Electronic Supporting Information

Linker size dependent Mechanical Properties of Di-imine based Molecular Crystals

Deepak Manoharan,^a Shamim Ahmad,^b Srinu Tothadi,^c Franziska Emmerling,^d Biswajit Bhattacharya, *^d Soumyajit Ghosh*^a

^aDepartment of Chemistry, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India.

^bDepartment of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal, 741246 India

^cAnalytical and Environmental Sciences Division and Centralized Instrumentation Facility,

CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg,

Bhavnagar-364002 (India)

^dBAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str. 11, 12489 Berlin, Germany.

* Email: soumyajitghosh89@gmail.com

biswajit.bhattacharya@bam.de

Table of Contents	Page No
S1. Synthesis and NMR Spectroscopy	S3-S6
S2. Thermal analysis	S7-S8
S3. Face indexing	S9-S10
S4. Mechanical Flexibility	S10
S5. Elastic strain calculation	S11
S6. Single Crystal X-ray Diffraction	S11-S12
S7. Energy Framework Calculations	S13-S16
S8. Torsion Angles	S17-S18
S9. UV & PL spectrum	S19-S20
S10. Fluorescence Microscopy images	S21-S22
S11. References	S22

S1. Synthesis and NMR Spectroscopy

Synthesis procedure

First Step:

Scheme 1 Synthesis route of compound 1.

Compound **1** was synthesized through a two-step process with a reported procedure.¹ In the first step, we dissolved one equivalent of 3,5-ditertiarybutyl salicylaldehyde in 20 ml of methanol and added an excess of hydrazine hydrate to the solution. This mixture was stirred for 8 hours to yield the desired product. The yield of product in first step is 83 %. For the second step, the product obtained in the first step was dissolved in 20 ml of methanol along with another one 1 equivalent 3,5-ditertiarybutyl salicylaldehyde once again. The resulting mixture was stirred for 15 hours, leading to the formation of the final product. We then washed the product with diethyl ether and dried it using a high vacuum pump to obtain Compound **1** with yield of 70 %.

Scheme 2 Synthesis route of compounds 2, 3 and 4.

Compounds 2, 3, and 4 were also synthesized using a reported procedure by dissolving 2 equivalents of 3,5-ditertiarybutyl salicylaldehyde in 20 ml of methanol separately, each time with a different diamine (namely ethylenediamine, 1,3 diaminopropane, and 1,4 diaminobutane).² The solutions were stirred for 1 hour at room temperature. Following the completion of the reaction, we observed the precipitation of the respective products. These precipitates were then filtered and dried under high vacuum conditions to obtain compounds 2, 3, and 4 with the yields of 75 %.

Fig. S1.1 ¹H NMR spectrum of crystal 1.

¹H NMR (400 MHz, CDCl₃) δ 11.90 (s, 2H), 8.76 (s, 2H), 7.45 (d, J = 2.4 Hz, 2H), 7.16 (d, J = 2.4 Hz, 2H), 1.47 (s, 18H), 1.32 (s, 18H).

Fig. S1.2 ¹H NMR spectrum of crystal 2.

¹H NMR (400 MHz, CDCl₃) δ 13.64 (s, 2H), 8.38 (s, 2H), 7.36 (d, J = 2.5 Hz, 2H), 7.06 (d, J = 2.4 Hz, 2H), 3.92 (s, 4H), 1.43 (s, 18H), 1.28 (s, 18H).

Fig. S1.3 ¹H NMR spectrum of crystal 3.

¹H NMR (400 MHz, CDCl₃) δ 13.82 (s, 2H), 8.39 (s, 2H), 7.38 (d, J = 2.4 Hz, 2H), 7.09 (d, J = 2.4 Hz, 2H), 3.70 (t, J = 6.4 Hz, 4H), 2.18 – 2.00 (m, 2H), 1.46 (s, 18H), 1.30 (s, 18H).

Fig. S1.4 ¹H NMR spectrum of crystal 4.

¹H NMR (400 MHz, CDCl₃) δ 13.88 (s, 2H), 8.36 (s, 2H), 7.37 (d, J = 2.5 Hz, 2H), 7.08 (d, J = 2.4 Hz, 2H), 3.62 (d, J = 0.8 Hz, 4H), 1.80 (t, J = 2.8 Hz, 4H), 1.45 (s, 18H), 1.30 (s, 18H).

S2. Thermal analysis

Fig. S2.1 DSC thermogram of crystals of 1, 2, 3 and 4.

Fig. S2.2 TGA graph of crystal 1.

Fig. S2.3 TGA graph of crystal 2.

Fig. S2.4 TGA graph of crystal 3.

Fig. S2.5 TGA graph of crystal 4.

S3. Face Indexing

Fig. S3.1 Face indexing image of pristine crystal of 1.

Fig. S3.2 Face indexing image of pristine crystal of 2

Fig. S3.3 Face indexing image of pristine crystal of 3.

Fig. S3.4 Face indexing image of pristine crystal of 4.

S4. Mechanical Flexibility

Fig. S4.1 Stepwise plastic bending of crystal 2.

Fig. S4.2 Stepwise elastic bending image of crystal of 4.

S5. Elastic strain calculation

Fig. S5.1 Elastic strain calculation of crystal of 4.

Length = 2.5 mm Width = 0.024 mm Thickness = 0.019 mm Radius of Curvature, (R) =0.25 mm ε (%) = t /2R × 100 = 0.019/2×0.25×100 = 3.8%

S6. Single Crystal X-ray Diffraction

Table S6.1. Dimensions of the crystals 1, 2, 3 and 4

Crystal		Crystal Dimer	ision	Morphology
	Length	Width	Thickness	
1	2 mm	0.12 mm	0.08 mm	Needle Shaped
2	2.2 mm	0.4 mm	0.15 mm	Needle Shaped
3	2 mm	0.16 mm	0.08 mm	Needle Shaped
4	2 mm	0.2 mm	0.05 mm	Needle Shaped

 Table S6.2: Crystallographic Information Table.

Compounds	1	2	3	4
Formula	$C_{30}H_{44}N_2O_2$	C ₃₂ H ₄₈ N ₂ O ₂	C ₃₃ H ₅₀ N ₂ O ₂	C ₃₄ H ₅₂ N ₂ O ₂
Formula weight	464.69	492.75	506.78	520.80
T/K	298	150	298	301
Crystal system	Triclinic	Monoclinic	Monoclinic	Triclinic
Space group	р <u>1</u>	C 2/c	$P 2_1/c$	<i>P</i> 1
a/Å	6.4470(15)	18.8769(8)	10.9190(10)	10.1433(12)
b/Å	10.416(3)	6.1559(2)	10.0505(8)	11.0854(13)
c/Å	11.367(3)	26.9215(11)	29.337(3)	15.0978(18)
α/ο	82.665(10)	90	90	87.297(5)
b/º	87.026(10)	106.511(3)	90.486(3)	78.914(5)
γ/ο	72.301(9)	90	90	89.006(5)
Volume/Å ³	721.1(3)	2999.4(2)	3219.3(5)	1664.0(3)
Z	1	4	4	2
ρ, Mg.cm ⁻³	1.070	1.091	1.046	1.039
m /mm ⁻¹	0.066	0.067	0.064	0.0.063
Reflections	24832	63050	60616	69500
Collected				
Independent	2550	3156	5658	7087
Reflections				
R _{int}	0.1034	0.0470	0.0753	0.0929
GOF	1.028	1.040	1.048	1.033
Final R[I >2s]	0.0645	0.0512	0.0834	0.0888
R_1/wR_2	0.1514	0.1326	0.2357	0.2633

CCDC Number	2285906	2292993	2285907	2292994

S7. Energy Framework Calculations

The energy frameworks calculations relating to intermolecular interactions of pristine structures of **1**, **2** and **3** and the uniaxial compressed structures obtained from the DFT calculations were performed using the software suite Crystal-Explorer^{3,4} based on B3LYP/DGDZVP molecular wavefunctions. The input structures were taken from the CIF files. The hydrogen atoms were normalized to standard neutron diffraction values. The constructed energy frameworks are based on the crystal symmetry and the total components of the interaction energy including electrostatic, polarization, dispersion, and exchange repulsion components. The scale factors for the electrostatic, polarization, dispersion and exchange repulsion components are 1.057, 0.740, 0.871 and 0.618, respectively. To provide clarity, energies above -5 kj.mol⁻¹ have been omitted and the energy scale factor was set to 100. the cylinder thickness is proportional to the intermolecular interaction energies along the direction of the cylinder.

Table S7.1 Molecular structure pairs and the interaction energies (kJ.mol⁻¹) obtained from energy frameworks calculation for **1**. Scale factors are in the lower table.

_									
Int R i To fou	eracti s the tal en r ene	on Ener distance ergies, o rgy com	gies (k), betwee only repo ponents	'mol) en molecular centr orted for two benc , scaled appropria	oids (m hmarke tely (se	nean ato d energ	omic pos ny model cale fact	ition) in s, are th or table	Å. e sum of below)
	N	Symop	R	Electron Density	E_ele	E_pol	E_dis	E_rep	E_tot
	2	x, y, z	17.53	B3LYP/DGDZVP	1.9	-0.0	-8.9	0.0	-5.8
	2	x, y, z	17.63	B3LYP/DGDZVP	-1.7	-0.1	-14.9	0.0	-14.9
	2	x, y, z	6.45	B3LYP/DGDZVP	-26.2	-3.2	-119.6	82.3	-83.4
	2	x, y, z	12.89	B3LYP/DGDZVP	0.9	-0.1	-6.2	0.0	-4.5
	2	x, y, z	10.45	B3LYP/DGDZVP	-3.8	-0.7	-25.0	11.7	-19.1
l	2	x, y, z	13.90	B3LYP/DGDZVP	-0.5	-0.1	-5.5	0.0	-5.4
	2	x, y, z	10.42	B3LYP/DGDZVP	-3.4	-0.2	-17.0	10.3	-12.3
	2	x, y, z	13.36	B3LYP/DGDZVP	-0.3	-0.5	-29.9	0.0	-26.6
10 10	ale fac e Mac	tors for kenzie e	benchm t al. IUC	arked energy moo TJ (2017)	lels				
Er	ergy	Model				k_ele	k_pol	k_disp	k_rep
CE	HF.	HF/3-	21G elec	tron densities		1.01	9 0.65	1 0.901	0.811
CE	-B3L	YP B3	LYP/6-3	1G(d,p) electron d	ensities	s 1.05	7 0.740	0.871	0.618

Fig. S7.1 Visualization of energy frameworks showing total interaction energy (a, blue); electrostatic (b, red) and dispersion (c, green) components for **1**, in the (top) (100); (middle) (010) and (below) (010) faces, respectively. The energy scale factor is 100 and the energy threshold is 5 kJ.mol^{-1} .

Table S7.2 Molecular structure pairs and the interaction energies (kJ.mol⁻¹) obtained from energy frameworks calculation for **2**. Scale factors are in the lower table.

l energies, energy co	ce between molecular , only reported for two omponents, scaled app	centroid o benchr oropriate	s (mean atomic ; narked energy m ly (see the scale	odels, an factor ta	n A. e the sur ble belor	n of the w)		
N Syn	mop	R	Electron Densit	E_ele	E_pol	E_dis	E_rep	E_tot
2 x+	-1/2, y+1/2, z	9.93	B3LYP/DGDZVP	-10.1	-2.4	-47.8	29.3	-36.0
2 x+	-1/2, y+1/2, z	9.93	B3LYP/DGDZVP	-4.9	-0.4	-20.7	15.4	-14.0
2 x,)	y, z	6.16	B3LYP/DGDZVP	-22.3	-2.8	-97.3	59.1	-73.9
4 -x+	+1/2, y+1/2, -z+1/2	14.41	B3LYP/DGDZVP	-4.4	-0.3	-25.8	0.0	-27.4
2 x+	·1/2, y+1/2, z	13.20	B3LYP/DGDZVP	-3.1	-1.0	-32.4	0.0	-32.2
2 x+	-1/2, y+1/2, z	18.05	B3LYP/DGDZVP	-0.3	-0.0	-1.8	0.0	-1.9
2 -x,	y, -z+1/2	13.46	B3LYP/DGDZVP	-0.8	-0.1	-5.8	0.0	-6.0
e factors fo Mackenzie	for benchmarked energ e et al. IUCrJ (2017)	gy model	s It als		k dan	4 444		
ayy Model			K_ele	K_DOI	k_usp	k_jep		
HF HF/	/3-21G electron densit	ies	1.019	0.651	0.901	0.811		
RIVD	B3LYP/6-31G(d.n) ele	ctron de	nsities 1.057	0.740	0.871	0.618		

Fig. S7.2 Visualization of energy frameworks showing total interaction energy (a, blue); electrostatic (b, red) and dispersion (c, green) components for **2**, in the (top) (100); (middle) (010) and (below) (010) faces, respectively. The energy scale factor is 100 and the energy threshold is 5 kJ.mol^{-1} .

Table S7.3 Molecular structure pairs and the interaction energies (kJ.mol⁻¹) obtained from energy frameworks calculation for **3**. Scale factors are in the lower table.

Fig. S7.3 Visualization of energy frameworks showing total interaction energy (a, blue); electrostatic (b, red) and dispersion (c, green) components for **2**, in the (top) (100); (middle) (010) and (below) (010) faces, respectively. The energy scale factor is 100 and the energy threshold is 5 kJ.mol^{-1} .

S8. Torsion Angle Measurement

Fig. S8.1 Torsion angle of Crystal 1

Fig. S8.1 Torsion angle of Crystal 2

Fig. S8.3 Torsion angle of Crystal 3

Fig. S8.4 Torsion angle of Crystal 4

Fig. S9.1 UV and PL Spectrum of crystal 1.

Fig. S9.2 UV and PL Spectrum of crystal 2.

Fig. S9.3 UV and PL Spectrum of crystal 3.

Fig. S9.4 UV and PL Spectrum of crystal 4.

S10. Fluorescence Microscopy images

Fig. S10.1 Fluorescence microscopy image of Crystal 1 (a) in Brightfield (b) 342-378 nm.

Fig. S10.2 Fluorescence microscopy image of Crystal 2 (a) in Brightfield (b) 452-488 nm.

Fig. S10.3 Fluorescence microscopy image of Crystal 3 (a) in Brightfield (b) 342-378 nm.

Fig. S10.4 Fluorescence microscopy image of Crystal 4 (a) in Brightfield (b) 342-378 nm.

S11. References

- 1 A. K. Saini, K. Natarajan and S. M. Mobin, *Chem. Commun.*, 2017, **53**, 9870–9873.
- 2 S. Yang, H. Kou, H. Wang, K. Cheng and J. Wang, *New J. Chem.*, 2010, **34**, 313–317.
- 3 M. J. Turner, S. P. Thomas, M. W. Shi, D. Jayatilaka and M. A. Spackman, *Chem. Commun.*, 2015, **51**, 3735–3738.
- P. R. Spackman, M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, D. Jayatilaka and M. A. Spackman, *J Appl Crystallogr*, 2021, 54, 1006–1011.