#### **Supplementary Material (ESI)**

## Fabrication of 5-R-isophthalic acid-modulated a series of

# cadmium-organic coordination polymers and selectivity for the

## efficient detection of multiple analytes

Wen-Ze Li,<sup>a</sup> Yu-Shu Sheng,<sup>a</sup> Xiao-Sa Zhang,<sup>a</sup> Yu Liu,<sup>a</sup> Jing Li,<sup>a</sup> and Jian Luan<sup>b\*</sup>

<sup>a</sup> College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China

<sup>b</sup> College of Sciences, Northeastern University, Shenyang, 110819, P. R. China

E-mail: 2010044@stu.neu.edu.cn (J. Luan)

| Cd-CP                              | 1                                 | 2                          | 3                                  | 4                            |  |
|------------------------------------|-----------------------------------|----------------------------|------------------------------------|------------------------------|--|
| Empirical                          | C U CANO                          |                            | C II CANO                          |                              |  |
| formula                            | $C_{31}\Pi_{26}Cd_{2}N_{4}O_{11}$ | $C_{15.5}\Pi_{18}CdN_2O_8$ | $C_{33}\Pi_{38}Cu_{21}N_{4}O_{15}$ | $C_{23}\Pi_{23}CdN_4O_{8.5}$ |  |
| Formula                            | 955 205                           | 172 726                    | 055 511                            | 602 872                      |  |
| weight                             | 055.595                           | 4/2./30                    | 955.511                            | 005.072                      |  |
| Crystal                            | Monoslinio                        | Manaalinia                 | Trialinia                          | Monoclinic                   |  |
| system                             | Monochine                         | Monochinic                 | Trennic                            |                              |  |
| Space                              | $D\mathcal{D}/c$                  | C2/a                       | D 1                                | C2/a                         |  |
| group                              | $\Gamma 2/C$                      | C2/C                       | $\Gamma = 1$                       | C2/C                         |  |
| a (Å)                              | 10.3061(1)                        | 11.0328(1)                 | 10.0583(2)                         | 27.3243(2)                   |  |
| <i>b</i> (Å)                       | 8.9312(1)                         | 17.1307(2)                 | 10.1823(2)                         | 10.2895(1)                   |  |
| <i>c</i> (Å)                       | 16.6010(3)                        | 19.2872(2)                 | 20.6673(3)                         | 17.8117(2)                   |  |
| α (°)                              | 90                                | 90                         | 97.263(2)                          | 90                           |  |
| $\beta$ (°)                        | 95.428(1)                         | 93.281(1)                  | 94.133(1)                          | 105.530(1)                   |  |
| γ (°)                              | 90                                | 90                         | 119.439(2)                         | 90                           |  |
| $V(Å^3)$                           | 1521.20(4)                        | 3639.30(7)                 | 1806.38(7)                         | 4824.99(8)                   |  |
| Ζ                                  | 2                                 | 8                          | 2                                  | 8                            |  |
| $D_c (\mathrm{g}\mathrm{cm}^{-3})$ | 1.867                             | 1.726                      | 1.757                              | 1.663                        |  |
| $R_{\rm int}$                      | 0.0191                            | 0.0232                     | 0.0379                             | 0.0160                       |  |
| GOF                                | 1.0483                            | 1.0708                     | 1.0450                             | 0.9176                       |  |
| $R_I^a [I >$                       | 0.0224                            | 0.0224                     | 0.0220                             | 0.0576                       |  |
| 2σ( <i>I</i> )]                    | 0.0234                            | 0.0234                     | 0.0550                             | 0.0370                       |  |
| $wR_2^b$ (all                      | 0.0613                            | 0.0637                     | 0.0024                             | 0 1440                       |  |
| data)                              | 0.0015                            | 0.0037                     | 0.0924                             | 0.1449                       |  |

#### Table S1 Crystallographic data for Cd-CP-1-4.

<sup>a</sup>  $R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$ , <sup>b</sup>  $wR_2 = \Sigma [w(F_o^2 - F_c^2)^2] / \Sigma [w(F_o^2)^2]^{1/2}$ .

| Cd(1)-O(3)#1        | 2.1960(17) | Cd(1)-O(4)#2        | 2.2227(18) |
|---------------------|------------|---------------------|------------|
| Cd(1)–O(1)          | 2.3069(19) | Cd(1)–N(1)          | 2.368(2)   |
| Cd(1)–O(2)          | 2.4157(19) | Cd(1)-O(5)#3        | 2.4512(18) |
| O(3)#1-Cd(1)-O(4)#2 | 124.22(7)  | O(1)–Cd(1)–O(2)     | 55.29(7)   |
| O(3)#1-Cd(1)-O(1)   | 95.88(7)   | N(1)-Cd(1)-O(2)     | 86.76(8)   |
| O(4)#2-Cd(1)-O(1)   | 137.86(7)  | O(3)#1-Cd(1)-O(5)#3 | 92.26(7)   |
| O(3)#1-Cd(1)-N(1)   | 90.04(8)   | O(4)#2-Cd(1)-O(5)#3 | 80.61(7)   |
| O(4)#2-Cd(1)-N(1)   | 89.74(8)   | O(1)-Cd(1)-O(5)#3   | 85.91(8)   |
| O(1)-Cd(1)-N(1)     | 103.91(8)  | N(1)-Cd(1)-O(5)#3   | 169.63(8)  |
| O(3)#1-Cd(1)-O(2)   | 148.94(7)  | O(2)-Cd(1)-O(5)#3   | 96.39(7)   |
| O(4)#2-Cd(1)-O(2)   | 86.68(7)   |                     |            |

Table S2 Selected bond distances (Å) and angles (°) for Cd-CP-1.

Symmetry codes: #1 x + 1, y, z; #2 -x, y, -z + 1/2; #3 x, y - 1, z.

Table S3 Selected bond distances (Å) and angles (°) for Cd-CP-2.

| Cd(1)-O(1W)        | 2.285(2)  | Cd(1)–N(1)          | 2.327(3)  |
|--------------------|-----------|---------------------|-----------|
| Cd(1)-O(2W)        | 2.330(2)  | Cd(1)-O(4)#1        | 2.331(2)  |
| Cd(1)–O(1)         | 2.344(2)  | Cd(1)–O(2)          | 2.535(2)  |
| Cd(1)-O(3)#1       | 2.561(2)  | O(1W)–Cd(1)–O(2)    | 83.89(8)  |
| O(1W)–Cd(1)–N(1)   | 93.88(10) | N(1)-Cd(1)-O(2)     | 88.09(8)  |
| O(1W)-Cd(1)-O(2W)  | 178.90(8) | O(2W)–Cd(1)–O(2)    | 96.90(8)  |
| N(1)-Cd(1)-O(2W)   | 86.92(10) | O(4)#1-Cd(1)-O(2)   | 133.09(7) |
| O(1W)-Cd(1)-O(4)#1 | 88.44(8)  | O(1)-Cd(1)-O(2)     | 52.91(7)  |
| N(1)-Cd(1)-O(4)#1  | 138.67(8) | O(1W)-Cd(1)-O(3)#1  | 95.40(8)  |
| O(2W)-Cd(1)-O(4)#1 | 90.46(8)  | N(1)-Cd(1)-O(3)#1   | 86.04(8)  |
| O(1W)–Cd(1)–O(1)   | 93.51(8)  | O(2W)-Cd(1)-O(3)#1  | 83.90(8)  |
| N(1)-Cd(1)-O(1)    | 139.12(9) | O(4)#1-Cd(1)-O(3)#1 | 52.70(7)  |
| O(2W)–Cd(1)–O(1)   | 86.37(8)  | O(1)-Cd(1)-O(3)#1   | 133.05(7) |
| O(4)#1-Cd(1)-O(1)  | 81.66(7)  | O(2)-Cd(1)-O(3)#1   | 174.03(7) |

### **Supplementary Material (ESI)**

Symmetry code: #1 x - 1/2, y + 1/2, z.

Table S4 Selected bond distances (Å) and angles (°) for Cd-CP-3.

| Cd(1)-O(4)#1       | 2.205(2)  | Cd(2)–O(6)         | 2.247(2)   |
|--------------------|-----------|--------------------|------------|
| Cd(1)–N(1)         | 2.291(3)  | Cd(2)–N(2)         | 2.252(3)   |
| Cd(1)–O(2)         | 2.294(2)  | Cd(2)–O(7)         | 2.328(3)   |
| Cd(1)–O(1W)        | 2.325(2)  | Cd(2)–O(3W)        | 2.364(3)   |
| Cd(1)-O(2W)        | 2.427(2)  | Cd(2)–O(8)         | 2.380(2)   |
| Cd(1)–O(1)         | 2.500(2)  | Cd(2)–O(6)#2       | 2.528(2)   |
| O(4)#1-Cd(1)-N(1)  | 135.89(9) | O(6)-Cd(2)-N(2)    | 121.41(10) |
| O(4)#1-Cd(1)-O(2)  | 136.64(9) | O(6)-Cd(2)-O(7)    | 85.79(9)   |
| N(1)-Cd(1)-O(2)    | 87.20(9)  | N(2)-Cd(2)-O(7)    | 143.22(10) |
| O(4)#1-Cd(1)-O(1W) | 96.28(9)  | O(6)-Cd(2)-O(3W)   | 109.83(10) |
| N(1)-Cd(1)-O(1W)   | 85.60(9)  | N(2)-Cd(2)-O(3W)   | 91.31(10)  |
| O(2)-Cd(1)-O(1W)   | 90.79(10) | O(7)-Cd(2)-O(3W)   | 102.65(11) |
| O(4)#1-Cd(1)-O(2W) | 88.15(9)  | O(6)-Cd(2)-O(8)    | 140.73(8)  |
| N(1)-Cd(1)-O(2W)   | 84.06(9)  | N(2)-Cd(2)-O(8)    | 92.61(9)   |
| O(2)-Cd(1)-O(2W)   | 93.05(10) | O(7)–Cd(2)–O(8)    | 55.31(8)   |
| O(1W)-Cd(1)-O(2W)  | 168.78(8) | O(3W)–Cd(2)–O(8)   | 86.28(9)   |
| O(4)#1-Cd(1)-O(1)  | 82.84(8)  | O(6)-Cd(2)-O(6)#2  | 77.98(9)   |
| N(1)-Cd(1)-O(1)    | 139.96(8) | N(2)-Cd(2)-O(6)#2  | 80.11(9)   |
| O(2)–Cd(1)–O(1)    | 53.90(8)  | O(7)-Cd(2)-O(6)#2  | 82.56(9)   |
| O(1W)–Cd(1)–O(1)   | 102.24(8) | O(3W)-Cd(2)-O(6)#2 | 170.72(9)  |
| O(2W)Cd(1)O(1)     | 88.51(8)  | O(8)-Cd(2)-O(6)#2  | 90.55(8)   |

Symmetry codes: #1 x, y + 1, z; #2 -x + 1, -y, -z + 1.

Table S5 Selected bond distances (Å) and angles (°) for Cd-CP-4.

| Cd(1)-O(3)#1        | 2.264(7) | Cd(1)-O(4)#2      | 2.322(8) |
|---------------------|----------|-------------------|----------|
| Cd(1)–N(2)          | 2.326(9) | Cd(1)–N(1)        | 2.334(9) |
| Cd(1)–O(1)          | 2.356(7) | Cd(1)–O(2)        | 2.387(9) |
| O(3)#1-Cd(1)-O(4)#2 | 132.9(3) | N(2)-Cd(1)-O(1)   | 86.9(3)  |
| O(3)#1-Cd(1)-N(2)   | 89.0(3)  | N(1)-Cd(1)-O(1)   | 99.4(3)  |
| O(4)#2Cd(1)N(2)     | 88.8(3)  | O(3)#1–Cd(1)–O(2) | 88.8(3)  |
| O(3)#1-Cd(1)-N(1)   | 87.3(3)  | O(4)#2-Cd(1)-O(2) | 138.3(3) |
| O(4)#2Cd(1)N(1)     | 89.6(3)  | N(2)-Cd(1)-O(2)   | 94.5(4)  |
| N(2)-Cd(1)-N(1)     | 173.3(3) | N(1)-Cd(1)-O(2)   | 91.0(4)  |
| O(3)#1-Cd(1)-O(1)   | 142.5(2) | O(1)-Cd(1)-O(2)   | 54.5(3)  |
| O(4)#2–Cd(1)–O(1)   | 84.3(3)  |                   |          |

Symmetry codes: #1 x, y + 1, z; #2 -x, -y + 1, -z.

Table S6  $K_{sv}$  values and LOD of Cd-CP-1–4 for different analytes.

| Analyte            | Cd-CP-1                     |                       | Cd-CP- <b>2</b>             |                       | Cd-CP-3                     |                       | Cd-CP-4                     |                       |
|--------------------|-----------------------------|-----------------------|-----------------------------|-----------------------|-----------------------------|-----------------------|-----------------------------|-----------------------|
|                    | $K_{sv}$ (M <sup>-1</sup> ) | LOD (M)               |
| Fe <sup>3+</sup>   | $3.18 \times 10^{3}$        | $1.42 \times 10^{-5}$ | $3.36 \times 10^{4}$        | $1.13 \times 10^{-6}$ | $4.80 \times 10^{3}$        | $9.38 \times 10^{-6}$ | $8.68 \times 10^4$          | $5.18 	imes 10^{-7}$  |
| MnO <sub>4</sub> - | $1.34 \times 10^5$          | $3.37 \times 10^{-7}$ | $1.58 \times 10^4$          | $2.39 	imes 10^{-6}$  | $1.70 	imes 10^4$           | $2.65 	imes 10^{-6}$  | $1.58 \times 10^5$          | $2.86 \times 10^{-7}$ |
| NB                 | $1.85 \times 10^{3}$        | $2.44 \times 10^{-5}$ | $2.53 \times 10^{4}$        | $1.49 \times 10^{-6}$ | $7.36 \times 10^{3}$        | $6.11 \times 10^{-6}$ | $1.20 \times 10^5$          | $3.75 \times 10^{-7}$ |



Fig. S1 The IR spectra of Cd-CP-1–4.



Fig. S2 The TG curves of Cd-CP-1–4.



Fig. S4  $K_{sv}$  plots of Cd-CP-1 (a), 2 (b), 3 (c) and 4 (d) for sensing of  $MnO_4^-$  ion.

#### **Supplementary Material (ESI)**



Fig. S5  $K_{sv}$  plots of Cd-CP-1 (a), 2 (b), 3 (c) and 4 (d) for sensing of NB.



**Fig. S6** The cyclic response of the fluorescence intensities of Cd-CP-4 for detecting  $Fe^{3+}$  (a),  $MnO_4^-$  (b) and NB (c). The PXRD patterns of Cd-CP-4 treated by  $Fe^{3+}$  (a),  $MnO_4^-$  (b) and NB before and after five cycles.



Fig. S7 The IR spectra of Cd-CP-1-4 before and after being soaked in different analyzes.