR_2 = 0.1075$, S = 1.058 [all data]. CCDC 2267699.

All non-hydrogen atoms were refined anisotropically. The O-H hydrogen atoms were assigned from the difference Fourier map and refined isotropically. Another hydrogen atoms were refined isotropically on the calculated positions using a riding model (AFIX 13, 137, 23 and 43) with U_{iso} values constrained to 1.2/1.5 U_{eq} of their parent atoms.

Fig. S1 ORTEP drawing of **1** and acetone in crystal **1a** (asymmetric unit, 50% probability).

Single crystal X-ray diffraction experiment for crystal 1b

The low diffracting colorless prismatic crystal $(0.150 \times 0.100 \times 0.100 \text{ mm}^3)$ was obtained from vapor diffusion of hexane into a 2-butanone solution of **1**.

 $C_{26}H_{30}N_2O_7$, Mr = 482.52; triclinic, space group *P*-1, Z = 2, $D_{calc} = 1.387$ g·cm⁻³, a = 7.0766(14), b = 10.505(2), c = 15.939(3) Å, $\alpha = 95.513(6)$, $\beta = 93.850(6)$, $\gamma = 100.486(5)^\circ$, V = 1155.4(4) Å³, 15824 observed and 4385 [$I > 2\sigma(I)$], 4522 [all data] independent reflections, 372 parameters, 24 restraints, final $R_1 = 0.0381$, $wR_2 = 0.1028$, S = 1.057 [$I > 2\sigma(I)$] and $R_1 = 0.0389$, $wR_2 = 0.1040$, S = 1.058 [all data]. CCDC 2267700.

All non-hydrogen atoms were refined anisotropically. The O-H hydrogen atoms were assigned from the difference Fourier map and refined isotropically. Another hydrogen atoms were refined isotropically on the calculated positions using a riding model (AFIX 13, 137, 23 and 43) with U_{iso} values constrained to 1.2/1.5 U_{eq} of their parent atoms.

A pair of disordered 2-butanone molecules were refined with PART n and each free variable (21/–21). Occupancy ratio was 81/19. The minor 2-butanone molecule (C23B, C24B, C25B, C26B and O7B) was also applied to SIMU.

Fig. S2 ORTEP drawing of **1** and 2-butanone in crystal **1b** (asymmetric unit, 50% probability).

Single crystal X-ray diffraction experiment for 1c

The low diffracting colorless prismatic crystal $(0.120 \times 0.120 \times 0.100 \text{ mm}^3)$ was obtained from vapor diffusion of hexane into a methyl acetate solution of **1**.

 $C_{25}H_{28}N_2O_8$, Mr = 484.49; triclinic, space group *P*-1, Z = 2, $D_{calc} = 1.416 \text{ g}\cdot\text{cm}^{-3}$, a = 7.0715(10), b = 10.4603(14), c = 15.710(2) Å, $\alpha = 95.120(4)$, $\beta = 94.102(5)$, $\gamma = 99.743(4)^\circ$, V = 1136.3(3) Å³, 14281 observed and 3956 [$I > 2\sigma(I)$], 4426 [all data] independent reflections, 372 parameters, 24 restraints, final $R_1 = 0.0462$, $wR_2 = 0.1347$, S = 1.131 [$I > 2\sigma(I)$] and $R_1 = 0.0501$, $wR_2 = 0.1389$, S = 1.134 [all data]. CCDC 2267701.

All non-hydrogen atoms were refined anisotropically. The O-H hydrogen atoms were assigned from the difference Fourier map and refined isotropically. Another hydrogen atoms were refined isotropically on the calculated positions using a riding model (AFIX 13, 137, 23 and 43) with U_{iso} values constrained to 1.2/1.5 U_{eq} of their parent atoms.

A pair of disordered methyl acetate molecules were refined with PART n and each free variable (21/–21). Occupancy ratio was 70/30. The minor methyl acetate molecule (C23B, C24B, C25B, O7B and O8B) was also applied to SIMU.

Fig. S3 ORTEP drawing of **1** and methyl acetate in crystal **1c** (asymmetric unit, 50% probability).

Single crystal X-ray diffraction experiment for 1d

The colorless prismatic crystal $(0.200 \times 0.200 \times 0.200 \text{ mm}^3)$ was obtained from vapor diffusion of hexane into a bromoform solution of **1**.

 $C_{22}H_{22}N_2O_6$, Mr = 410.41; monoclinic, space group $P2_1/n$, Z = 4, $D_{calc} = 1.463$ g·cm⁻³, a = 10.8801(12), b = 12.8327(14), c = 13.3727(14) Å, $\beta = 93.490(4)^\circ$, V = 1863.6(3) Å³, 22303 observed and 3827 $[I > 2\sigma(I)]$, 3832 [all data] independent reflections, 278 parameters, final $R_1 = 0.0350$, $wR_2 = 0.0874$, S = 1.039 $[I > 2\sigma(I)]$ and $R_1 = 0.0350$, $wR_2 = 0.0874$, S = 1.039 [all data]. CCDC 2267702.

All non-hydrogen atoms were refined anisotropically. The O-H hydrogen atoms were assigned from the difference Fourier map and refined isotropically. Another hydrogen atoms were refined isotropically on the calculated positions using a riding model (AFIX 13, 23 and 43) with U_{iso} values constrained to 1.2 U_{eq} of their parent atoms.

Fig. S4 ORTEP drawing of 1 in crystal 1d (50% probability).

Single crystal X-ray diffraction experiment for crystal 2a

The yellow prismatic crystal $(0.100 \times 0.100 \times 0.080 \text{ mm}^3)$ was obtained from slow evaporation of an acetone solution of **2**.

 $C_{22}H_{22}N_2O_6$, Mr = 410.41; orthorhombic, space group Cmcm, Z = 4, $D_{calc} = 1.489$ g·cm⁻³, a = 6.6173(6), b = 13.6049(11), c = 20.3294(17) Å, V = 1830.2(3) Å³, 11088 observed and 1028 [$I > 2\sigma(I)$], 1079 [all data] independent reflections, 92 parameters, final $R_1 = 0.0389$, $wR_2 = 0.1129$, S = 1.101 [$I > 2\sigma(I)$] and $R_1 = 0.0403$, $wR_2 = 0.1149$, S= 1.101 [all data]. CCDC 2267703.

All non-hydrogen atoms were refined anisotropically. The O-H hydrogen atom was assigned from the difference Fourier map and refined isotropically. Another hydrogen atoms were refined isotropically on the calculated positions using a riding model (AFIX 13, 23 and 43) with U_{iso} values constrained to 1.2 U_{eq} of their parent atoms.

Fig. S5 ORTEP drawing of 2 in crystal 2a (asymmetric unit, 50% probability).

Single crystal X-ray diffraction experiment for crystal 3a

The colourless prismatic crystal $(0.140 \times 0.100 \times 0.080 \text{ mm}^3)$ was obtained from slow evaporation of an acetone solution of **3**.

 $C_{26}H_{30}N_2O_6$, Mr = 466.52; triclinic, space group P-1, Z = 2, $D_{calc} = 1.356 \text{ g}\cdot\text{cm}^{-3}$, a = 7.1643(12), b = 9.8755(16), c = 17.073(3) Å, $\alpha = 84.131(5)$, $\beta = 85.474(5)$, $\gamma = 72.254(5)^\circ$, V = 1142.9(3) Å³, 16106 observed and 4225 [$I > 2\sigma(I)$], 4521 [all data] independent reflections, 309 parameters, final $R_1 = 0.0342$, $wR_2 = 0.0905$, S = 1.055 [$I > 2\sigma(I)$] and $R_1 = 0.0362$, $wR_2 = 0.0920$, S = 1.055 [all data]. CCDC 2267704.

All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined isotropically on the calculated positions using a riding model (AFIX 13, 137, 23 and 43) with U_{iso} values constrained to 1.2/1.5 U_{eq} of their parent atoms.

Fig. S6 ORTEP drawing of 3 in crystal 3a (50% probability).

References

- (1) G. M. Sheldrick, SADABS. University of Göttingen, Germany, 1996.
- (2) G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Adv., 2015, 71, 3-8.
- (3) G. M. Sheldrick, Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71, 3-8.