Electronic supplementary information

for

Assembling silver(I) coordination polymers of an $\mathbf{N S}_{4}$ macrocycle via an endo/exocyclic coordination mode

Seulgi Kim,*a Shim Sung Lee, ${ }^{\text {a Joon Rae Kim }}{ }^{\text {b }}$ and Eunji Lee*b
a Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University,
Jinju 52828, South Korea
${ }^{\mathrm{b}}$ Department of Chemistry, Gangneung-Wonju National University, Gangneung 25457, South Korea

Experimental

General procedures

All chemicals and solvents used in the syntheses were of reagent grade and were used without further purification.
The FT-IR spectra were measured using a Thermo Fisher Scientific Nicolet iS 10 FT-IR spectrometer. Each product obtained in this work was dried in a vacuum before elemental analysis, which was carried out on a Thermo Scientific Flash 2000 Series elemental analyser. The powder X-ray diffraction (PXRD) experiments were performed in transmission mode with a Bruker D8 Advance A25 diffractometer equipped with graphite monochromated $\mathrm{Cu} \mathrm{K} \alpha$ radiation $(\lambda=1.54073 \AA)$.

Preparations of $\left\{\left[\mathrm{Ag}_{3} \mathrm{~L}_{2}\right]\left(\mathrm{PF}_{6}\right)_{3} \cdot \mathbf{2 C H}_{2} \mathrm{Cl}_{2}\right\}_{n}(\mathbf{1})$

$\operatorname{AgPF}_{6}(19.27 \mathrm{mg}, 0.076 \mathrm{mmol})$ in methanol $(1.0 \mathrm{~mL})$ was added to a solution of $\mathbf{L}(10.0 \mathrm{mg}, 0.025 \mathrm{mmol})$ in dichloromethane $(1.0 \mathrm{~mL})$. Slow evaporation of the solution afforded a colourless crystalline product 1 suitable for X-ray analysis. Yield: 37%; Mp: $168-169^{\circ} \mathrm{C}$. IR: $3005,2922,1593,1573,1455,1421,1269,1223$, 1162, 1087, 1007, $\left.840\left(\mathrm{PF}_{6}\right)^{-}\right), 714 \mathrm{~cm}^{-1}$. Anal. calc. for $\mathrm{C}_{38} \mathrm{H}_{46} \mathrm{Ag}_{3} \mathrm{P}_{3} \mathrm{~F}_{18} \mathrm{~N}_{2} \mathrm{~S}_{8}: \mathrm{C}, 29.53 ; \mathrm{H}, 3.00 ; \mathrm{N}, 1.81$. Found: C, 29.65; H, 3.01; N, 1.89\%.

Preparation of $\left\{\left[\mathrm{Ag}_{4} \mathrm{~L}_{2}\left(\mathbf{C F}_{3} \mathbf{S O}_{3}\right)_{2}\right]\left(\mathbf{C F}_{3} \mathbf{S O}_{3}\right)_{2} \cdot \mathbf{C H}_{2} \mathbf{C l}_{2}\right\}_{n}$ (2)

$\mathrm{AgCF}_{3} \mathrm{SO}_{3}(19.58 \mathrm{mg}, 0.076 \mathrm{mmol})$ in methanol $(1.0 \mathrm{~mL})$ was added to a solution of $\mathbf{L}(10.1 \mathrm{mg}, 0.025$ $\mathrm{mmol})$ in dichloromethane $(1.0 \mathrm{~mL})$. Slow evaporation of the solution afforded a colourless crystalline product 2 suitable for X-ray analysis. Yield: 48%; Mp: 199-200 ${ }^{\circ} \mathrm{C}$ (decomp.) IR: 2992, 2952, 2925, 1629, 1592, 1572, 1455, $1272\left(\mathrm{CF}_{3} \mathrm{SO}_{3}^{-}\right)$, 1240, 1168, 1093, $1027\left(\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}\right), 897,808 \mathrm{~cm}^{-1}$. Anal. calc. for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{Ag}_{2} \mathrm{~F}_{6} \mathrm{NO}_{6} \mathrm{~S}_{6}$: C, 27.79; H, 2.55; N, 1.54. Found: C, 27.84; H, 2.60; N, 1.58%.

Preparations of $\left\{\left[\mathrm{Ag}_{4} \mathrm{~L}_{2}\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)_{2}\right]\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)_{2} \cdot \mathbf{4} \mathbf{C H}_{3} \mathbf{O H}\right\}_{n}$ (3)

$\mathrm{AgCF}_{3} \mathrm{CO}_{2}(16.83 \mathrm{mg}, 0.076 \mathrm{mmol})$ in methanol $(1.0 \mathrm{~mL})$ was added to a solution of $\mathbf{L}(10.0 \mathrm{mg}, 0.025$ $\mathrm{mmol})$ in dichloromethane (1.0 mL). Slow evaporation of the solution afforded a colourless crystalline product 3 suitable for X-ray analysis. Yield: 43%; Mp: $178-179{ }^{\circ} \mathrm{C}$ (decomp.). IR: 3097, 2913, $1663\left(\mathrm{CF}_{3} \mathrm{CO}_{2}{ }^{-}\right)$, 1590, 1451, 1435, $1211\left(\mathrm{CF}_{3} \mathrm{CO}_{2}-\right), 1133,839,807,724 \mathrm{~cm}^{-1}$. Anal. calc. for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{Ag}_{2} \mathrm{~F}_{6} \mathrm{NO}_{4} \mathrm{~S}_{4}: \mathrm{C}, 33.07 ; \mathrm{H}, 2.78$; N, 1.68. Found: C, 33.19; H, 2.80; N, 1.81\%.

Anion exchange

The anion exchange experiments were performed with products $\mathbf{1 - 3}(5 \mathrm{mg})$ by immersing in 3 M aqueous solution $(2.0 \mathrm{~mL})$ of each sodium salt and leaving undisturbed at room temperature. Each solid sample was periodically collected by filtration, washed several times with distilled water, and then dried in air.

Fig. S1 PXRD patterns for (a) 1, (b) 2 and (c) 3: (top) as synthesised and (bottom) simulated from the single crystal X-ray data.

Fig. S2 Crystal structure of $1\left(\mathrm{PF}_{6}\right.$ - form) showing non-coordinated anions and solvent molecules: (a) 1D polymeric array, (b) asymmetric unit and (c) anion- π interaction between one PF_{6} and the pyridyl moiety (green dashed line; F7 \cdots centroid $3.316 \AA$). The shortest distance between $\operatorname{Ag}(\mathrm{I})$ and anion; $\mathrm{Ag} 1 \cdots$ F3 $3.767 \AA$.

(a)

(b)

Fig. S3 Crystal structure of $2\left(\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}\right.$form) showing non-coordinated anions and solvent molecules: (a) 1 D polymeric array and (b) asymmetric unit. The non-coordinated trifluorosulfonate ion is disordered (60:40). The shortest distance between $\operatorname{Ag}(\mathrm{I})$ and the non-coordinated anion; $\mathrm{Ag} 1 \cdots \mathrm{O} 63.896 \AA$.

(a)

(b)

Fig. S4 Crystal structure of $\mathbf{3}\left(\mathrm{CF}_{3} \mathrm{CO}_{2}^{-}\right.$form) showing anions and solvent molecules. (a) 1D polymeric array and (b) asymmetric unit. The coordinated trifluoroacetate ion is disordered (86:14). The Ag1 atom weakly interacts with the other anion $(\mathrm{Ag} 1 \cdots \mathrm{O} 13.117, \mathrm{Ag} 1 \cdots \mathrm{O} 23.033 \AA)$.

(b)

Fig. S5 IR spectra for (a) $\mathbf{1}\left(\mathrm{PF}_{6}{ }^{-}\right.$form) and (b) $\mathbf{3}\left(\mathrm{CF}_{3} \mathrm{CO}_{2}{ }^{-}\right.$form) after anion exchanges (for 12 h and 48 h$)$ with 3 $\mathrm{M} \mathrm{NaCF}{ }_{3} \mathrm{CO}_{2}$ and $3 \mathrm{M} \mathrm{NaPF}_{6}$ aqueous solution, respectively.

(b)

Fig. S6 IR spectra for (a) $2\left(\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}\right.$form) and (b) $\mathbf{3}\left(\mathrm{CF}_{3} \mathrm{CO}_{2}{ }^{-}\right.$form) after anion exchanges (for 12 h and 48 h) with $3 \mathrm{M} \mathrm{NaCF}_{3} \mathrm{CO}_{2}$ and $3 \mathrm{M} \mathrm{NaCF}_{3} \mathrm{SO}_{3}$ aqueous solution, respectively.

X-ray crystallographic analysis

All data were collected on a Bruker SMART APEX2 ULTRA diffractometer equipped with graphite monochromated Mo K α radiation $(\lambda=0.71073 \AA$) generated by a rotating anode. Data collection, data reduction, and semiempirical absorption correction were carried out using the software package APEX2. ${ }^{\text {S1 }}$ All of the calculations for the structure determination were carried out using the SHELXTL package. ${ }^{\mathrm{S} 2}$ In all cases, all nonhydrogen atoms were refined anisotropically and all hydrogen atoms were placed in idealized positions and refined isotropically in a riding manner along with their respective parent atoms. Relevant crystal data collection and refinement data for the crystal structures of 1-3 are summarised in Table S1.

References

S1. Bruker, APEX2 Version 2009.1-0 Data collection and Processing Software, Bruker AXS Inc., Madison, Wisconsin, U.S.A., 2008.
S2. Bruker, SHELXTL-PC Version 6.22 Program for Solution and Refinement of Crystal Structures, Bruker AXS Inc., Madison, Wisconsin, U.S.A., 2008.

CCDC $2290290(1), 2290291(2)$ and $2290292(3)$ contain supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Table S1 Crystallographic data and refinement parameters of 1,2 and $\mathbf{3}$

	$\mathbf{1}$		$\mathbf{2}$
Formula	$\mathrm{C}_{40} \mathrm{H}_{50} \mathrm{Ag}_{3} \mathrm{Cl}_{4} \mathrm{~F}_{18} \mathrm{~N}_{2} \mathrm{P}_{3} \mathrm{~S}_{8}$	$\mathrm{C}_{43} \mathrm{H}_{48} \mathrm{Ag}_{4} \mathrm{Cl}_{2} \mathrm{~F}_{12} \mathrm{~N}_{2} \mathrm{O}_{12} \mathrm{~S}_{12}$	$\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{Ag}_{2} \mathrm{~F}_{6} \mathrm{NO}_{6} \mathrm{~S}_{4}$
Formula weight	1715.62	1899.93	899.49
Temperature	$173(2)$	$173(2)$	$173(2)$
Crystal system	Orthorhombic	Monoclinic	Monoclinic
Space group	$P b c m$	$C 2 / c$	$P 2_{1}$
Z	4	4	2
$a(\AA)$	$10.9437(2)$	$24.3861(9)$	$11.5778(7)$
$b(\AA \AA)$	$21.7335(3)$	$10.5716(4)$	$12.0547(7)$
$c(\AA)$	$25.2207(4)$	$24.9876(9)$	$12.4212(8)$
$\alpha\left(^{\circ}\right)$	90	90	90
$\beta\left(^{\circ}\right)$	90	$106.300(2)$	$111.230(4)$
$\gamma\left({ }^{\circ}\right)$	90	90	90
$V\left(\AA^{3}\right)$	$5998.62(17)$	$6182.9(4)$	$1615.94(17)$
$\left.D_{\text {calc }}(\mathrm{g} / \text { cm })^{3}\right)$	1.900	52.041	1.849
$2 \theta_{\text {max }}\left({ }^{\circ}\right)$	52.00	$0.0365,0.0921$	52.00
$R_{1}, w R_{2}[I>2 \sigma(I)]$	$0.0608,0.1562$	$0.0438,0.0970$	$0.0321,0.0660$
$R_{1}, w R_{2}[$ all data $]$	$0.0732,0.1647$	1.030	$0.0349,0.0676$
Goodness-of-fit on F^{2}	1.045	$6081\left[R_{\text {int }}=0.0451\right]$	1.030
No. of reflection used $[>2 \sigma(I)]$	$6041\left[R_{\text {int }}=0.0543\right]$	full-matrix	$5811\left[R_{\text {int }}=0.0314\right]$
Refinement	full-matrix		full-matrix

Table S2 Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for 1

Ag1-N1	2.332(6)	Ag2-S2	2.726(2)
Ag1-S1	$2.715(2)$	Ag2-S3	2.498(2)
Ag1-S2	2.699(2)	Ag2-S2B	2.726(2)
Ag1-S4A	2.461(2)	Ag2-S3B	2.498(2)
N1-Ag1-S1	76.6(1)	S2-Ag2-S3	86.0(1)
N1-Ag1-S2	75.9(1)	S2-Ag2-S2B	116.5(1)
N1-Ag1-S4A	148.7(1)	S2-Ag2-S3B	104.5(1)
S1-Ag1-S2	132.8(1)	S3-Ag2-S2B	104.5(1)
S1-Ag1-S4A	107.3(1)	S3-Ag2-S3B	160.3(1)
S2-Ag1-S4A	116.1(1)		

Symmetry operations: (A) $-\mathrm{x}+1,-\mathrm{y},-\mathrm{z}+1 \quad$ (B) $\mathrm{x},-\mathrm{y}+0.5,-z+1$

Table S3 Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for 2

Ag1-N1	$2.398(3)$	Ag2-S1A	$2.525(1)$
Ag1-S1	$2.584(1)$	Ag2-S3	$2.546(3)$
Ag1-S2	$2.846(1)$	Ag2-S4B	$2.507(1)$
Ag1-S3	$2.504(1)$	Ag2-O1	$2.596(1)$
N1-Ag1-S1	$75.8(1)$	$\mathrm{S} 1 \mathrm{~A}-\mathrm{Ag} 2-\mathrm{S} 3$	$116.3(1)$
N1-Ag1-S2	$72.3(1)$	$\mathrm{S} 1 \mathrm{~A}-\mathrm{Ag} 2-\mathrm{S} 4 \mathrm{~B}$	$136.0(1)$
N1-Ag1-S3	$142.2(1)$	$\mathrm{S} 1 \mathrm{~A}-\mathrm{Ag} 2-\mathrm{O} 1$	$90.3(1)$
$\mathrm{S} 1-\mathrm{Ag} 1-\mathrm{S} 2$	$137.4(1)$	$\mathrm{S3}-\mathrm{Ag} 2-\mathrm{S} 4 \mathrm{~B}$	$104.0(1)$
$\mathrm{S} 1-\mathrm{Ag} 1-\mathrm{S} 3$	$140.0(1)$	$\mathrm{S} 3-\mathrm{Ag} 2-\mathrm{O} 1$	$112.1(1)$
$\mathrm{S} 2-\mathrm{Ag} 1-\mathrm{S} 3$	$79.7(1)$	$\mathrm{S} 4 \mathrm{~B}-\mathrm{Ag} 2-\mathrm{O} 1$	$90.4(1)$

Symmetry operations: (A) $x, y+1, z \quad$ (B) $-x+0.5, y+0.5,-z+0.5$

Table S4 Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for 3

Ag1-N1	$2.484(3)$	$\mathrm{Ag} 2-\mathrm{S} 2$	$2.658(1)$
Ag1-S2	$2.516(1)$	$\mathrm{Ag} 2-\mathrm{S} 3 \mathrm{~B}$	$2.483(1)$
$\mathrm{Ag} 1-\mathrm{S} 4$	$2.467(1)$	$\mathrm{Ag} 2-\mathrm{O} 3$	$2.332(3)$
$\mathrm{Ag} 2-\mathrm{S} 1 \mathrm{~A}$	$2.584(1)$		
$\mathrm{N} 1-\mathrm{Ag} 1-\mathrm{S} 2$	$74.9(1)$	$\mathrm{S} 1 \mathrm{~A}-\mathrm{Ag} 2-\mathrm{S} 2$	$107.3(1)$
$\mathrm{N} 1-\mathrm{Ag} 1-\mathrm{S} 4$	$137.2(1)$	$\mathrm{S} 1 \mathrm{~A}-\mathrm{Ag} 2-\mathrm{S} 3 \mathrm{~B}$	$119.2(1)$
$\mathrm{S} 2-\mathrm{Ag} 1-\mathrm{S} 4$	$147.8(1)$	$\mathrm{S} 1 \mathrm{~A}-\mathrm{Ag} 2-\mathrm{O} 3$	$92.8(1)$
$\mathrm{S} 2-\mathrm{Ag} 2-\mathrm{S} 3 \mathrm{~B}$	$105.6(1)$	$\mathrm{S} 3 \mathrm{~B}-\mathrm{Ag} 2-\mathrm{O} 3$	$140.2(1)$
$\mathrm{S} 2-\mathrm{Ag} 2-\mathrm{O} 3$	$84.2(1)$		

Symmetry operations: (A) $-\mathrm{x}-1, \mathrm{y}+0.5,-\mathrm{z}-2 \quad$ (B) $-\mathrm{x}-1, \mathrm{y}-0.5,-\mathrm{z}-2$

