Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2023

Supporting Information:

# Alkali Halide Flux Synthesis, Crystal Structure, and Photoelectric Response of Quaternary Thiosilicates K<sub>3</sub>Ga<sub>3</sub>Si<sub>7</sub>S<sub>20</sub> and K<sub>2</sub>ZnSi<sub>3</sub>S<sub>8</sub>

Jia-Ting Liu,<sup>a,b</sup> Abdusalam Ablez,<sup>a,b</sup> Qian-Qian Hu,<sup>b</sup> Jun-Hao Tang,<sup>b</sup> Chuan Lv,<sup>c</sup> Lu Yang,<sup>a</sup> Mei-Ling Feng<sup>b,\*</sup> and Xiao-Ying Huang<sup>b,\*</sup>

<sup>a</sup> College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China Email: <u>fml@fjirsm.ac.cn</u>; <u>xyhuang@fjirsm.ac.cn</u>

<sup>b</sup>State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.

<sup>c</sup> College of Chemistry, Sichuan University, Chengdu 610064, China.

## 1. Synthesis Procedures



Figure S1 Synthetic temperature control roadmaps for 1 (a) and 2 (b).



### 2. Supporting Figures

Figure S2 SEM images of 1 (a) and 2 (b) and their elemental distribution maps and the EDS results of 1 and 2.



**Figure S3** *ORTEP* drawings (50% ellipsoid probability) of the asymmetric units of **1** (a) at 296 K and **2** (b) at 297 K.



Figure S4 A 1-D band in 1 viewed along the *c*-axis.

# 3. X-ray Crystallography

| Empirical formula                           | $K_3Ga_3Si_7S_{20}$               | $K_2 Zn Si_3 S_8$                 |
|---------------------------------------------|-----------------------------------|-----------------------------------|
| $F_w$                                       | 1164.29                           | 484.32                            |
| a (Å)                                       | 6.6732                            | 6.9955                            |
| <i>b</i> (Å)                                | 36.810                            | 7.4508                            |
| <i>c</i> (Å)                                | 6.6191                            | 14.2302                           |
| α (°)                                       | 90.0                              | 87.204                            |
| β (°)                                       | 90.946                            | 81.546                            |
| γ (°)                                       | 90.0                              | 69.495                            |
| Space group                                 | $P2_{1}/c$                        | $P^{\overline{1}}$                |
| $V(Å^3)$                                    | 1625.7                            | 687.16                            |
| Ζ                                           | 2                                 | 2                                 |
| $\theta$ range (°)                          | 3.480 to 29.657                   | 3.588 to 29.588                   |
| $\rho_{\rm calcd}$ (g/cm <sup>3</sup> )     | 2.379                             | 2.341                             |
| $\mu$ (MoK $\alpha$ ) / (mm <sup>-1</sup> ) | 4.401                             | 3.826                             |
| Crystal size (mm <sup>3</sup> )             | $0.200 \times 0.200 \times 0.150$ | $0.150 \times 0.150 \times 0.100$ |
| $\lambda$ (MoK $\alpha$ ) (Å)               | 0.71073                           | 0.71073                           |
| Temperature (K)                             | 296                               | 297                               |
| Total/independent reflections               | 11559 / 3901                      | 6921 / 3252                       |
| Reflections with $I > 2\sigma(I)$           | $R_1 = 0.0549, wR_2 = 0.0955$     | $R_1 = 0.0572, wR_2 = 0.1154$     |
| $R_1^a/wR_2^b$                              | $R_1 = 0.0967, wR_2 = 0.1117$     | $R_1 = 0.0818, wR_2 = 0.1289$     |
| Goodness of fit                             | 1.044                             | 1.122                             |
|                                             | $-8 \le h \le 9$ ,                | $-8 \le h \le 8$ ,                |
| Index ranges                                | $-47 \le k \le 46$ ,              | $-10 \le k \le 9,$                |
| -                                           | $-7 \le l \le 8$                  | $-19 \le l \le 17$                |
| F (000)                                     | 1136                              | 476                               |

 Table S1 Crystallographic data and structural refinement details for 1 and 2.

| Compound 1              |            |                     |            |  |  |
|-------------------------|------------|---------------------|------------|--|--|
| <i>M</i> (1)-S(3)       | 2.2041(18) | <i>M</i> (5)-S(2)#5 | 2.121(2)   |  |  |
| <i>M</i> (1)-S(1)       | 2.2260(17) | <i>M</i> (5)-S(1)   | 2.125(2)   |  |  |
| <i>M</i> (1)-S(2)       | 2.228(2)   | <i>M</i> (5)-S(10)  | 2.145(2)   |  |  |
| <i>M</i> (1)-S(4)       | 2.2420(17) | <i>M</i> (5)-S(6)   | 2.1569(19) |  |  |
| <i>M</i> (2)-S(3)       | 2.1436(19) | S(1)-K(1)           | 3.3667(16) |  |  |
| <i>M</i> (2)-S(7)       | 2.155(2)   | S(2)-K(2)#7         | 3.663(3)   |  |  |
| <i>M</i> (2)-S(5)       | 2.1553(19) | S(3)-K(2)#3         | 3.606(3)   |  |  |
| <i>M</i> (2)-S(6)       | 2.195(2)   | S(4)-K(1)           | 3.5042(19) |  |  |
| <i>M</i> (3)-S(5)#1     | 2.1563(19) | S(5)-K(2)           | 3.762(3)   |  |  |
| <i>M</i> (3)-S(8)       | 2.165(2)   | S(6)-K(2)#6         | 3.322(3)   |  |  |
| <i>M</i> (3)-S(8)#2     | 2.1664(19) | S(6)-K(2)           | 3.359(3)   |  |  |
| <i>M</i> (3)-S(7)       | 2.1812(18) | S(7)-K(2)#6         | 3.704(3)   |  |  |
| <i>M</i> (4)-S(4)       | 2.132(2)   | S(7)-K(2)#7         | 3.758(3)   |  |  |
| <i>M</i> (4)-S(10)#3    | 2.145(2)   | S(8)-K(2)#7         | 3.285(3)   |  |  |
| <i>M</i> (4)-S(9)       | 2.152(2)   | S(9)-K(1)#8         | 3.6138(19) |  |  |
| <i>M</i> (4)-S(9)#4     | 2.167(2)   | S(10)-K(2)          | 3.364(3)   |  |  |
|                         |            |                     |            |  |  |
| S(3)- <i>M</i> (1)-S(1) | 115.15(7)  | S(5)#1-M(3)-S(8)    | 115.91(8)  |  |  |
| S(3)- <i>M</i> (1)-S(2) | 120.64(7)  | S(5)#1-M(3)-S(8)#2  | 117.04(8)  |  |  |
| S(1)-M(1)-S(2)          | 96.31(7)   | S(8)-M(3)-S(8)#2    | 100.39(8)  |  |  |
| S(3)- <i>M</i> (1)-S(4) | 106.70(7)  | S(5)#1-M(3)-S(7)    | 106.13(8)  |  |  |
| S(1)-M(1)-S(4)          | 108.69(7)  | S(8)-M(3)-S(7)      | 106.05(8)  |  |  |
| S(2)-M(1)-S(4)          | 108.68(7)  | S(8)#2-M(3)-S(7)    | 110.88(8)  |  |  |
| S(3)- <i>M</i> (2)-S(7) | 113.11(9)  | S(4)-M(4)-S(10)#3   | 113.36(8)  |  |  |
| S(3)- <i>M</i> (2)-S(5) | 110.02(8)  | S(4)-M(4)-S(9)      | 108.87(9)  |  |  |
| S(7)- <i>M</i> (2)-S(5) | 117.14(8)  | S(10)#3-M(4)-S(9)   | 108.31(8)  |  |  |
| S(3)-M(2)-S(6)          | 112.01(8)  | S(4)-M(4)-S(9)#4    | 113.57(9)  |  |  |
| S(7)-M(2)-S(6)          | 108.40(8)  | S(10)#3-M(4)-S(9)#4 | 113.48(9)  |  |  |
| S(5)-M(2)-S(6)          | 94.75(8)   | S(9)-M(4)-S(9)#4    | 97.92(8)   |  |  |

Table S2 Selected bond lengths (Å) and angles (°) for 1 and 2.

(M = 0.3 Ga + 0.7 S.)

| Compound <b>2</b> |            |             |          |  |  |
|-------------------|------------|-------------|----------|--|--|
| Zn(1)-S(1)        | 2.3141(19) | S(2)-K(2)#1 | 3.319(2) |  |  |
| Zn(1)-S(4)        | 2.332(2)   | S(2)-K(1)#2 | 3.336(3) |  |  |
| Zn(1)-S(2)        | 2.3364(17) | S(2)-K(2)#6 | 3.431(2) |  |  |
| Zn(1)-S(3)        | 2.3540(19) | S(3)-K(2)#2 | 3.145(2) |  |  |
| Zn(1)-K(2)#1      | 3.8702(18) | S(3)-K(2)#1 | 3.358(3) |  |  |
| Zn(1)-K(1)#2      | 4.011(2)   | S(3)-K(1)#7 | 3.733(3) |  |  |
| Si(1)-S(1)        | 2.078(2)   | S(4)-K(1)#8 | 3.445(3) |  |  |
| Si(1)-S(2)#3      | 2.090(2)   | S(4)-K(1)#7 | 3.536(3) |  |  |
| Si(1)-S(6)        | 2.154(2)   | S(5)-K(1)#7 | 3.740(3) |  |  |
| Si(1)-S(5)        | 2.171(3)   | S(6)-K(1)   | 3.691(3) |  |  |

| Si(2)-S(3)        | 2.065(2)   | S(7)-K(2)           | 3.379(2)   |
|-------------------|------------|---------------------|------------|
| Si(2)-S(5)        | 2.114(2)   | S(7)-K(2)#9         | 3.389(3)   |
| Si(2)-S(7)#1      | 2.156(3)   | S(7)-K(2)#2         | 3.705(2)   |
| Si(2)-S(7)        | 2.163(2)   | S(8)-K(1)#10        | 3.581(3)   |
| Si(3)-S(4)#3      | 2.063(3)   | S(8)-K(1)#7         | 3.593(3)   |
| Si(3)-S(6)        | 2.130(2)   | K(1)-K(1)#11        | 4.817(4)   |
| Si(3)-S(8)#4      | 2.146(2)   | K(2)-K(2)#12        | 4.018(3)   |
| Si(3)-S(8)        | 2.158(3)   | K(2)-K(2)#13        | 4.330(4)   |
| Si(3)-Si(3)#4     | 2.822(4)   | K(2)-K(2)#9         | 4.972(3)   |
| S(1)-K(2)#5       | 3.179(3)   |                     |            |
|                   |            |                     |            |
| S(1)-Zn(1)-S(4)   | 108.52(7)  | S(3)-Si(2)-S(5)     | 114.27(11) |
| S(1)-Zn(1)-S(2)   | 102.94(7)  | S(3)-Si(2)-S(7)#1   | 115.89(10) |
| S(4)-Zn(1)-S(2)   | 114.97(7)  | S(5)-Si(2)-S(7)#1   | 112.19(11) |
| S(1)-Zn(1)-S(3)   | 109.27(7)  | S(3)-Si(2)-S(7)     | 110.07(11) |
| S(4)-Zn(1)-S(3)   | 113.55(8)  | S(5)-Si(2)-S(7)     | 106.41(9)  |
| S(2)-Zn(1)-S(3)   | 106.99(7)  | S(7)#1-Si(2)-S(7)   | 96.02(9)   |
| S(1)-Si(1)-S(2)#3 | 108.01(11) | S(4)#3-Si(3)-S(6)   | 116.14(12) |
| S(1)-Si(1)-S(6)   | 107.15(9)  | S(4)#3-Si(3)-S(8)#4 | 110.37(10) |
| S(2)#3-Si(1)-S(6) | 111.09(10) | S(6)-Si(3)-S(8)#4   | 104.23(10) |
| S(1)-Si(1)-S(5)   | 114.92(10) | S(4)#3-Si(3)-S(8)   | 113.16(11) |
| S(2)#3-Si(1)-S(5) | 110.53(10) | S(6)-Si(3)-S(8)     | 112.89(10) |
| S(6)-Si(1)-S(5)   | 105.11(10) | S(8)#4-Si(3)-S(8)   | 98.06(10)  |

Symmetry transformations used to generate equivalent atoms for 1: #1 x,-y+1/2,z-1/2; #2 x,-y+1/2,z+1/2; #3 x+1,y,z; #4 -x+2,y,-z+1; #5 x-1,y,z; #6 x,y,z-1; #7 x+1,y,z-1; #8 x,y,z+1; #9 -x+1,-y,-z; #10 -x+1,-y,-z+1; #11 x-1,y,z+1. Symmetry transformations used to generate equivalent atoms for **2**: #1 -x+1,-y+2,-z+1; #2 x-1,y,z; #3 x+1,y,z; #4 -x+2,-y+2,-z; #5 x,y-1,z; #6 x-1,y-1,z; #7 x-1,y+1,z; #8 -x+2,-y+1,-z; #9 -x+1,-y+3,-z+1; #10 x,y+1,z; #11 -x+3,-y,-z; #12 -x+2,-y+3,-z+1; #13

-*x*+2,-*y*+2,-*z*+1; #14 *x*+1,*y*-1,*z*; #15 *x*+1,*y*+1,*z*.

| Compounds         | Atom | x           | У           | Ζ            | U(eq)      | SOF      | site |
|-------------------|------|-------------|-------------|--------------|------------|----------|------|
|                   | Gal  | 0.59169(12) | 0.09369(2)  | 0.24859(13)  | 0.0232(3)  | 0.658(4) | 4e   |
|                   | Ga2  | 0.39997(18) | 0.17859(3)  | 0.25484(19)  | 0.0223(4)  | 0.234(4) | 4e   |
|                   | Ga3  | 0.61040(17) | 0.24121(3)  | -0.05578(17) | 0.0230(4)  | 0.326(4) | 4e   |
|                   | Ga4  | 0.9167(2)   | 0.03527(3)  | 0.4805(2)    | 0.0240(5)  | 0.153(4) | 4e   |
|                   | Ga5  | 0.0922(2)   | 0.10365(3)  | 0.2026(2)    | 0.0242(5)  | 0.129(4) | 4e   |
|                   | Si1  | 0.59169(12) | 0.09369(2)  | 0.24859(13)  | 0.0232(3)  | 0.342(4) | 4e   |
|                   | Si2  | 0.39997(18) | 0.17859(3)  | 0.25484(19)  | 0.0223(4)  | 0.766(4) | 4e   |
|                   | Si3  | 0.61040(17) | 0.24121(3)  | -0.05578(17) | 0.0230(4)  | 0.674(4) | 4e   |
|                   | Si4  | 0.9167(2)   | 0.03527(3)  | 0.4805(2)    | 0.0240(5)  | 0.847(4) | 4e   |
|                   | Si5  | 0.0922(2)   | 0.10365(3)  | 0.2026(2)    | 0.0242(5)  | 0.871(4) | 4e   |
| Commound 1        | S1   | 0.3390(2)   | 0.08643(4)  | 0.0277(3)    | 0.0304(4)  | 1        | 4e   |
|                   | S2   | 0.8369(2)   | 0.08851(4)  | 0.0261(3)    | 0.0321(4)  | 1        | 4e   |
|                   | S3   | 0.5708(2)   | 0.14210(4)  | 0.4425(3)    | 0.0327(4)  | 1        | 4e   |
|                   | S4   | 0.6022(2)   | 0.04548(4)  | 0.4551(3)    | 0.0366(4)  | 1        | 4e   |
|                   | S5   | 0.3367(3)   | 0.22774(4)  | 0.4183(3)    | 0.0323(4)  | 1        | 4e   |
|                   | S6   | 0.0842(2)   | 0.16203(4)  | 0.2253(3)    | 0.0315(4)  | 1        | 4e   |
|                   | S7   | 0.5197(3)   | 0.18439(4)  | -0.0435(3)   | 0.0341(4)  | 1        | 4e   |
|                   | S8   | 0.8128(3)   | 0.24557(5)  | -0.3067(3)   | 0.0345(4)  | 1        | 4e   |
|                   | S9   | 0.9742(3)   | 0.00235(4)  | 0.7438(3)    | 0.0342(4)  | 1        | 4e   |
|                   | S10  | 0.0935(3)   | 0.08377(4)  | 0.5070(3)    | 0.0321(4)  | 1        | 4e   |
|                   | K1   | 0.5         | 0           | 0            | 0.1081(14) | 1        | 2b   |
|                   | K2   | 0.0200(4)   | 0.16486(6)  | 0.7269(3)    | 0.0819(8)  | 1        | 4e   |
| Compound <b>2</b> | Zn1  | 0.34302(11) | 0.70167(12) | 0.25836(5)   | 0.0196(2)  | 1        | 2i   |
|                   | Si1  | 0.8582(3)   | 0.6620(3)   | 0.25616(12)  | 0.0149(4)  | 1        | 2i   |
|                   | Si2  | 0.4842(3)   | 0.9748(3)   | 0.40176(12)  | 0.0162(4)  | 1        | 2i   |
|                   | Si3  | 1.0826(3)   | 0.8432(3)   | 0.05951(12)  | 0.0190(4)  | 1        | 2i   |
|                   | S1   | 0.6609(2)   | 0.5102(3)   | 0.29753(12)  | 0.0203(4)  | 1        | 2i   |
|                   | S2   | 0.1325(2)   | 0.5236(3)   | 0.31241(12)  | 0.0205(4)  | 1        | 2i   |
|                   | S3   | 0.2204(3)   | 0.9846(3)   | 0.34967(13)  | 0.0245(4)  | 1        | 2i   |
|                   | S4   | 0.3771(3)   | 0.7560(3)   | 0.09496(13)  | 0.0293(4)  | 1        | 2i   |
|                   | S5   | 0.7341(3)   | 0.9628(3)   | 0.29570(12)  | 0.0238(4)  | 1        | 2i   |
|                   | S6   | 0.9113(3)   | 0.6597(3)   | 0.10313(11)  | 0.0210(4)  | 1        | 2i   |
|                   | S7   | 0.4231(3)   | 1.2281(2)   | 0.48575(11)  | 0.0200(4)  | 1        | 2i   |
|                   | S8   | 0.9084(3)   | 1.1408(3)   | 0.09196(12)  | 0.0234(4)  | 1        | 2i   |
|                   | K1   | 1.3642(4)   | 0.2273(4)   | 0.12895(16)  | 0.0567(6)  | 1        | 2i   |
|                   | K2   | 0.8737(3)   | 1.3055(3)   | 0.47565(12)  | 0.0303(4)  | 1        | 2i   |

**Table S3** Atomic coordinates (× 10<sup>4</sup>), equivalent isotropic displacement parameters (Å<sup>2</sup> × 10<sup>3</sup>), SOFs and atomic sites for **1** and **2**. U(eq) is defined as one third of the trace of the orthogonalized  $U^{ij}$  tensor.

### 4. Thermal stability



Figure S5 PXRD patterns for 1 (a) and 2 (b) including those for the pristine and the samples after TG tests up to 600 or 800 °C. The simulated PXRD patterns for 1 and 2 are presented at the bottom of each figure for

comparison, respectively.

### 5. Band gap



Figure S6 Tauc plots for 1 and 2.

### 6. Density functional theory (DFT) calculation

The first-principles calculations were performed using the Vienna Ab-initio Simulation Package (VASP).<sup>1,2</sup> The Perdew–Burke–Ernzerhof (PBE) version of the generalized gradient approximation (GGA) was used to describe the exchange correlation functional, and the projector augmented wave (PAW) method was used in the present work. Here the cutoff energy of plane wave was chosen at 450 eV. The relaxation of geometry optimization and static self-consistent-field calculation were performed until the total energy change was within

 $10^{-5}$  eV/atom and the Hellmann–Feynman force on all atomic sites was < 0.01 eV/ Å.

- J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, **77**, 3865-3868. G. Kresse and J. Furthmuller, *Phys. Rev. B*, 1996, **54**, 11169-11186. 1.
- 2.