Electronic Supplementary Information (ESI)

Long-chain tin(IV) alkanethiolates $(Sn(SC_nH_{2n+1})_4, n \ge 12)$ with the

coexistence of trans and gauche S-C bonds: a class of lamellar van der

Waals molecular crystals

Tingting Wang, Yixin Wan, Nan Yu, Kewei Gu, Zhiwei Lu, and Junli Wang*

School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, PR China.

E-mail: wangjl@ujs.edu.cn

1. Experimental section

1.1 Synthesis of polycrystalline solids

All chemicals were purchased from Aladdin Biochemical Technology Co., Ltd.: tin chloride pentahydrate (SnCl₄·5H₂O, 99.0%, AR), 1-dodecanethiol (C₁₂H₂₅SH, 98%), 1-tetradecanethiol (C₁₄H₂₉SH, >97%), 1-hexadecanethiol (C₁₆H₃₃SH, >97%), 1-octadecanethiol (C₁₈H₃₇SH, 97%), and ethanol (>99.5%)

In a typical synthetic procedure of Sn(VI) alkanethiolates (Sn(SC_nH_{2n+1})₄), 1 mmol (0.3506 g) SnCl₄·5H₂O was dissolved in 3–5 mL of 1-alkanethiols (HSC_nH_{2n+1}, n=12, 14, 16 and 18) in a three-necked flask. The solution was heated to 120 °C and kept at this temperature for 30 min under magnetic stirring, which generates a colorless solution. When naturally cooled, white polycrystalline powders were obtained after the following processes: precipitated by adding ethanol into the mother solution, further purified by three times of chloroform dissolving, ethanol precipitation and centrifugation, and finally dried in a vacuum oven at room temperature. For the preparation of Sn(SC₁₂H₂₅)₄, after the addition of ethanol, the solution of Sn(SC₁₂H₂₅)₄ was allowed to stand overnight (at room temperature or better in a 4 °C refrigerator) in order to flocculate its polycrystalline precipitate. The as-obtained Sn(VI) alkanethiolates could be well dissolved in chloroform or toluene and then precipitated again by adding ethanol.

We note that Stam and colleagues [1] reported the presence of $Sn(SC_{12}H_{25})_4$ Sn(IV)-thiolate complex at the surface of $Cu_{2-x}S$ colloidal nanocrystals by means of solid-state ¹¹⁹Sn NMR and that they used a synthetic protocol that adds CuCl and SnBr₄ into a mixture of 1-dodecanethiol (HSC₁₂H₂₅) and oleylamine to react at 225 °C. In this work, pure Sn(SC₁₂H₂₅)₄ was not isolated. Oleylamine may pollute Sn(IV)-thiolate complexes. Therefore, our synthesis of Sn(VI) alkanethiolates (Sn(SC_nH_{2n+1})₄), n=12, 14, 16 and 18) was performed in pure 1-alkanethiols. This synthetic method has been recently employed for preparing Bi(III) dodecanethiolate $(Bi(SC_{12}H_{25})_3, see Ref. 10).$

[1] W. van der Stam, S. Gradmann, T. Altantzis, X. Ke, M. Baldus, S. Bals and C. de M. Donega, *Chem. Mater.*, 2016, **28**, 6705–6715.

1.2 Growth of single crystals

Growth of single crystals could be performed using two methods. One was the liquid-liquid diffusion method. An appropriate amount of Sn(VI) alkanethiolates was dissolved in 2 mL CHCl₃ and then transferred to a glass tube (diameter × length: 0.5 × 18 cm). Afterwards, 1 mL of CHCl₃/EtOH (v:v=1:2) mixed solution was added as a transition layer and the rest of the tube was filled with EtOH. The culture tube was finally sealed with the parafilm (PM992) and placed in a dark, quiet environment. One or two holes could be made with a thin needle at the sealing parafilm in order to promote the evaporation of solvents and the diffusion of molecules. The colorless, transparent, flake-like crystals were obtained within 1 to 2 weeks (Fig. S7).

The other one was the solvent evaporation method. In brief, an appropriate amount of $Sn(SC_nH_{2n+1})_4$ polycrystalline powders was dissolved in 2 mL CHCl₃/EtOH (v:v=5:1-3:1) in a small sample bottle. This bottle was then placed in a larger glass bottle that contained 2–4 mL CHCl₃/EtOH with a low v:v ratio (1:1). After the larger bottle was sealed, CHCl₃ would slowly evaporate to form supersaturated solution in the small bottle for growing single crystals. The bottles were placed in a dark, quiet environment. The colorless, transparent, flake-like crystals were obtained within 1 to 2 weeks. The volume capacities for the small and large bottles were 4 and 20 mL.

1.3 Characterizations

Powder XRD

The powder XRD patterns of Sn(SC_nH_{2n+1})₄ polycrystalline samples were collected in the range of 2–60° (2 θ) on a Rigaku Ultimate IV X-ray diffractometer (Cu Ka radiation λ =1 .5418 Å) operated at 40 KV and 40 mA. The powder XRD data of the SnS products were collected on a D8 Advance diffractometer with graphitemonochromatized Cu K α radiation (λ =1.54178 Å, Bruker-AXS). All of the XRD data were collected at room temperature.

Single crystal XRD

The single crystal data of $Sn(SC_{12}H_{25})_4$ and $Sn(SC_{14}H_{29})_4$ were collected at low temperature using a Bruker APEX-II CCD diffractometer with Cu K α radiation (λ = 1.54184 Å). The single crystal data of $Sn(SC_{16}H_{33})_4$ were collected at room temperature on a Bruker D8 Venture X-ray diffractometer with graphite monochromated Mo K α radiation (λ = 0.71073 Å). Using Olex2 [1], the structures for three crystals were solved with the SHELXT [2] structure solution program using Intrinsic Phasing and refined with the SHELXL [3] refinement package using Least Squares minimization. [1] Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.
[2] Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122.
[3] Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.

FT-IR

Fourier transform infrared spectra (FT-IR) recorded on a Nicolet FT-170SX Fourier transform spectrometer using an attenuated total reflection (ATR) model within the wavenumber range of 400–4000 cm⁻¹.

TG-DSC

A NETZSCH STA 449 F3 thermal analyzer was used to collect the thermogravimetry and differential scanning calorimetry (TG-DSC) data for the thermolysis of Sn(VI) alkanethiolates. The sample purge N_2 flow was 60 mL/min and the flow of N_2 protection was 20 mL. The heating rate was 10 °C/min.

DSC

The DSC heating/cooling cycles of Sn(SC_nH_{2n+1})₄ samples were recorded on SDT Q600 thermal analyzer in the temperature range of 0 °C–100 °C–0 °C. The purge N₂ flow was 100 mL/min and the scanning rate was 10 °C/min.

2. Supporting figures

Fig. S1 The p-XRD patterns recorded on $(Sn(SC_nH_{2n+1})_4 (n=12, 14, 16 \text{ and } 18)$ polycrystalline powders. As seen in other metal alkanethiolates (see refs. 3–11 and 14), a series of successive (h00) diffraction peaks with an equal spacing distance at the low 2 θ -angle region are present, suggesting a layered crystal structure for $(Sn(SC_nH_{2n+1})_4 \text{ homologous crystals.})$ It can be observed that the XRD profile of $Sn(SC_{12}H_{25})_4$ is very similar to that of $Sn(SC_{14}H_{29})_4$ while the XRD profile of $Sn(SC_{16}H_{33})_4$ is very similar to that of $Sn(SC_{18}H_{37})_4$. A collective shift of diffraction lines to the small 2 θ -angle positions occurs with the increase in the chain lengths of alkyl chains in $Sn(SC_nH_{2n+1})_4$.

Fig. S2 FTIR spectra recorded on $(Sn(SC_nH_{2n+1})_4 (n = 12, 14 \text{ and } 16)$ polycrystalline powders. The presence of the strong symmetric (d+) and antisymmetric (d-) CH₂ stretching bands with peak maxima around 2848 and 2914 cm⁻¹ indicates that long C_nH_{2n+1} chains have a fully extended, all-*trans* conformation (see refs. 4–6).

Fig. S3 Schematic illustration for measuring the tilt angles of C_nH_{2n+1} chains relative to *a* axis. All C_nH_{2n+1} chains extend along *a* axis and their chain axes prefer to be parallel to *a* axis as possible as they can. In both unit cells, the maximum value for the tilt angles is below 7°. In the top figure of (a) and (b), the lower sublayer of $Sn(SC_nH_{2n+1})_4$ molecules is omitted for a better observation.

Fig. S4 (Left) The fitting results of the lab-experimental p-XRD patterns recorded on polycrystalline solids with the simulated p-XRD patterns derived from single crystals. (Right) The diffraction lines within $2\theta=1-14^{\circ}$ of simulated p-XRD patterns are provided for information. The diffraction peaks with too weak intensity (I) are invisible in p-XRD patterns.

Fig. S5 Schematic illustration for measuring the closest intramolecular and intermolecular chain-chain distances in $Sn(SC_nH_{2n+1})_4$ crystals. It can be observed that the *trans* S-bonded C_nH_{2n+1} chain bulges out by one nonbonded C···C distance along the *a* axis direction relative to the *gauche* S-bonded C_nH_{2n+1} chain. The average value for interchain C···C spacings, *which are measured between the Nth C atom in gauche* S-bonded C_nH_{2n+1} chain and the (N-1)th C atom in trans S-bonded C_nH_{2n+1} chain (N=2 to n, red dotted lines), is used to assess the linear distance (marked with double-headed arrows) between two intramolecular (or intermolecular) neighboring alkyl chains. Taking n=14 as an example, N ranges from 2 to 14, and then the intramolecular *vs* intermolecular chain-chain distances are calculated as follows: 4.12 vs 4.10 Å. This method is also applicable to n=12 and 16.

Fig. S6 Unit cells of $Sn(SC_nH_{2n+1})_4$ crystals projected from *a* axis, where there are four C_nH_{2n+1} chains extending within the *bc* plane. Other alkyl chains and Sn/S atoms are omitted for a better observation.

Fig. S7 Optical graphics of $Sn(SC_nH_{2n+1})_4$ single crystals grown by a layering diffusion method in CHCl₃/EtOH. From left to right are $Sn(SC_{12}H_{25})_4$, $Sn(SC_{14}H_{29})_4$ and $Sn(SC_{16}H_{33})_4$.

Fig. S8 p-XRD patterns recorded on the solid products obtained from $Sn(SC_nH_{2n+1})_4$ thermal decomposition, all of which are in good agreement with the standard diffraction lines for SnS (shown in red at the bottom, PDF# 73-1859).

Fig. S9 Multiple DSC melting point measurements for $Sn(SC_nH_{2n+1})_4$. Almost the same melting temperatures are confirmed for each crystal.

3. Supporting tables

Table S1 Sn–S and S–C bond lengths (Å) and \angle S–Sn–S angles (°) in Sn(SC _n H _{2n+1}) ₄
(n=12, 14 and 16) crystals.

Bond lengths	Sn(SC ₁₂ H ₂₅) ₄	Sn(SC ₁₄ H ₂₉) ₄	Sn(SC ₁₆ H ₃₃) ₄
Sn-S(1)	2.432(8)	2.3857(9)	2.376(3)
Sn-S(2)	2.417(9)	2.4056(9)	2.402(3)
Sn-S(3)	2.425(9)	2.3955(9)	2.381(3)
Sn-S(4)	2.413(9)	2.3891(10)	2.407(3)
S(1)-C	1.86(2)	1.836(4)	1.849(13)
S(2)-C	1.86(2)	1.835(4)	1.849(16)
S(3)-C	1.87(2)	1.832(4)	1.808(17)
S(4)-C	1.86(2)	1.833(4)	1.843(10)
Angles			
S(1)-Sn-S(2)	108.0(3)	110.18(3)	110.37(11)
S(1)-Sn-S(3)	110.3(3)	110.12(3)	110.54(11)
S(1)- Sn - $S(4)$	113.2(3)	104.51(3)	111.76(11)
S(2)-Sn-S(3)	104.9(3)	112.98(3)	103.81(11)
S(2)-Sn-S(4)	110.5(3)	108.83(4)	109.03(12)
S(3)-Sn-S(4)	109.5(4)	109.88(3)	111.03(11)

Notes:

 $Sn(SC_{12}H_{25})_4$ and $Sn(SC_{16}H_{33})_4$: S(1) and S(4) in *trans* conformation; S(2) and S(3) in *gauche* conformation.

 $Sn(SC_{14}H_{29})_4$: S(2) and S(3) in *trans* conformation; S(1) and S(4) in *gauche* conformation.

Chemical formula	$*Sn(SC_{12}H_{25})_{4}$	$Sn(SC_{14}H_{29})_4$	Sn(SC ₁₆ H ₃₃) ₄
Formula weight	924.20	1036.41	1148.62
Temperature/K	160.00	150.00	100.00
Crystal system	monoclinic	monoclinic	monoclinic
Space group	$P2_1/c$	$P2_1/c$	Pc
a/Å	71.41(10)	81.184(4)	45.6447(14)
b/Å	8.120(11)	7.8878(4)	8.1335(3)
c/Å	9.297(14)	9.2530(5)	9.3171(3)
α/\circ	90	90	90
β/°	91.38(4)	91.1170(10)	92.133(3)
$\gamma/^{o}$	90	90	90
Volume/Å ³	5389(13)	5924.2(5)	3456.6(2)
Z	4	4	2
$\rho_{calc}/g/cm^3$	1.139	1.162	1.104
μ/mm^{-1}	5.408	4.969	0.524
F(000)	2008.0	2264.0	1260.0
Radiation	Cu Ka	Cu Ka	Μο Κα
	(λ=1.54178)	(λ=1.54178)	(λ=0.71073)
20 range for data	3.712 to 133.152	3.266 to 149.35	4.374 to 59.506
	$-84 \le h \le 82$	$-99 \le h \le 101$	$-57 \le h \le 63$
Index ranges	$-8 \le k \le 8$	$-9 \le k \le 9$	$-11 \le k \le 11$
	$-4 \le l \le 11$	- 11 ≤ 1 ≤ 11	$-13 \le 1 \le 12$
Reflections collected	8786	46808	60728
Independent	6720	12081	17139
reflections	$R_{int} = 0.0615$	R int=0.0320	$R_{int} = 0.0798$
reflections	R _{sigma} = 0.0963	R _{sigma} =0.0338	R _{sigma} = 0.0669
Data/restraints/para	6720/368/482	12081/0/554	17139/110/630
Goodness of fit on			
F^2	1.156	1.187	1.112
Final R indexes	$R_1 = 0.2477$	$R_1 = 0.0620$	$R_1 = 0.0809$
$[I \ge 2\sigma(I)]$	$wR_2 = 0.5687$	$wR_2 = 0.1648$	$wR_2 = 0.2176$
Final R indexes [all	$R_1 = 0.2569$	$R_1 = 0.0639$	$R_1 = 0.0846$
data]	$wR_2 = 0.5722$	$wR_2 = 0.1672$	$wR_2 = 0.2241$
Largest diff. peak/hole / e Å ⁻³	2.18/-5.34	1.47/-0.85	1.22/-0.91

Table S2 Crystallographic data for $Sn(SC_nH_{2n+1})_4$ (n=12, 14 and 16) crystals.

*The reasons for large R_1 and wR_2 values for $Sn(SC_{12}H_{25})_4$ are as follows: 1) the quality of single crystal is not good enough, 2) the data is not completely collected. Although we have tried our best to grow $Sn(SC_{12}H_{25})_4$ single crystals and carried out sc-XRD data collection on different X-ray diffractometers for no less than 10 times, we cannot obtain better results than the ones shown above. While the crystallographic data for $Sn(SC_{14}H_{29})_4$ and $Sn(SC_{16}H_{33})_4$ crystals were well collected and analyzed, there are some A and B-level alerts that cannot be removed in solving single-crystal structures of $Sn(SC_{12}H_{25})_4$. However, the simulated p-XRD of its single crystal data is highly consistent with the labexperimental p-XRD recorded on its polycrystals (Fig. S4), indicating that sufficient and reliable atom-resolution structural information can be obtained from single crystal crystallographic data (see details in the supplementary files of crystal data and CheckCIF reports).