The PEC performance of BiVO₄ was enhanced by preparing the CoFeB_i/BiVO₄ photoanode using an ultrafast photoassisted

electrodeposition method

^a College of Chemistry and Chemical Engineering, Northwest Normal University,

Lanzhou 730070, China

^b School of Geography and Environment Science, Northwest Normal University,

Lanzhou 730070, China

^c Qinghai Provincial Key Laboratory of Nanomaterials and Nanotechnology, Qinghai

Minzu University, Qinghai 810007, China

^d School of Environment Science and Engineering, Chang'an University, Xi'an 710060, China

*Corresponding author. Tel: +86 931 7972677; Fax: +86 931 7972677.

*Corresponding author. E-mail: baiyan226@163.com(Y.Bai); pjhhj@sohu.com (J.

Peng); wangqizhao@163.com, qizhaosjtu@gmail.com (Q. Wang)

Preparation of BiVO₄

To prepare the $BiVO_4$ film, a typical three-electrode setup was used. The working electrode was made of FTO conductive glass, the opposite electrode was a platinum sheet and the reference electrode was an Ag/AgCl electrode. First, in a clean beaker, 3.32 g of potassium iodide (KI) was weighed and mixed with 50 mL of distilled water at room temperature. Then, 1 M nitric acid (HNO₃) solution was gradually added to adjust the pH to 1.65. Into the KI solution with the adjusted pH, 0.9701 g of bismuth nitrate pentahydrate (Bi(NO₃)₃·5H₂O) was added. This mixture was labeled as solution A. Then, In another clean beaker, 0.498 g of 1,4-benzoquinone ($C_6H_4O_2$) was added to 20 mL of absolute ethanol at room temperature. This mixture was labeled as solution B. The contents of solution B were added drop by drop into solution A while stirring with a magnetic stirrer. As the addition progressed, the solution gradually changed in color from clear orange to orange-red. Stirring was continued for approximately 20 minutes to ensure thorough mixing. The deposition of the obtained solution was carried out using a three-electrode cyclic voltammetry (CV) technique. The potential range utilized was -0.13 V to 0 V, and the scanning rate was set to 5 mV/s. The BiOI film was then rinsed with deionized water and dried. Onto the prepared BiOI film, 100 μ L of a 0.2 M VO(acac)₂ (DMSO) solution was dropped. The film was subsequently annealed at 450 °C for 2 hours, using a heating rate of 2 °C

/min. Finally, the samples were immersed in a 1.0 M sodium hydroxide solution to remove any excess vanadium pentoxide. After that, they were rinsed with distilled water and dried in an oven to obtain pure BiVO₄ electrode material.

Fig. S1. XRD images of BiVO_{4.}

Fig. S2. LSV curves of CoFeB_i/BiVO₄ with different deposition time.

Fig. S3.CV of photoanodes performed at different scan rates in the non-Faradaic potential range.

Fig. S4. Relationship between current density difference and scan rate of BiVO₄ and CoFeB_i/BiVO₄ photoanodes.

Fig. S5. $BiVO_4$ and $CoFeB_i/BiVO_4$ electrodes measured by in 1 M Na_2SO_3 solution of linear sweep voltammetric curves (a), (b).

Fig. S6. The stability test curves of $CoFeB_i/BiVO_4$ electrodes.

Sample	$\mathbf{R}_{\mathrm{s}}\left(\Omega ight)$	$\mathbf{R}_{\mathrm{ct}}\left(\Omega\right)$	
BiVO ₄	18.86	496.1	
FeB _i /BiVO ₄	28.77	203.4	
CoB _i /BiVO ₄	26.73	168.4	
CoFeB _i /BiVO ₄	27.79	140.6	

Table.S1. The charge transfer resistance (R_{ct}) of electrodes.

Table. S2. Comparison of the $CoFeB_i/BiVO_4$ with the recent $BiVO_4$ photoanodes for PEC water oxidation under AM 1.5 G (100 mW cm⁻²) illumination.

Photoelectrode	Flectrolyte	Performance	Ref
	Electrolyte	(at 1.23 V vs. RHE)	Kti.
F/Mo:BiVO ₄	0.1M KPi	1.45 mA cm ⁻²	1
BiVO ₄ /NdCo ₃	0.1M KPi	2.25 mA cm ⁻²	2
FeOOH/Ni-BiVO ₄	0.1M KPi	3.02 mA cm ⁻²	3
Zr-CoF ₂ /BiVO ₄	0.5 M KPi	3.6 mA cm ⁻²	4
BiVO ₄ /CuPc/FeOOH	0.1 M KPi	3.65 mA cm ⁻²	5
CoFeB _i /BiVO ₄	0.5 M KPi	4.4 mA cm ⁻²	This work

References

- 1. M. Rohloff, B. Anke, O. Kasian, S. Y. Zhang, M. Lerch, C. Scheu and A. Fischer, *Acs Applied Materials & Interfaces*, 2019, **11**, 16430-16442.
- 2. G. D. Gao, R. Chen, Q. J. Wang, D. W. F. Cheung, J. Zhao and J. S. Luo, Acs Applied Energy Materials, 2023, 6, 4027-4034.
- 3. M. H. Chen, X. B. Chang, C. Li, H. Q. Wang and L. C. Jia, *Journal of Colloid and Interface Science*, 2023, **640**, 162-169.
- 4. K. Y. Chen, L. Zhang, X. Huang, F. C. Zhang, G. Q. Zhu and Q. Z. Wang, *Journal of Alloys and Compounds*, 2023, **963**, 9.
- 5. M. M. Fan, Z. Y. Tao, Q. Zhao, J. P. Li, G. Liu and C. Zhao, *Adv. Mater. Technol.*, 2023, DOI: 10.1002/admt.202201835, 9.