What are the prospects of [1,2,5]oxadiazolo[3,4-c]cinnoline 5-oxides, 1,5-dioxides and their nitro derivatives as high-energy-density materials? Synthesis, experimental and predicted crystal structures, and calculated explosive properties

Nikita M. Baraboshkin^a, Victor P. Zelenov^{a*}, Ivan V. Fedyanin^b

Table of contents	Page
Additional information on crystal structure calculations for compounds 1-8	2
Experimental section	19
SXRD experiments	20
X-ray experiment details for compound 1	21
X-ray experiment details for compound 7	25
X-ray experiment details for compound 6	35
X-ray experiment details for compound 3	39
X-ray experiment details for compound 5	44
X-ray experiment details for compound 8	50
Molecular volumes and Kitaigorodskii packing indices	54
References	55

Additional information on crystal structure calculations for compounds 1-8

RMSD. RRMSD, Dipole Model XX YΥ ZZ XY XZ ΥZ Compound kcal moment % mol⁻¹ -1.990.00 0.00 MK 6.3309 -0.342.33 -6.010.21 3.51 0.00 AC 6.3569 -2.07-0.422.49 -5.940.00 0.19 3.19 1 -0.42 SC 6.3773 -2.172.59 -5.93 0.00 0.00 0.04 0.60 -0.41 2.58 0.00 0.00 QM 6.3731 -2.17-5.92 ____ ____ MK 6.7394 -10.503.95 9.93 0.00 0.00 6.55 0.25 3.53 -10.804.37 0.00 0.00 2.97 AC 6.7685 6.43 9.80 0.21 2 SC 6.78 6.44 -11.004.56 9.82 0.00 0.00 0.05 0.66 QM 6.7756 6.43 -10.974.54 9.81 0.00 0.00 ____ MK 3.4974 -17.823.69 14.13 -1.950.00 0.00 0.24 4.35 AC 3.5095 -17.983.81 14.17 -1.980.00 0.00 0.19 3.50 3 SC 3.5116 -18.283.88 14.40 -2.060.00 0.00 0.05 0.82 QM 3.5113 -18.243.88 14.37 -2.060.00 0.00 ____ ____ 2.3017 MK -18.93 4.84 14.08 3.98 0.00 0.00 0.26 5.17 AC 2.4078 -18.834.75 14.09 4.20 0.00 0.00 0.20 4.01 4 SC 2.4262 -18.974.69 4.29 0.00 0.00 0.04 14.28 0.83 2.4289 4.70 0.00 QM -18.9514.25 4.28 0.00 5.7968 MK -10.503.65 6.85 13.12 1.07 0.37 0.27 4.33 12.93 AC 5.8664 -10.323.57 6.74 1.14 0.24 0.20 3.24 5 SC 5.8923 -10.303.44 12.89 1.09 0.28 0.05 0.87 6.86 5.8893 -10.293.44 12.86 1.08 0.29 ____ ____ QM 6.85 MK -0.91 -1.461.2696 -9.25 -8.3217.58 0.62 0.27 5.11 1.3592 -9.39 -0.98 AC -8.2117.60 -1.380.76 0.21 3.94 6 SC 1.3807 -9.72 -8.1117.83 -1.07-1.360.69 0.04 0.83 QM 1.381 -9.71 -8.0917.80 -1.07-1.36 0.68 ____ ____ MK 5.9936 -6.73 2.75 3.99 -7.800.00 0.00 0.16 2.78 7 AC 6.0132 -6.51 2.52 3.99 -7.670.00 0.00 0.14 2.43 SC 6.0261 -6.49 2.49 4.00 -7.65 0.00 0.00 0.04 0.64

Table S1 The comparison of various charge models of molecules. MK –Merzh-Kollman; AC – atom centered charge; SC – shifted charge model (XX, YY, ZZ, XY, XZ, YZ – quadrupole moments; RMSD – root mean square deviation; RRMSD – relative root mean square deviation)

	QM	6.0225	-6.48	2.49	3.98	-7.63	0.00	0.00		
8	MK	2.8656	-10.09	-5.89	15.99	8.56	0.00	0.00	0.17	3.21
	AC	2.8894	-10.27	-5.71	15.98	8.63	0.00	0.00	0.15	2.73
	SC	2.8938	-10.40	-5.70	16.10	8.76	0.00	0.00	0.05	0.84
	QM	2.8935	-10.37	-5.69	16.06	8.76	0.00	0.00		

Fig. S1 Illustration of atomic charge model AC (left) and SC (right)

Table S2 Intermolecular interaction energy of 13 molecules cluster of compound 1^a

	N	Symop	R	E_ele, kcal· mol ⁻¹	E_pol, kcal· mol ⁻¹	E_dis, kcal· mol ⁻¹	E_rep, kcal ·mol ⁻¹	E_tot, kcal∙ mol ⁻¹
	1		5.78	-3.35	-0.38	-5.38	3.39	-6.41
	2	x, y, z	7.74	0.24	-0.48	-5.31	2.92	-2.96
	2	-x, y+1/2, -z+1/2	5.09	-5.54	-2.06	-11.62	9.99	-11.33
	2	-x, y+1/2, -z+1/2	8.32	-3.54	-1.29	-5.59	5.98	-5.88
	2	x, y, z	5.37	0.91	-1.20	-12.19	6.36	-6.64
	1		7.16	-5.74	-0.84	-2.82	5.14	-5.98
	2	x, y, z	9.43	-5.78	-1.00	-3.68	4.73	-7.12
	1		8.42	0.53	-0.33	-2.51	1.53	-0.96
Total	energy	of cluster, kcal·mol ⁻¹		-22.28	-7.58	-49.09	40.03	-47.28

^{*a*} Hereinafter: Calculations were performed by B3LYP/6-31G(d,p) functional; N – number of interacting molecules; Symop – symmetry operations relating that particular colour coded molecule with the central molecule; R – distance between molecules center of mass; E_ele –energy of electrostatic interaction; E_pol – energy of polarization interaction; E_dis – energy of dispersion interaction; E_tot – total interaction energy.

Table S3 Intermolecular interaction energy of 13 molecules cluster of compound 7asymmetric unit molecule A

Ν	Symop	R	E_ele, kcal· mol ⁻¹	E_pol, kcal· mol ⁻¹	E_dis, kcal· mol ⁻¹	E_rep, kcal· mol ⁻¹	E_tot, kcal· mol ⁻¹
2	x, y, z	8.1	0.05	-0.48	-5.11	2.68	-3.11
1		9.58	-2.70	-0.43	-1.58	2.39	-3.06
1	x,y,z	4.79	-3.04	-0.65	-8.82	5.04	-8.25
1		5.04	-3.08	-1.12	-7.24	6.26	-6.52
1	_	5.68	0.07	-0.60	-5.43	2.92	-3.27
1		7.52	-4.83	-0.79	-3.25	4.18	-5.93
1		9.61	0.98	-0.29	-1.53	0.79	-0.02
1		5.21	-2.01	-0.91	-6.02	4.37	-5.33

	1		5.25	0.29	-0.67	-7.29	3.73	-4.25
	1		8.96	-1.15	-0.45	-2.06	1.27	-2.56
	1		8.67	-1.79	-0.60	-2.65	2.68	-3.01
	1		9.79	-2.34	-0.33	-1.39	1.70	-2.87
Total energy of cluster, kcal·mol ⁻¹			-19.55	-7.31	-52.37	38.00	-48.18	

Fig. S4 Cluster of 13 molecules of compound 7 asymmetric unit molecule B

 Table S4 Intermolecular interaction energy of 13 molecules cluster of compound 7 asymmetric unit molecule B

N	Symop	R	E_ele, kcal· mol ⁻¹	E_pol, kcal· mol ⁻¹	E_dis, kcal· mol ⁻¹	E_rep, kcal· mol ⁻¹	E_tot, kcal· mol ⁻¹
1		9.71	-2.58	-0.36	-1.58	2.15	-3.04
2	x, y, z	8.1	0.00	-0.48	-5.21	2.68	-3.25
1	_	5.04	-3.08	-1.12	-7.24	6.26	-6.52
1		5.02	-0.45	-0.76	-8.58	5.33	-5.23

	1		5.68	0.07	-0.60	-5.43	2.92	-3.27
	1		7.52	-4.83	-0.79	-3.25	4.18	-5.93
	1		9.61	0.98	-0.29	-1.53	0.79	-0.02
	1		8.67	-1.79	-0.60	-2.65	2.68	-3.01
	1		5.08	-3.80	-1.20	-7.36	7.03	-6.98
	1		5.69	-3.90	-0.60	-6.52	4.66	-7.34
	1		9.58	-2.70	-0.43	-1.58	2.39	-3.06
	1		8.54	-2.39	-0.69	-3.04	3.94	-3.25
Total energy of cluster, kcal·mol ⁻¹				-24.47	-7.91	-53.97	45.00	-50.91

Fig. S4 Cluster of 13 molecules of compound 7 asymmetric unit molecule B

Fig. S5 Cluster of 13 molecules of compound 7 asymmetric unit molecule C

Table S5 Intermolecular interaction energy of 13 molecules cluster of compound 7asymmetric unit molecule C

N	Symop	R	E_ele, kcal· mol ⁻¹	E_pol, kcal· mol ⁻¹	E_dis, kcal∙ mol ⁻¹	E_rep, kcal· mol ⁻¹	E_tot, kcal· mol ⁻¹
1		9.73	0.96	-0.24	-1.10	0.38	0.12
1		8.96	-1.15	-0.45	-2.06	1.27	-2.56
1		5.25	0.29	-0.67	-7.29	3.73	-4.25
1		9.71	-2.58	-0.36	-1.58	2.15	-3.04
1		8.54	-2.39	-0.69	-3.04	3.94	-3.25
2	x, y, z	8.1	-0.05	-0.48	-5.26	2.82	-3.25
1		5.69	-3.90	-0.60	-6.52	4.66	-7.34
1	-x, -y, -z	7.62	-4.92	-0.67	-2.56	4.33	-5.26
1		5.21	-2.01	-0.91	-6.02	4.37	-5.33

	1		9.79	-2.34	-0.33	-1.39	1.70	-2.87
	1		5.08	-3.80	-1.20	-7.36	7.03	-6.98
	1		5.02	-0.45	-0.76	-8.58	5.33	-5.23
Тс	Total energy of cluster, kcal·mol ⁻¹				-7.36	-52.75	41.71	-49.24

Fig. S6 Cluster of 14 molecules of compound 6

	N	Symop	R	E_ele, kcal· mol ⁻¹	E_pol, kcal· mol ⁻¹	E_dis, kcal· mol ⁻¹	E_rep, kcal· mol ⁻¹	E_tot, kcal· mol ⁻¹
	2	-x, -y, z+1/2	5.10	-6.74	-2.25	-15.49	14.05	-13.58
	2	x, y, z	6.14	-1.24	-1.53	-11.57	7.41	-7.98
	2	-x+1/2, y+1/2, z+1/2	7.42	-7.31	-1.48	-9.99	10.76	-10.90
	2	x+1/2, -y+1/2, z	7.58	-1.43	-0.62	-7.07	5.31	-4.88
	2	x+1/2, -y+1/2, z	9.76	-2.87	-0.48	-3.35	2.63	-4.64
	2	-x, -y, z+1/2	8.71	-3.25	-0.33	-3.78	1.29	-6.17
	2	-x+1/2, y+1/2, z+1/2	7.42	-4.35	-1.00	-6.17	6.55	-6.69
Total energy of cluster, kcal·mol ⁻¹			-27.20	-7.70	-57.41	47.99	-54.83	

 Table S6 Intermolecular interaction energy of 14 molecules cluster of compound 6

Fig. S7 Cluster of 14 molecules of compound 3

	N	Symop	R	E_ele, kcal· mol ⁻¹	E_pol, kcal· mol ⁻¹	E_dis, kcal∙ mol ⁻¹	E_rep, kcal· mol ⁻¹	E_tot, kcal· mol ⁻¹
	2	-x+1/2, y+1/2, z+1/2	7.18	-5.83	-1.29	-9.32	9.18	-9.61
	2	x+1/2, -y+1/2, z	9.91	-2.49	-0.53	-3.25	3.35	-3.82
	2	x, y, z	6.39	-0.76	-1.39	-9.42	5.50	-6.64
	2	-x+1/2, y+1/2, z+1/2	7.18	-4.25	-1.00	-6.31	6.45	-6.74
	2	x+1/2, -y+1/2, z	7.57	-1.91	-0.62	-6.64	4.21	-5.64
	2	-x, -y, z+1/2	5.10	-5.98	-2.15	-14.96	13.15	-12.81
	2	-x, -y, z+1/2	8.74	-2.01	-0.29	-2.49	0.33	-4.35
Total energy of cluster, kcal·mol ⁻¹			-23.23	-7.27	-52.39	42.16	-49.62	

 Table S7 Intermolecular interaction energy of 14 molecules cluster of compounds 3

Fig. S8 Cluster of 12 molecules of compound 5

Table S8 Energy of 12 molecules cluster of compounds 5

	N	Symop	R	E_ele, kcal· mol ⁻¹	E_pol, kcal· mol ⁻¹	E_dis, kcal∙ mol ⁻¹	E_rep, kcal· mol ⁻¹	E_tot, kcal∙ mol ⁻¹
	2	-x+1/2, y+1/2, z	6.79	-2.58	-1.39	-7.84	6.31	-6.69
	2	x, -y+1/2, z+1/2	8.29	-3.87	-1.10	-5.74	7.89	-5.07
	2	x+1/2, -y+1/2, -z	5.44	-9.94	-1.91	-14.10	11.81	-16.92
	1		4.33	-1.91	-1.74	-13.86	10.13	-9.13
	1		7.76	-1.53	-0.74	-4.33	3.32	-3.92
	2	-x+1/2, -y, z+1/2	8.87	-8.32	-1.63	-5.31	6.17	-10.85
	2	x+1/2, y, -z+1/2	7.5	-2.49	-0.53	-5.11	1.82	-6.31
Total energy of cluster, kcal·mol ⁻¹			-30.64	-9.03	-56.29	47.44	-58.89	

Fig. S9 Relationship "Lattice energy–Density" and "Lattice energy–Energy of electrostatic interactions" for the 50 deepest minima obtained as a result of scanning PES compounds 2, 4, 8

Density, g·cm⁻³

Coulomb energy, kcal·mol-1

Fig. S10 2D fingerprint plots of Hirshfeld surface of main close contacts for compound 1.

Fig. S11 2D fingerprint plots of Hirshfeld surface of main close contacts for compound 3.

Fig. S12 2D fingerprint plots of Hirshfeld surface of main close contacts for compound 6.

Fig. S13 2D fingerprint plots of Hirshfeld surface of main close contacts for compound 5.

Fig. S14 2D fingerprint plots of Hirshfeld surface of main close contacts for compound 7.

Fig. S15 2D fingerprint plots of Hirshfeld surface of main close contacts for compound 8.

С

Experimental section

X-ray diffraction data were collected at 100K on a four-circle Rigaku Synergy S diffractometer equipped with a HyPix6000HE area-detector (kappa geometry, shutterless ω -scan technique), using graphite monochromatized Cu K_{α}-radiation. The intensity data were integrated and corrected for absorption and decay by the CrysAlisPro program¹. The structure was solved by direct methods using SHELXT² and refined on F^2 using SHELXL-2018³ in the OLEX2 program⁴. All non-hydrogen atoms were refined with individual anisotropic displacement parameters. All hydrogen atoms were placed in ideal calculated positions and refined as riding atoms with relative isotropic displacement parameters. The Mercury program suite⁵ was used for molecular graphics. Detailed crystallographic information is given in Table S9.

¹H, ¹⁴N and ¹³C spectra were recorded on a Bruker AM300 spectrometer, operating at 300.13, 21.69 MHz, and 75.47 MHz, respectively. Chemical shifts are reported in delta (δ) units, parts per million (ppm) downfield from external Me₄Si (¹H, ¹³C) or CH₃NO₂ (¹⁴N negative values of δ_N correspond to upfield shifts).

[1,2,5]Oxadiazolo[3,4-c]cinnoline 1,5-dioxide 7 was prepared by the known method.⁶

[1,2,5]Oxadiazolo[3,4-*c*]cinnoline 5-oxide (1).

A. A solutions of HNO₃ (63 mg, 1 mmol) in Ac₂O (1 mL) and 93% H₂SO₄ (200 mg, 2 mmol) in Ac₂O (1 mL) was added successively and quickly to a solution of 3-amino-4-phenylfurazan (9) (161 mg, 1 mmol) in Ac₂O (2 mL) at 0 °C with vigorous stirring. Cooling was removed, the reaction mixture was stirred at 20–25 °C for 30 min and poured into ice water (40 mL). The mixture was stirred for 30 min to complete the hydrolysis of Ac₂O and extracted with CH₂Cl₂ (3×5 mL). The combined organic extracts were dried (MgSO₄) and evaporated *in vacuo*. Cinnoline 5-oxide **1** was isolated by preparative chromatography (silica gel, CHCl₃ as eluent) and obtained in a yield of 96 mg (51 %), m.p. 165 °C (lit. 167–169 °C⁷), and its NMR ¹H, ¹³C, ¹⁴N spectra are identical to the earlier synthesized compound **1**⁷.

B. A 93% H₂SO₄ (0.5 g, 5 mmol) was dissolved in $(CF_3CO)_2O$ (6 mL) at room temperature for 2.5 h. Then a solution of 3-nitramino-4-phenylfurazan (11) (412 mg, 2 mmol) in CH₂Cl₂ (5 mL) was added to acid mixture at 15–20 °C with vigorous stirring. The reaction mixture was stirred at 20–25 °C for 20 min, the organic layer was separated from the acid by decantation, and poured into ice water (20 ml). The reaction mixture was extracted with CH₂Cl₂ (3×5 mL), the combined organic extracts were dried (MgSO₄) and evaporated *in vacuo*. Cinnoline 5-oxide 1 was obtained in a yield of 157 mg (42 %).

Nitration of [1,2,5]oxadiazolo[3,4-*c*]cinnoline 5-oxide (1).

Compound 1 (273 mg, 1.45 mmol) was added at mixing under argon to a solution of $(NO_2)_2S_2O_7$ (3.54 g, 13 mmol) in HNO₃ (1.5 g·cm⁻³, 8 mL) at 20 °C. The reaction mixture, equipped with a CaCl₂ tube, was refluxed at 100–105 °C for 100 h and poured into ice water (100 mL). The residue was filtered, washed with H₂O (2×20 mL). The mixture of nitrocinnoline 5-oxides **3**, **5** and **8** was separated by preparative chromatography (silica gel, CHCl₃ as eluent). 7-Nitrocinnoline 5-oxide **3** and 9-nitrocinnoline 5-oxide **5** were isolated in a yields of 50 mg (15 %) and 67 mg (20 %), respectively. The resulting mixture of compounds **5** and **8** was further separated by TLC (silica gel, benzene as eluent), and compound **8** was obtained (2 mg, 1 %). ¹H NMR, δ , ppm: (acetone-d₆) 9.51 (s, 1H), 9.63 (s, 1H); (CD₃OD) 9.34 (s, 1H), 9.55 (s, 1H); ¹⁴N NMR, δ , ppm (CD₃OD): -18; -22 (2NO₂), -55 (N→O).

Nitration of 9-nitro-[1,2,5]oxadiazolo[3,4-*c*]cinnoline 5-oxide (5).

Compound **5** (62 mg, 0.3 mmol) was added at mixing under argon to a solution of $(NO_2)_2S_2O_7$ (1.06 g, 4 mmol) in HNO₃ (1.5 g·cm⁻³, 1 mL) at 20 °C. The reaction mixture, equipped with a CaCl₂ tube, was refluxed at 80–85 °C for 120 h and poured into ice water (10 mL). The residue was filtered, washed with H₂O (3×2 mL) and dried. The resulting crystals were a mixture of compounds **5** (main) and **8** (traces) according TLC (CHCl₃). The residue was washed with CD₃OD (0.5 mL) with heating to give a solution of a mixture of compounds **5** and **8** with a ratio ~1 : 1 (¹H NMR). Evaporation of CD₃OD in *vacuo* gave 0.4 mg of the mixture. The crystals obtained after washing the precipitate with CD₃OD were pure compound **5** (60 mg) according TLC (CHCl₃).

SXRD experiments

Compound	1	3	5	6	7	8
CCDC	2288834	2288835	2288836	2288837	2288838	2295832
Formula	$C_8H_4N_4O_2$	$C_8H_3N_5O_4$	$C_8H_3N_5O_4$	$C_8H_3N_5O_5$	$C_8H_4N_4O_3$	$C_8H_2N_6O_6$
M, g cm ⁻³	188.15	233.15	233.15	249.15	204.15	278.16
Т, К			10	00		
Crystal	monoclinic	orthorhombic	orthorhombic	orthorhombic	monoclinic	orthorhombic
Space group	$P2_{1}/c$	$Pna2_1$	Pbca	$Pna2_1$	$P2_{1}/c$	$Pca2_1$
Z/Z'	4 / 1	4 / 1	8 / 1	4 / 1	12/3	4 / 1
<i>a</i> , Å	7.74397(15)	14.2846(2)	8.6598(2)	14.40027(12)	8.09790(10)	12.53304(19)
<i>b</i> , Å	5.37413(10)	9.99780(10)	12.7026(3)	10.46252(9)	15.91000(10)	8.30693(13)
<i>c</i> , Å	18.7390(3)	6.38630(10)	15.5750(4)	6.13809(5)	18.71190(10)	9.61288(13)
β, °	99.3886(18)	90	90	90	95.2870(10)	90

Table S9 Crystallographic data for structures 1, 3, and 5-8

<i>V</i> , Å ³	769.42(2)	912.06(2)	1713.28(7)	924.783(13)	2400.54(4)	1000.81(3)
$d_{\rm calc}, {\rm g~cm^{-3}}$	1.624	1.698	1.808	1.790	1.695	1.846
μ, см-1	10.51	12.29	13.08	13.44	11.63	14.32
$2\theta_{max}$, °	155.2	155.6	155.3	155.4	155.7	159.6
Collected reflns.	8675	6846	10416	11803	32530	12518
Independent reflns.	1627	1472	1824	1716	5114	1908
Reflns with. I>2s(I)	1531	1441	1680	1703	4842	1884
R_1	0.0382	0.0238	0.0439	0.0308	0.0357	0.0322
wR_2	0.1047	0.0625	0.1247	0.0831	0.0983	0.0882
GOF	1.041	1.075	1.059	1.077	1.034	1.058
Residual density, e Å ⁻³ (d _{max} /d _{min})	0.212/-0.333	0.129/-0.154	0.485/-0.318	0.194/-0.203	0.266/-0.303	0.262/-0.202

Table S10 Atomic coordinates $(x10^4)$ and equivalent isotropic displacement parameters $(Å^2x10^3)$ for CCDC 2288834. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	у	Z	U(eq)
O(2)	2618(1)	4976(2)	4341(1)	34(1)
O(6)	7275(1)	6906(2)	2472(1)	31(1)
N(6)	6524(1)	5995(2)	2952(1)	24(1)
N(5)	5069(1)	7003(2)	3067(1)	27(1)
N(1)	3930(1)	3183(2)	4463(1)	29(1)
N(3)	2880(2)	6634(2)	3806(1)	32(1)
C(12)	6604(2)	2681(2)	3882(1)	22(1)
C(7)	7373(2)	3864(2)	3346(1)	22(1)
C(13)	4977(2)	3750(2)	4007(1)	23(1)
C(11)	7447(2)	656(2)	4254(1)	25(1)
C(4)	4332(2)	5864(2)	3600(1)	25(1)
C(8)	8970(2)	3059(2)	3180(1)	26(1)
C(10)	9026(2)	-154(2)	4083(1)	27(1)
C(9)	9782(2)	1053(3)	3551(1)	28(1)

 Table S11 Bond lengths [Å] and angles [°] for CCDC 2288834.

O(2)-N(3)	1.3815(15)
O(6)-N(6)	1.2483(13)
N(6)-N(5)	1.2995(15)
N(6)-C(7)	1.4603(15)
N(5)-C(4)	1.3721(17)
N(1)-C(13)	1.3056(16)
N(3)-C(4)	1.3140(17)
C(12)-C(7)	1.4014(16)
C(12)-C(13)	1.4382(17)
C(12)-C(11)	1.3954(17)
C(7)-C(8)	1.3922(17)
C(13)-C(4)	1.4141(17)
C(11)-H(11)	0.9500
C(11)-C(10)	1.3831(18)
C(8)-H(8)	0.9500
C(8)-C(9)	1.3778(18)
C(10)-H(10)	0.9500
C(10)-C(9)	1.3967(18)
C(9)-H(9)	0.9500
N(3)-O(2)-N(1)	112.05(9)
O(6)-N(6)-N(5)	118.34(10)
O(6)-N(6)-C(7)	116.64(10)
N(5)-N(6)-C(7)	125.02(10)
N(6)-N(5)-C(4)	114.20(10)
C(13)-N(1)-O(2)	104.26(10)
C(4)-N(3)-O(2)	104.17(10)
C(7)-C(12)-C(13)	114.93(11)
C(11)-C(12)-C(7)	119.49(11)
C(11)-C(12)-C(13)	125.57(11)
C(12)-C(7)-N(6)	120.65(11)
C(8)-C(7)-N(6)	118.25(11)
C(8)-C(7)-C(12)	121.10(11)
N(1)-C(13)-C(12)	131.84(12)
N(1)-C(13)-C(4)	109.77(11)
C(4)-C(13)-C(12)	118.35(11)
C(12)-C(11)-H(11)	120.3
C(10)-C(11)-C(12)	119.31(12)
С(10)-С(11)-Н(11)	120.3
N(5)-C(4)-C(13)	126.81(11)
N(3)-C(4)-N(5)	123.44(12)

N(3)-C(4)-C(13)	109.75(11)
C(7)-C(8)-H(8)	120.7
C(9)-C(8)-C(7)	118.63(11)
C(9)-C(8)-H(8)	120.7
С(11)-С(10)-Н(10)	119.7
C(11)-C(10)-C(9)	120.55(12)
C(9)-C(10)-H(10)	119.7
C(8)-C(9)-C(10)	120.92(11)
C(8)-C(9)-H(9)	119.5
С(10)-С(9)-Н(9)	119.5

Table S12 Anisotropic displacement parameters (Å²x 10³) for CCDC 2288834. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2 a^{*2}U^{11} + ... + 2h k a^{*} b^{*} U^{12}]$.

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(2)	26(1)	42(1)	34(1)	-5(1)	10(1)	5(1)
O(6)	36(1)	31(1)	26(1)	7(1)	7(1)	-4(1)
N(6)	26(1)	24(1)	22(1)	1(1)	3(1)	-2(1)
N(5)	28(1)	24(1)	27(1)	0(1)	1(1)	3(1)
N(1)	25(1)	37(1)	28(1)	-3(1)	8(1)	2(1)
N(3)	27(1)	34(1)	35(1)	-5(1)	4(1)	6(1)
C(12)	23(1)	25(1)	18(1)	-3(1)	3(1)	0(1)
C(7)	24(1)	22(1)	20(1)	-2(1)	2(1)	0(1)
C(13)	24(1)	26(1)	20(1)	-3(1)	4(1)	-1(1)
C(11)	30(1)	26(1)	20(1)	0(1)	4(1)	1(1)
C(4)	24(1)	26(1)	25(1)	-5(1)	1(1)	2(1)
C(8)	26(1)	32(1)	22(1)	-1(1)	6(1)	0(1)
C(10)	31(1)	26(1)	22(1)	-2(1)	-1(1)	7(1)
C(9)	25(1)	35(1)	24(1)	-5(1)	4(1)	6(1)

Table S13 Hydrogen coordinates $(x10^4)$ and isotropic displacement parameters $(Å^2x \ 10^3)$ for CCDC 2288834.

	Х	у	Z	U(eq)
H(11)	6943	-159	4620	30
H(8)	9488	3876	2818	32

H(10)	9600	-1543	4330	33
H(9)	10872	484	3443	34

Table S14 Torsion angles [°] for CCDC 2288834.

O(2)-N(1)-C(13)-C(12)	177.34(12)
O(2)-N(1)-C(13)-C(4)	-0.39(13)
O(2)-N(3)-C(4)-N(5)	179.80(10)
O(2)-N(3)-C(4)-C(13)	-0.40(13)
O(6)-N(6)-N(5)-C(4)	179.45(10)
O(6)-N(6)-C(7)-C(12)	-178.41(10)
O(6)-N(6)-C(7)-C(8)	2.14(16)
N(6)-N(5)-C(4)-N(3)	178.63(11)
N(6)-N(5)-C(4)-C(13)	-1.13(18)
N(6)-C(7)-C(8)-C(9)	179.84(10)
N(5)-N(6)-C(7)-C(12)	2.07(18)
N(5)-N(6)-C(7)-C(8)	-177.38(11)
N(1)-O(2)-N(3)-C(4)	0.17(13)
N(1)-C(13)-C(4)-N(5)	-179.68(11)
N(1)-C(13)-C(4)-N(3)	0.53(15)
N(3)-O(2)-N(1)-C(13)	0.15(13)
C(12)-C(7)-C(8)-C(9)	0.39(18)
C(12)-C(13)-C(4)-N(5)	2.24(19)
C(12)-C(13)-C(4)-N(3)	-177.55(10)
C(12)-C(11)-C(10)-C(9)	0.69(19)
C(7)-N(6)-N(5)-C(4)	-1.04(17)
C(7)-C(12)-C(13)-N(1)	-178.63(12)
C(7)-C(12)-C(13)-C(4)	-1.06(16)
C(7)-C(12)-C(11)-C(10)	-0.29(18)
C(7)-C(8)-C(9)-C(10)	0.01(18)
C(13)-C(12)-C(7)-N(6)	-0.83(16)
C(13)-C(12)-C(7)-C(8)	178.60(10)
C(13)-C(12)-C(11)-C(10)	-179.01(11)
C(11)-C(12)-C(7)-N(6)	-179.68(10)
C(11)-C(12)-C(7)-C(8)	-0.25(18)
C(11)-C(12)-C(13)-N(1)	0.1(2)
C(11)-C(12)-C(13)-C(4)	177.72(11)
C(11)-C(10)-C(9)-C(8)	-0.56(19)

	v	V	7	U(eq)
	Α	у	Z	0(04)
O(1A)	7601(1)	4020(1)	2701(1)	30(1)
O(1B)	7869(1)	696(1)	2317(1)	24(1)
O(1C)	2584(1)	2378(1)	2650(1)	26(1)
O(2A)	2107(1)	4634(1)	4188(1)	27(1)
O(2B)	2551(1)	1012(1)	3966(1)	26(1)
O(2C)	7702(1)	2987(1)	944(1)	26(1)
O(3A)	2999(1)	5858(1)	4771(1)	29(1)
O(3B)	3518(1)	2127(1)	4682(1)	27(1)
O(3C)	6556(1)	4114(1)	291(1)	29(1)
N(1A)	6635(1)	4337(1)	3107(1)	22(1)
N(1B)	6956(1)	928(1)	2782(1)	20(1)
N(1C)	3443(1)	2687(1)	2195(1)	20(1)
N(2A)	5228(1)	3960(1)	3173(1)	24(1)
N(2B)	5534(1)	554(1)	2807(1)	21(1)
N(2C)	4880(1)	2351(1)	2120(1)	21(1)
N(3A)	2743(1)	4070(1)	3727(1)	27(1)
N(3B)	3122(1)	541(1)	3419(1)	25(1)
N(3C)	7234(1)	2464(1)	1477(1)	25(1)
N(4A)	3337(1)	5295(1)	4354(1)	23(1)
N(4B)	3802(1)	1643(1)	4192(1)	21(1)
N(4C)	6367(1)	3594(1)	765(1)	22(1)
C(1A)	7186(1)	5111(1)	3482(1)	21(1)
C(1B)	7584(1)	1604(1)	3263(1)	19(1)
C(1C)	2727(1)	3397(1)	1780(1)	20(1)
C(2A)	8730(2)	5434(1)	3364(1)	24(1)
C(2B)	9164(1)	1913(1)	3194(1)	22(1)
C(2C)	1165(1)	3681(1)	1917(1)	24(1)
C(3A)	9260(2)	6165(1)	3717(1)	26(1)
C(3B)	9751(1)	2559(1)	3647(1)	23(1)
C(3C)	461(2)	4336(1)	1507(1)	26(1)
C(4A)	8266(2)	6567(1)	4185(1)	24(1)
C(4B)	8777(1)	2896(1)	4154(1)	23(1)
C(4C)	1295(2)	4698(1)	963(1)	26(1)

Table S15 Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2 x 10^3$) for CCDC 2288838. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(5A)	6723(1)	6246(1)	4300(1)	22(1)
C(5B)	7205(1)	2584(1)	4224(1)	21(1)
C(5C)	2861(2)	4421(1)	831(1)	24(1)
C(6A)	6168(1)	5514(1)	3943(1)	20(1)
C(6B)	6604(1)	1929(1)	3777(1)	19(1)
C(6C)	3594(1)	3770(1)	1246(1)	20(1)
C(7A)	4608(1)	5107(1)	3996(1)	21(1)
C(7B)	5030(1)	1525(1)	3789(1)	20(1)
C(7C)	5199(1)	3414(1)	1186(1)	20(1)
C(8A)	4220(1)	4360(1)	3617(1)	22(1)
C(8B)	4585(1)	858(1)	3320(1)	21(1)
C(8C)	5758(1)	2730(1)	1616(1)	20(1)

Table S16 Bond lengths [Å] and angles [°] for CCDC 2288838.

O(1A)-N(1A)	1.2465(13)
O(1B)-N(1B)	1.2485(13)
O(1C)-N(1C)	1.2483(13)
O(2A)-N(3A)	1.3765(14)
O(2A)-N(4A)	1.4630(12)
O(2B)-N(3B)	1.3817(13)
O(2B)-N(4B)	1.4602(12)
O(2C)-N(3C)	1.3794(13)
O(2C)-N(4C)	1.4652(13)
O(3A)-N(4A)	1.2349(14)
O(3B)-N(4B)	1.2352(13)
O(3C)-N(4C)	1.2323(13)
N(1A)-N(2A)	1.3035(14)
N(1A)-C(1A)	1.4663(14)
N(1B)-N(2B)	1.3005(13)
N(1B)-C(1B)	1.4626(14)
N(1C)-N(2C)	1.3000(14)
N(1C)-C(1C)	1.4601(14)
N(2A)-C(8A)	1.3730(16)
N(2B)-C(8B)	1.3719(15)
N(2C)-C(8C)	1.3726(15)
N(3A)-C(8A)	1.3158(16)
N(3B)-C(8B)	1.3159(15)
N(3C)-C(8C)	1.3162(15)

N(4A)-C(7A)	1.3140(15)
N(4B)-C(7B)	1.3157(15)
N(4C)-C(7C)	1.3170(15)
C(1A)-C(2A)	1.3881(16)
C(1A)-C(6A)	1.4015(16)
C(1B)-C(2B)	1.3879(15)
C(1B)-C(6B)	1.4016(16)
C(1C)-C(2C)	1.3887(16)
C(1C)-C(6C)	1.4041(16)
C(2A)-H(2A)	0.9500
C(2A)-C(3A)	1.3863(17)
C(2B)-H(2B)	0.9500
C(2B)-C(3B)	1.3880(16)
C(2C)-H(2C)	0.9500
C(2C)-C(3C)	1.3856(17)
C(3A)-H(3A)	0.9500
C(3A)-C(4A)	1.3978(18)
C(3B)-H(3B)	0.9500
C(3B)-C(4B)	1.3955(17)
C(3C)-H(3C)	0.9500
C(3C)-C(4C)	1.3965(19)
C(4A)-H(4A)	0.9500
C(4A)-C(5A)	1.3846(16)
C(4B)-H(4B)	0.9500
C(4B)-C(5B)	1.3837(16)
C(4C)-H(4C)	0.9500
C(4C)-C(5C)	1.3864(17)
C(5A)-H(5A)	0.9500
C(5A)-C(6A)	1.3971(16)
C(5B)-H(5B)	0.9500
C(5B)-C(6B)	1.3957(15)
C(5C)-H(5C)	0.9500
C(5C)-C(6C)	1.3947(16)
C(6A)-C(7A)	1.4310(15)
C(6B)-C(7B)	1.4287(15)
C(6C)-C(7C)	1.4309(15)
C(7A)-C(8A)	1.4051(16)
C(7B)-C(8B)	1.4047(16)
C(7C)-C(8C)	1.4042(16)

N(3A)-O(2A)-N(4A)	108.39(8)
N(3B)-O(2B)-N(4B)	108.47(8)
N(3C)-O(2C)-N(4C)	108.46(8)
O(1A)-N(1A)-N(2A)	118.35(10)
O(1A)-N(1A)-C(1A)	116.82(10)
N(2A)-N(1A)-C(1A)	124.83(10)
O(1B)-N(1B)-N(2B)	118.15(9)
O(1B)-N(1B)-C(1B)	116.85(9)
N(2B)-N(1B)-C(1B)	125.00(9)
O(1C)-N(1C)-N(2C)	118.13(9)
O(1C)-N(1C)-C(1C)	116.62(9)
N(2C)-N(1C)-C(1C)	125.25(9)
N(1A)-N(2A)-C(8A)	114.68(10)
N(1B)-N(2B)-C(8B)	114.73(9)
N(1C)-N(2C)-C(8C)	114.73(9)
C(8A)-N(3A)-O(2A)	105.53(9)
C(8B)-N(3B)-O(2B)	105.33(9)
C(8C)-N(3C)-O(2C)	105.31(9)
O(3A)-N(4A)-O(2A)	118.07(9)
O(3A)-N(4A)-C(7A)	135.82(10)
C(7A)-N(4A)-O(2A)	106.10(9)
O(3B)-N(4B)-O(2B)	118.18(9)
O(3B)-N(4B)-C(7B)	135.72(10)
C(7B)-N(4B)-O(2B)	106.10(9)
O(3C)-N(4C)-O(2C)	117.91(9)
O(3C)-N(4C)-C(7C)	136.06(11)
C(7C)-N(4C)-O(2C)	106.03(9)
C(2A)-C(1A)-N(1A)	118.24(10)
C(2A)-C(1A)-C(6A)	121.21(11)
C(6A)-C(1A)-N(1A)	120.55(10)
C(2B)-C(1B)-N(1B)	118.39(10)
C(2B)-C(1B)-C(6B)	121.18(10)
C(6B)-C(1B)-N(1B)	120.43(10)
C(2C)-C(1C)-N(1C)	118.49(10)
C(2C)-C(1C)-C(6C)	121.18(10)
C(6C)-C(1C)-N(1C)	120.31(10)
C(1A)-C(2A)-H(2A)	120.7
C(3A)-C(2A)-C(1A)	118.55(11)
C(3A)-C(2A)-H(2A)	120.7
C(1B)-C(2B)-H(2B)	120.9

C(1B)-C(2B)-C(3B)	118.25(11)
C(3B)-C(2B)-H(2B)	120.9
C(1C)-C(2C)-H(2C)	120.7
C(3C)-C(2C)-C(1C)	118.55(11)
C(3C)-C(2C)-H(2C)	120.7
C(2A)-C(3A)-H(3A)	119.6
C(2A)-C(3A)-C(4A)	120.81(11)
C(4A)-C(3A)-H(3A)	119.6
C(2B)-C(3B)-H(3B)	119.5
C(2B)-C(3B)-C(4B)	121.07(11)
C(4B)-C(3B)-H(3B)	119.5
C(2C)-C(3C)-H(3C)	119.6
C(2C)-C(3C)-C(4C)	120.77(11)
C(4C)-C(3C)-H(3C)	119.6
C(3A)-C(4A)-H(4A)	119.7
C(5A)-C(4A)-C(3A)	120.57(11)
C(5A)-C(4A)-H(4A)	119.7
C(3B)-C(4B)-H(4B)	119.7
C(5B)-C(4B)-C(3B)	120.59(11)
C(5B)-C(4B)-H(4B)	119.7
C(3C)-C(4C)-H(4C)	119.6
C(5C)-C(4C)-C(3C)	120.73(11)
C(5C)-C(4C)-H(4C)	119.6
C(4A)-C(5A)-H(5A)	120.4
C(4A)-C(5A)-C(6A)	119.19(11)
C(6A)-C(5A)-H(5A)	120.4
C(4B)-C(5B)-H(5B)	120.5
C(4B)-C(5B)-C(6B)	119.00(11)
C(6B)-C(5B)-H(5B)	120.5
C(4C)-C(5C)-H(5C)	120.5
C(4C)-C(5C)-C(6C)	119.08(11)
C(6C)-C(5C)-H(5C)	120.5
C(1A)-C(6A)-C(7A)	114.12(10)
C(5A)-C(6A)-C(1A)	119.65(10)
C(5A)-C(6A)-C(7A)	126.23(11)
C(1B)-C(6B)-C(7B)	114.06(10)
C(5B)-C(6B)-C(1B)	119.90(10)
C(5B)-C(6B)-C(7B)	126.03(11)
C(1C)-C(6C)-C(7C)	113.97(10)
C(5C)-C(6C)-C(1C)	119.67(11)

C(5C)-C(6C)-C(7C)	126.36(11)
N(4A)-C(7A)-C(6A)	132.11(11)
N(4A)-C(7A)-C(8A)	107.53(10)
C(8A)-C(7A)-C(6A)	120.36(11)
N(4B)-C(7B)-C(6B)	131.92(11)
N(4B)-C(7B)-C(8B)	107.55(10)
C(8B)-C(7B)-C(6B)	120.51(10)
N(4C)-C(7C)-C(6C)	131.96(11)
N(4C)-C(7C)-C(8C)	107.43(10)
C(8C)-C(7C)-C(6C)	120.59(10)
N(2A)-C(8A)-C(7A)	125.43(11)
N(3A)-C(8A)-N(2A)	122.13(11)
N(3A)-C(8A)-C(7A)	112.44(11)
N(2B)-C(8B)-C(7B)	125.18(10)
N(3B)-C(8B)-N(2B)	122.28(10)
N(3B)-C(8B)-C(7B)	112.55(11)
N(2C)-C(8C)-C(7C)	125.07(10)
N(3C)-C(8C)-N(2C)	122.15(10)
N(3C)-C(8C)-C(7C)	112.77(10)

Table S17 Anisotropic displacement parameters (Å² x10³) for CCDC 2288838. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2 a^{*2}U^{11} + ... + 2h k a^{*} b^{*} U^{12}]$

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1A)	33(1)	26(1)	30(1)	-4(1)	4(1)	5(1)
O(1B)	26(1)	24(1)	24(1)	-4(1)	4(1)	1(1)
O(1C)	27(1)	26(1)	25(1)	5(1)	4(1)	-2(1)
O(2A)	23(1)	27(1)	31(1)	2(1)	0(1)	-6(1)
O(2B)	20(1)	28(1)	28(1)	-1(1)	2(1)	-7(1)
O(2C)	22(1)	30(1)	27(1)	0(1)	3(1)	3(1)
O(3A)	31(1)	29(1)	27(1)	-4(1)	4(1)	1(1)
O(3B)	27(1)	30(1)	23(1)	-3(1)	4(1)	-1(1)
O(3C)	36(1)	29(1)	24(1)	5(1)	5(1)	-3(1)
N(1A)	25(1)	19(1)	22(1)	0(1)	-2(1)	2(1)
N(1B)	21(1)	18(1)	20(1)	1(1)	-2(1)	1(1)
N(1C)	21(1)	18(1)	19(1)	-1(1)	-1(1)	-1(1)
N(2A)	26(1)	19(1)	27(1)	0(1)	-4(1)	-2(1)
N(2B)	21(1)	18(1)	23(1)	0(1)	-2(1)	-2(1)

N(2C)	22(1)	19(1)	22(1)	0(1)	-2(1)	3(1)
N(3A)	27(1)	22(1)	30(1)	2(1)	-3(1)	-4(1)
N(3B)	24(1)	24(1)	26(1)	-1(1)	-1(1)	-5(1)
N(3C)	24(1)	25(1)	24(1)	0(1)	1(1)	4(1)
N(4A)	22(1)	23(1)	24(1)	3(1)	-2(1)	-4(1)
N(4B)	20(1)	22(1)	22(1)	1(1)	-1(1)	-3(1)
N(4C)	23(1)	22(1)	21(1)	-1(1)	0(1)	0(1)
C(1A)	22(1)	19(1)	21(1)	2(1)	-4(1)	-1(1)
C(1B)	20(1)	16(1)	20(1)	1(1)	-3(1)	-1(1)
C(1C)	21(1)	18(1)	20(1)	-2(1)	-3(1)	1(1)
C(2A)	22(1)	26(1)	23(1)	3(1)	0(1)	0(1)
C(2B)	20(1)	22(1)	23(1)	2(1)	1(1)	0(1)
C(2C)	21(1)	25(1)	25(1)	-3(1)	0(1)	1(1)
C(3A)	21(1)	28(1)	27(1)	5(1)	-3(1)	-6(1)
C(3B)	19(1)	24(1)	26(1)	2(1)	-1(1)	-5(1)
C(3C)	23(1)	26(1)	30(1)	-6(1)	-4(1)	7(1)
C(4A)	27(1)	22(1)	22(1)	2(1)	-6(1)	-5(1)
C(4B)	25(1)	22(1)	22(1)	0(1)	-4(1)	-5(1)
C(4C)	31(1)	21(1)	25(1)	-3(1)	-9(1)	6(1)
C(5A)	25(1)	21(1)	19(1)	1(1)	-3(1)	-1(1)
C(5B)	24(1)	21(1)	18(1)	0(1)	0(1)	-1(1)
C(5C)	30(1)	20(1)	20(1)	-1(1)	-3(1)	1(1)
C(6A)	20(1)	19(1)	19(1)	3(1)	-3(1)	-1(1)
C(6B)	19(1)	19(1)	18(1)	3(1)	-2(1)	-1(1)
C(6C)	22(1)	18(1)	18(1)	-2(1)	-3(1)	1(1)
C(7A)	21(1)	19(1)	21(1)	3(1)	-3(1)	-1(1)
C(7B)	19(1)	20(1)	19(1)	2(1)	-1(1)	-1(1)
C(7C)	21(1)	20(1)	18(1)	-2(1)	-1(1)	-1(1)
C(8A)	23(1)	18(1)	23(1)	3(1)	-4(1)	-2(1)
C(8B)	20(1)	19(1)	22(1)	2(1)	-3(1)	-2(1)
C(8C)	21(1)	19(1)	19(1)	-3(1)	-2(1)	1(1)

Table S18 Hydrogen coordinates $(x10^4)$ and isotropic displacement parameters $(Å^2 x10^3)$ for CCDC 2288838

	x	у	Z	U(eq)
H(2A)	9408	5159	3047	29

H(2B)	9826	1689	2847	26	
H(2C)	592	3431	2283	29	
H(3A)	10311	6395	3640	31	
H(3B)	10833	2776	3611	28	
H(3C)	-603	4541	1596	32	
H(4A)	8653	7064	4426	29	
H(4B)	9197	3343	4455	28	
H(4C)	785	5140	682	32	
H(5A)	6049	6522	4618	26	
H(5B)	6546	2812	4571	25	
H(5C)	3427	4671	462	28	

Table S19 Torsion angles [°] for CCDC 2288838

O(1A)-N(1A)-N(2A)-C(8A)	-178.52(9)
O(1A)-N(1A)-C(1A)-C(2A)	-0.29(15)
O(1A)-N(1A)-C(1A)-C(6A)	179.29(10)
O(1B)-N(1B)-N(2B)-C(8B)	-178.46(9)
O(1B)-N(1B)-C(1B)-C(2B)	-2.89(14)
O(1B)-N(1B)-C(1B)-C(6B)	176.95(10)
O(1C)-N(1C)-N(2C)-C(8C)	-179.39(9)
O(1C)-N(1C)-C(1C)-C(2C)	0.20(15)
O(1C)-N(1C)-C(1C)-C(6C)	-178.53(10)
O(2A)-N(3A)-C(8A)-N(2A)	-179.33(10)
O(2A)-N(3A)-C(8A)-C(7A)	0.35(13)
O(2A)-N(4A)-C(7A)-C(6A)	179.89(11)
O(2A)-N(4A)-C(7A)-C(8A)	-0.09(12)
O(2B)-N(3B)-C(8B)-N(2B)	-179.20(9)
O(2B)-N(3B)-C(8B)-C(7B)	0.60(13)
O(2B)-N(4B)-C(7B)-C(6B)	-177.80(11)
O(2B)-N(4B)-C(7B)-C(8B)	0.61(12)
O(2C)-N(3C)-C(8C)-N(2C)	179.37(9)
O(2C)-N(3C)-C(8C)-C(7C)	0.65(13)
O(2C)-N(4C)-C(7C)-C(6C)	-178.06(11)
O(2C)-N(4C)-C(7C)-C(8C)	0.28(12)
O(3A)-N(4A)-C(7A)-C(6A)	-1.0(2)
O(3A)-N(4A)-C(7A)-C(8A)	179.06(12)
O(3B)-N(4B)-C(7B)-C(6B)	1.5(2)
O(3B)-N(4B)-C(7B)-C(8B)	179.93(12)

O(3C)-N(4C)-C(7C)-C(6C)
O(3C)-N(4C)-C(7C)-C(8C)
N(1A)-N(2A)-C(8A)-N(3A)
N(1A)-N(2A)-C(8A)-C(7A)
N(1A)-C(1A)-C(2A)-C(3A)
N(1A)-C(1A)-C(6A)-C(5A)
N(1A)-C(1A)-C(6A)-C(7A)
N(1B)-N(2B)-C(8B)-N(3B)
N(1B)-N(2B)-C(8B)-C(7B)
N(1B)-C(1B)-C(2B)-C(3B)
N(1B)-C(1B)-C(6B)-C(5B)
N(1B)-C(1B)-C(6B)-C(7B)
N(1C)-N(2C)-C(8C)-N(3C)
N(1C)-N(2C)-C(8C)-C(7C)
N(1C)-C(1C)-C(2C)-C(3C)
N(1C)-C(1C)-C(6C)-C(5C)
N(1C)-C(1C)-C(6C)-C(7C)
N(2A)-N(1A)-C(1A)-C(2A)
N(2A)-N(1A)-C(1A)-C(6A)
N(2B)-N(1B)-C(1B)-C(2B)
N(2B)-N(1B)-C(1B)-C(6B)
N(2C)-N(1C)-C(1C)-C(2C)
N(2C)-N(1C)-C(1C)-C(6C)
N(3A)-O(2A)-N(4A)-O(3A)
N(3A)-O(2A)-N(4A)-C(7A)
N(3B)-O(2B)-N(4B)-O(3B)
N(3B)-O(2B)-N(4B)-C(7B)
N(3C)-O(2C)-N(4C)-O(3C)
N(3C)-O(2C)-N(4C)-C(7C)
N(4A)-O(2A)-N(3A)-C(8A)
N(4A)-C(7A)-C(8A)-N(2A)
N(4A)-C(7A)-C(8A)-N(3A)
N(4B)-O(2B)-N(3B)-C(8B)
N(4B)-C(7B)-C(8B)-N(2B)
N(4B)-C(7B)-C(8B)-N(3B)
N(4C)-O(2C)-N(3C)-C(8C)
N(4C)-C(7C)-C(8C)-N(2C)
N(4C)-C(7C)-C(8C)-N(3C)
C(1A)-N(1A)-N(2A)-C(8A)
C(1A)-C(2A)-C(3A)-C(4A)

1.3(2)	
179.67(12)	
178.48(10)	
-1.16(17)	
-179.87(10)	
179.38(10)	
-0.54(15)	
-179.26(10)	
0.97(16)	
179.47(10)	
-178.88(10)	
1.76(14)	
179.95(10)	
-1.49(16)	
-177.88(10)	
176.97(10)	
-2.60(15)	
179.22(10)	
-1.19(16)	
176.76(10)	
-3.39(16)	
179.24(10)	
0.50(16)	
-179.02(9)	
0.31(11)	
-179.74(9)	
-0.28(11)	
-179.42(9)	
0.10(11)	
-0.40(11)	
179.51(11)	
-0.16(14)	
-0.20(12)	
178.99(10)	
-0.80(14)	
-0.45(11)	
-179.29(10)	
-0.61(13)	
1.97(16)	
0.28(17)	

C(1A)-C(6A)-C(7A)-N(4A)	-178.71(11)
C(1A)-C(6A)-C(7A)-C(8A)	1.27(15)
C(1B)-N(1B)-N(2B)-C(8B)	1.89(15)
C(1B)-C(2B)-C(3B)-C(4B)	-0.55(17)
C(1B)-C(6B)-C(7B)-N(4B)	179.04(11)
C(1B)-C(6B)-C(7B)-C(8B)	0.80(15)
C(1C)-N(1C)-N(2C)-C(8C)	1.59(15)
C(1C)-C(2C)-C(3C)-C(4C)	0.61(18)
C(1C)-C(6C)-C(7C)-N(4C)	-179.15(11)
C(1C)-C(6C)-C(7C)-C(8C)	2.70(15)
C(2A)-C(1A)-C(6A)-C(5A)	-1.05(17)
C(2A)-C(1A)-C(6A)-C(7A)	179.04(10)
C(2A)-C(3A)-C(4A)-C(5A)	-0.60(18)
C(2B)-C(1B)-C(6B)-C(5B)	0.96(16)
C(2B)-C(1B)-C(6B)-C(7B)	-178.40(10)
C(2B)-C(3B)-C(4B)-C(5B)	0.88(18)
C(2C)-C(1C)-C(6C)-C(5C)	-1.73(16)
C(2C)-C(1C)-C(6C)-C(7C)	178.70(10)
C(2C)-C(3C)-C(4C)-C(5C)	-1.21(18)
C(3A)-C(4A)-C(5A)-C(6A)	0.09(17)
C(3B)-C(4B)-C(5B)-C(6B)	-0.28(17)
C(3C)-C(4C)-C(5C)-C(6C)	0.31(18)
C(4A)-C(5A)-C(6A)-C(1A)	0.71(16)
C(4A)-C(5A)-C(6A)-C(7A)	-179.39(10)
C(4B)-C(5B)-C(6B)-C(1B)	-0.62(16)
C(4B)-C(5B)-C(6B)-C(7B)	178.66(10)
C(4C)-C(5C)-C(6C)-C(1C)	1.13(17)
C(4C)-C(5C)-C(6C)-C(7C)	-179.36(11)
C(5A)-C(6A)-C(7A)-N(4A)	1.4(2)
C(5A)-C(6A)-C(7A)-C(8A)	-178.64(11)
C(5B)-C(6B)-C(7B)-N(4B)	-0.3(2)
C(5B)-C(6B)-C(7B)-C(8B)	-178.51(11)
C(5C)-C(6C)-C(7C)-N(4C)	1.3(2)
C(5C)-C(6C)-C(7C)-C(8C)	-176.84(11)
C(6A)-C(1A)-C(2A)-C(3A)	0.55(17)
C(6A)-C(7A)-C(8A)-N(2A)	-0.48(17)
C(6A)-C(7A)-C(8A)-N(3A)	179.85(10)
C(6B)-C(1B)-C(2B)-C(3B)	-0.37(17)
C(6B)-C(7B)-C(8B)-N(2B)	-2.38(17)
C(6B)-C(7B)-C(8B)-N(3B)	177.83(10)

C(6C)-C(1C)-C(2C)-C(3C)	0.85(17)
C(6C)-C(7C)-C(8C)-N(2C)	-0.72(17)
C(6C)-C(7C)-C(8C)-N(3C)	177.95(10)

Table S20 Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2$ x 10³) for CCDC 2288837. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor

	X	У	Z	U(eq)
O(1)	1800(1)	3519(1)	3693(3)	22(1)
N(1)	4257(1)	5504(2)	8283(3)	18(1)
C(1)	3810(1)	5833(2)	6232(3)	17(1)
O(2)	1757(1)	4646(1)	723(3)	22(1)
N(2)	4935(1)	6144(2)	9163(3)	21(1)
C(2)	3115(1)	5024(2)	5477(4)	17(1)
N(3)	5968(1)	7849(2)	8552(4)	26(1)
O(3)	3954(1)	4542(1)	9270(3)	22(1)
C(3)	2719(1)	5333(2)	3508(4)	16(1)
O(4)	6072(1)	8758(1)	6952(3)	27(1)
N(4)	5341(1)	8572(2)	5299(3)	21(1)
C(4)	2947(1)	6424(2)	2311(4)	18(1)
N(5)	2039(1)	4438(2)	2572(3)	17(1)
O(5)	5334(1)	9282(2)	3721(3)	29(1)
C(5)	3642(1)	7214(2)	3087(3)	18(1)
C(6)	4090(1)	6909(2)	5040(4)	17(1)
C(7)	4852(1)	7582(2)	5986(4)	19(1)
C(8)	5244(1)	7171(2)	7958(4)	20(1)

Table S21 Bond lengths [Å] and angles [°] for CCDC 2288837

O(1)-N(5)	1.231(2)
N(1)-C(1)	1.455(3)
N(1)-N(2)	1.302(3)
N(1)-O(3)	1.253(2)
C(1)-C(2)	1.391(3)
C(1)-C(6)	1.401(3)

O(2)-N(5)	1.224(3)
N(2)-C(8)	1.378(3)
C(2)-H(2)	0.9500
C(2)-C(3)	1.375(3)
N(3)-O(4)	1.375(3)
N(3)-C(8)	1.313(3)
C(3)-C(4)	1.397(3)
C(3)-N(5)	1.472(2)
O(4)-N(4)	1.475(2)
N(4)-O(5)	1.221(3)
N(4)-C(7)	1.322(3)
C(4)-H(4)	0.9500
C(4)-C(5)	1.383(3)
C(5)-H(5)	0.9500
C(5)-C(6)	1.399(3)
C(6)-C(7)	1.427(3)
C(7)-C(8)	1.403(3)
N(2)-N(1)-C(1)	124.65(17)
O(3)-N(1)-C(1)	117.07(16)
O(3)-N(1)-N(2)	118.28(18)
C(2)-C(1)-N(1)	117.53(17)
C(2)-C(1)-C(6)	121.45(18)
C(6)-C(1)-N(1)	121.00(17)
N(1)-N(2)-C(8)	114.89(18)
C(1)-C(2)-H(2)	121.7
C(3)-C(2)-C(1)	116.64(18)
C(3)-C(2)-H(2)	121.7
C(8)-N(3)-O(4)	105.20(19)
C(2)-C(3)-C(4)	123.84(18)
C(2)-C(3)-N(5)	118.01(16)
C(4)-C(3)-N(5)	118.12(18)
N(3)-O(4)-N(4)	108.80(14)
O(5)-N(4)-O(4)	118.18(16)
O(5)-N(4)-C(7)	136.48(19)
C(7)-N(4)-O(4)	105.32(17)
C(3)-C(4)-H(4)	120.7
C(5)-C(4)-C(3)	118.6(2)
C(5)-C(4)-H(4)	120.7
O(1)-N(5)-C(3)	117.64(17)

O(2)-N(5)-O(1)	124.37(17)
O(2)-N(5)-C(3)	117.98(17)
C(4)-C(5)-H(5)	120.3
C(4)-C(5)-C(6)	119.50(18)
C(6)-C(5)-H(5)	120.3
C(1)-C(6)-C(7)	113.87(18)
C(5)-C(6)-C(1)	119.92(18)
C(5)-C(6)-C(7)	126.19(18)
N(4)-C(7)-C(6)	131.8(2)
N(4)-C(7)-C(8)	107.52(18)
C(8)-C(7)-C(6)	120.59(18)
N(2)-C(8)-C(7)	124.89(18)
N(3)-C(8)-N(2)	121.9(2)
N(3)-C(8)-C(7)	113.2(2)

Table S22 Anisotropic displacement parameters (Å² x 10³) for CCDC 2288837. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2 a^{*2}U^{11} + ... + 2 h k a^{*} b^{*} U^{12}]$

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	24(1)	19(1)	23(1)	4(1)	-2(1)	-4(1)
N(1)	18(1)	19(1)	17(1)	1(1)	0(1)	4(1)
C(1)	17(1)	18(1)	15(1)	0(1)	0(1)	5(1)
O(2)	25(1)	23(1)	19(1)	2(1)	-6(1)	-1(1)
N(2)	19(1)	25(1)	20(1)	-2(1)	-4(1)	5(1)
C(2)	17(1)	17(1)	17(1)	1(1)	2(1)	2(1)
N(3)	22(1)	29(1)	28(1)	-3(1)	-4(1)	1(1)
O(3)	25(1)	22(1)	20(1)	5(1)	-1(1)	3(1)
C(3)	16(1)	16(1)	17(1)	-1(1)	1(1)	1(1)
O(4)	21(1)	30(1)	29(1)	-4(1)	-5(1)	-6(1)
N(4)	18(1)	24(1)	23(1)	-3(1)	0(1)	-2(1)
C(4)	21(1)	18(1)	17(1)	1(1)	1(1)	1(1)
N(5)	16(1)	16(1)	19(1)	1(1)	-1(1)	2(1)
O(5)	29(1)	30(1)	28(1)	4(1)	3(1)	-10(1)
C(5)	21(1)	16(1)	18(1)	1(1)	1(1)	1(1)
C(6)	16(1)	18(1)	17(1)	-1(1)	3(1)	2(1)
C(7)	17(1)	18(1)	21(1)	-3(1)	2(1)	1(1)
C(8)	17(1)	21(1)	21(1)	-4(1)	0(1)	3(1)

	х	у	Z	U(eq)
H(2)	2923	4295	6282	20
H(4)	2631	6619	994	22
H(5)	3814	7959	2299	22

Table S23 Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å² x 10^3) for CCDC 2288837

 Table S24 Torsion angles [°] for CCDC 2288837

N(1)-C(1)-C(2)-C(3)	-178.30(16)
N(1)-C(1)-C(6)-C(5)	-179.18(16)
N(1)-C(1)-C(6)-C(7)	2.3(2)
N(1)-N(2)-C(8)-N(3)	-174.78(18)
N(1)-N(2)-C(8)-C(7)	3.4(3)
C(1)-N(1)-N(2)-C(8)	-2.2(3)
C(1)-C(2)-C(3)-C(4)	-3.0(3)
C(1)-C(2)-C(3)-N(5)	174.83(16)
C(1)-C(6)-C(7)-N(4)	175.2(2)
C(1)-C(6)-C(7)-C(8)	-1.3(2)
N(2)-N(1)-C(1)-C(2)	177.86(17)
N(2)-N(1)-C(1)-C(6)	-0.6(3)
C(2)-C(1)-C(6)-C(5)	2.5(3)
C(2)-C(1)-C(6)-C(7)	-176.08(17)
C(2)-C(3)-C(4)-C(5)	3.3(3)
C(2)-C(3)-N(5)-O(1)	6.3(2)
C(2)-C(3)-N(5)-O(2)	-172.77(16)
N(3)-O(4)-N(4)-O(5)	-178.67(18)
N(3)-O(4)-N(4)-C(7)	-0.1(2)
O(3)-N(1)-C(1)-C(2)	-3.0(2)
O(3)-N(1)-C(1)-C(6)	178.63(16)
O(3)-N(1)-N(2)-C(8)	178.58(16)
C(3)-C(4)-C(5)-C(6)	-0.5(3)
O(4)-N(3)-C(8)-N(2)	178.87(17)
O(4)-N(3)-C(8)-C(7)	0.5(2)
O(4)-N(4)-C(7)-C(6)	-176.43(18)
O(4)-N(4)-C(7)-C(8)	0.4(2)

N(4)-C(7)-C(8)-N(2)	-178.90(18)
N(4)-C(7)-C(8)-N(3)	-0.6(2)
C(4)-C(3)-N(5)-O(1)	-175.73(17)
C(4)-C(3)-N(5)-O(2)	5.2(3)
C(4)-C(5)-C(6)-C(1)	-2.2(3)
C(4)-C(5)-C(6)-C(7)	176.12(18)
N(5)-C(3)-C(4)-C(5)	-174.59(16)
O(5)-N(4)-C(7)-C(6)	1.7(4)
O(5)-N(4)-C(7)-C(8)	178.6(2)
C(5)-C(6)-C(7)-N(4)	-3.2(3)
C(5)-C(6)-C(7)-C(8)	-179.69(18)
C(6)-C(1)-C(2)-C(3)	0.1(3)
C(6)-C(7)-C(8)-N(2)	-1.6(3)
C(6)-C(7)-C(8)-N(3)	176.64(18)
C(8)-N(3)-O(4)-N(4)	-0.3(2)

Table S25 Atomic coordinates $(x10^4)$ and equivalent isotropic displacement parameters $(Å^2x10^3)$ for CCDC 2288835. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor

	Х	у	Z	U(eq)
O(2)	6128(1)	8833(2)	6833(3)	35(1)
O(6)	3895(1)	4574(1)	9105(2)	25(1)
O(15)	1696(1)	3646(1)	3766(3)	26(1)
O(16)	1718(1)	4782(1)	886(3)	32(1)
N(1)	5459(1)	8676(2)	5252(3)	29(1)
N(3)	6025(1)	7911(2)	8420(3)	32(1)
N(5)	4949(1)	6165(2)	9012(3)	25(1)
N(6)	4246(1)	5546(2)	8153(3)	21(1)
N(14)	1988(1)	4560(1)	2653(3)	21(1)
C(4)	5295(1)	7205(2)	7831(3)	24(1)
C(7)	3830(1)	5903(2)	6146(3)	18(1)
C(8)	3101(1)	5103(2)	5430(3)	19(1)
C(9)	2728(1)	5435(2)	3514(3)	19(1)
C(10)	3014(1)	6524(2)	2327(3)	22(1)
C(11)	3741(1)	7305(2)	3072(3)	22(1)
C(12)	4164(1)	6986(2)	4980(3)	20(1)
C(13)	4953(1)	7669(2)	5902(3)	22(1)

O(2)-N(1)	1.399(2)
O(2)-N(3)	1.378(3)
O(6)-N(6)	1.251(2)
O(15)-N(14)	1.230(2)
O(16)-N(14)	1.213(2)
N(1)-C(13)	1.307(2)
N(3)-C(4)	1.314(2)
N(5)-N(6)	1.301(2)
N(5)-C(4)	1.377(3)
N(6)-C(7)	1.457(2)
N(14)-C(9)	1.478(2)
C(4)-C(13)	1.404(3)
C(7)-C(8)	1.390(2)
C(7)-C(12)	1.398(3)
C(8)-H(8)	0.9500
C(8)-C(9)	1.376(3)
C(9)-C(10)	1.389(3)
C(10)-H(10)	0.9500
C(10)-C(11)	1.383(3)
C(11)-H(11)	0.9500
C(11)-C(12)	1.397(3)
C(12)-C(13)	1.444(2)
N(3)-O(2)-N(1)	112.52(13)
C(13)-N(1)-O(2)	103.56(17)
C(4)-N(3)-O(2)	103.50(17)
N(6)-N(5)-C(4)	113.92(17)
O(6)-N(6)-N(5)	118.31(16)
O(6)-N(6)-C(7)	117.01(15)
N(5)-N(6)-C(7)	124.68(16)
O(15)-N(14)-C(9)	117.80(15)
O(16)-N(14)-O(15)	124.52(16)
O(16)-N(14)-C(9)	117.68(15)
N(3)-C(4)-N(5)	122.25(19)
N(3)-C(4)-C(13)	110.47(18)
N(5)-C(4)-C(13)	127.28(17)
C(8)-C(7)-N(6)	116.98(16)
C(8)-C(7)-C(12)	121.72(17)
C(12)-C(7)-N(6)	121.29(16)

Table S26 Bond lengths [Å] and angles [°] for CCDC 2288835

.

C(7)-C(8)-H(8)	121.8
C(9)-C(8)-C(7)	116.39(16)
C(9)-C(8)-H(8)	121.8
C(8)-C(9)-N(14)	117.75(15)
C(8)-C(9)-C(10)	124.07(17)
C(10)-C(9)-N(14)	118.17(16)
C(9)-C(10)-H(10)	120.8
C(11)-C(10)-C(9)	118.41(18)
С(11)-С(10)-Н(10)	120.8
C(10)-C(11)-H(11)	120.1
C(10)-C(11)-C(12)	119.74(17)
C(12)-C(11)-H(11)	120.1
C(7)-C(12)-C(13)	114.55(17)
C(11)-C(12)-C(7)	119.61(16)
C(11)-C(12)-C(13)	125.83(17)
N(1)-C(13)-C(4)	109.94(17)
N(1)-C(13)-C(12)	131.81(19)
C(4)-C(13)-C(12)	118.24(16)

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(2)	25(1)	41(1)	38(1)	-6(1)	-3(1)	-12(1)
O(6)	29(1)	24(1)	24(1)	6(1)	-3(1)	-1(1)
O(15)	28(1)	22(1)	26(1)	5(1)	-3(1)	-6(1)
O(16)	41(1)	30(1)	25(1)	7(1)	-12(1)	-10(1)
N(1)	26(1)	31(1)	31(1)	-5(1)	2(1)	-7(1)
N(3)	25(1)	35(1)	37(1)	-5(1)	-4(1)	-5(1)
N(5)	21(1)	27(1)	27(1)	-2(1)	-6(1)	3(1)
N(6)	20(1)	23(1)	21(1)	0(1)	-2(1)	3(1)
N(14)	21(1)	19(1)	24(1)	0(1)	-3(1)	-1(1)
C(4)	18(1)	26(1)	29(1)	-5(1)	0(1)	2(1)
C(7)	18(1)	19(1)	17(1)	-1(1)	1(1)	4(1)
C(8)	18(1)	18(1)	21(1)	2(1)	2(1)	1(1)
C(9)	18(1)	18(1)	21(1)	-2(1)	1(1)	0(1)
C(10)	26(1)	20(1)	21(1)	1(1)	-2(1)	1(1)
C(11)	28(1)	20(1)	20(1)	1(1)	3(1)	-2(1)
C(12)	19(1)	19(1)	23(1)	-2(1)	3(1)	1(1)
C(13)	20(1)	21(1)	24(1)	-4(1)	5(1)	0(1)

Table S27 Anisotropic displacement parameters (Å²x10³) for CCDC 2288835. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a*²U¹¹ + ... + 2 h k a* b* U¹²]

Table S28 Hydrogen coordinates $(x10^4)$ and isotropic displacement parameters $(Å^2x10^3)$ for CCDC 2288835

Х	у	Z	U(eq)
2874	4367	6222	23
2719	6729	1033	27
3952	8055	2290	27
	x 2874 2719 3952	x y 2874 4367 2719 6729 3952 8055	x y z 2874 4367 6222 2719 6729 1033 3952 8055 2290

Table S29 Torsion angles [°] for CCDC 2288835

O(2)-N(1)-C(13)-C(4)	-0.05(19)
O(2)-N(1)-C(13)-C(12)	-178.56(18)
O(2)-N(3)-C(4)-N(5)	-179.61(17)

O(2)-N(3)-C(4)-C(13)	0.6(2)
O(6)-N(6)-C(7)-C(8)	-2.2(2)
O(6)-N(6)-C(7)-C(12)	178.94(15)
O(15)-N(14)-C(9)-C(8)	5.6(2)
O(15)-N(14)-C(9)-C(10)	-175.60(17)
O(16)-N(14)-C(9)-C(8)	-173.56(17)
O(16)-N(14)-C(9)-C(10)	5.3(2)
N(1)-O(2)-N(3)-C(4)	-0.6(2)
N(3)-O(2)-N(1)-C(13)	0.4(2)
N(3)-C(4)-C(13)-N(1)	-0.3(2)
N(3)-C(4)-C(13)-C(12)	178.40(16)
N(5)-N(6)-C(7)-C(8)	177.92(16)
N(5)-N(6)-C(7)-C(12)	-0.9(3)
N(5)-C(4)-C(13)-N(1)	179.84(17)
N(5)-C(4)-C(13)-C(12)	-1.4(3)
N(6)-N(5)-C(4)-N(3)	-177.55(17)
N(6)-N(5)-C(4)-C(13)	2.3(3)
N(6)-C(7)-C(8)-C(9)	-178.74(15)
N(6)-C(7)-C(12)-C(11)	-179.37(15)
N(6)-C(7)-C(12)-C(13)	1.7(2)
N(14)-C(9)-C(10)-C(11)	-176.56(16)
C(4)-N(5)-N(6)-O(6)	179.12(15)
C(4)-N(5)-N(6)-C(7)	-1.1(2)
C(7)-C(8)-C(9)-N(14)	176.62(15)
C(7)-C(8)-C(9)-C(10)	-2.2(3)
C(7)-C(12)-C(13)-N(1)	177.76(18)
C(7)-C(12)-C(13)-C(4)	-0.6(2)
C(8)-C(7)-C(12)-C(11)	1.9(3)
C(8)-C(7)-C(12)-C(13)	-177.06(16)
C(8)-C(9)-C(10)-C(11)	2.2(3)
C(9)-C(10)-C(11)-C(12)	-0.1(3)
C(10)-C(11)-C(12)-C(7)	-1.8(3)
C(10)-C(11)-C(12)-C(13)	176.97(17)
C(11)-C(12)-C(13)-N(1)	-1.1(3)
C(11)-C(12)-C(13)-C(4)	-179.50(16)
C(12)-C(7)-C(8)-C(9)	0.1(2)

	х	У	Z	U(eq)
O(1)	4328(1)	2111(1)	6870(1)	20(1)
O(2)	8914(1)	5120(1)	6669(1)	20(1)
O(3)	4971(1)	2045(1)	4278(1)	20(1)
O(4)	3581(1)	3318(1)	3753(1)	21(1)
N(1)	4453(2)	2399(1)	6013(1)	18(1)
N(2)	5368(2)	2641(1)	7383(1)	20(1)
N(3)	7253(1)	3937(1)	7113(1)	18(1)
N(4)	7847(1)	4497(1)	6495(1)	15(1)
N(5)	4705(1)	2978(1)	4142(1)	15(1)
C(1)	6114(2)	3257(1)	6850(1)	16(1)
C(2)	7358(2)	4450(1)	5595(1)	14(1)
C(3)	8050(2)	5150(1)	5023(1)	16(1)
C(4)	7614(2)	5136(1)	4171(1)	16(1)
C(5)	6491(2)	4429(1)	3876(1)	16(1)
C(6)	5839(2)	3742(1)	4457(1)	14(1)
C(7)	6231(2)	3728(1)	5329(1)	14(1)
C(8)	5558(2)	3100(1)	6005(1)	15(1)

Table S30 Atomic coordinates $(x10^4)$ and equivalent isotropic displacement parameters $(Å^2x \ 10^3)$ for CCDC 2288836. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor

 Table S31 Bond lengths [Å] and angles [°] for CCDC 2288836

O(1)-N(1) 1.3880(16)

O(1)-N(2) 1.3796(17)

O(2)-N(4)	1.2461(16)
O(3)-N(5)	1.2256(17)
O(4)-N(5)	1.2251(17)
N(1)-C(8)	1.307(2)
N(2)-C(1)	1.312(2)
N(3)-N(4)	1.3029(18)
N(3)-C(1)	1.373(2)
N(4)-C(2)	1.4654(17)
N(5)-C(6)	1.4664(18)
C(1)-C(8)	1.415(2)
C(2)-C(3)	1.394(2)
C(2)-C(7)	1.402(2)
C(3)-H(3)	0.95(2)
C(3)-C(4)	1.380(2)
C(4)-H(4)	0.99(2)
C(4)-C(5)	1.400(2)
C(5)-H(5)	0.96(2)
C(5)-C(6)	1.378(2)
C(6)-C(7)	1.4002(19)
C(7)-C(8)	1.4433(19)
N(2)-O(1)-N(1)	112.18(10)
C(8)-N(1)-O(1)	104.24(11)
C(1)-N(2)-O(1)	104.23(12)
N(4)-N(3)-C(1)	114.00(12)
O(2)-N(4)-N(3)	118.60(12)
O(2)-N(4)-C(2)	116.66(12)
N(3)-N(4)-C(2)	124.74(12)

O(3)-N(5)-C(6)	117.18(12)
O(4)-N(5)-O(3)	125.15(12)
O(4)-N(5)-C(6)	117.66(12)
N(2)-C(1)-N(3)	122.68(13)
N(2)-C(1)-C(8)	109.69(13)
N(3)-C(1)-C(8)	127.62(13)
C(3)-C(2)-N(4)	117.43(13)
C(3)-C(2)-C(7)	121.88(13)
C(7)-C(2)-N(4)	120.69(13)
C(2)-C(3)-H(3)	119.8(14)
C(4)-C(3)-C(2)	119.24(13)
C(4)-C(3)-H(3)	121.0(14)
C(3)-C(4)-H(4)	122.1(13)
C(3)-C(4)-C(5)	120.91(14)
C(5)-C(4)-H(4)	116.9(13)
C(4)-C(5)-H(5)	119.8(13)
C(6)-C(5)-C(4)	118.36(13)
C(6)-C(5)-H(5)	121.8(13)
C(5)-C(6)-N(5)	118.33(13)
C(5)-C(6)-C(7)	123.10(13)
C(7)-C(6)-N(5)	118.55(12)
C(2)-C(7)-C(8)	115.30(13)
C(6)-C(7)-C(2)	116.49(13)
C(6)-C(7)-C(8)	128.11(13)
N(1)-C(8)-C(1)	109.65(13)
N(1)-C(8)-C(7)	132.77(13)
C(1)-C(8)-C(7)	117.55(13)

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	26(1)	19(1)	16(1)	2(1)	3(1)	-4(1)
O(2)	18(1)	21(1)	21(1)	-4(1)	-4(1)	-4(1)
O(3)	29(1)	11(1)	20(1)	1(1)	-2(1)	-3(1)
O(4)	15(1)	22(1)	24(1)	-7(1)	-4(1)	4(1)
N(1)	22(1)	16(1)	15(1)	2(1)	3(1)	-1(1)
N(2)	23(1)	20(1)	16(1)	0(1)	2(1)	0(1)
N(3)	21(1)	19(1)	14(1)	-1(1)	0(1)	1(1)
N(4)	15(1)	15(1)	16(1)	-3(1)	0(1)	1(1)
N(5)	15(1)	15(1)	14(1)	-2(1)	2(1)	-1(1)
C(1)	18(1)	15(1)	16(1)	-1(1)	2(1)	3(1)
C(2)	13(1)	14(1)	15(1)	-2(1)	0(1)	3(1)
C(3)	14(1)	13(1)	21(1)	-1(1)	2(1)	1(1)
C(4)	16(1)	14(1)	19(1)	1(1)	2(1)	0(1)
C(5)	18(1)	14(1)	15(1)	1(1)	1(1)	2(1)
C(6)	14(1)	12(1)	16(1)	-2(1)	-1(1)	1(1)
C(7)	14(1)	12(1)	16(1)	0(1)	1(1)	3(1)
C(8)	16(1)	13(1)	16(1)	0(1)	1(1)	2(1)

Table S32 Anisotropic displacement parameters (Å²x10³) for CCDC 2288836. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2 a^{*2}U^{11} + ... + 2 h k a^{*} b^{*} U^{12}]$

Table S33 Hydrogen coordinates $(x10^4)$ and isotropic displacement parameters $(Å^2x10^3)$ for CCDC 2288836

	х	у	Z	U(eq)
H(3)	8800(30)	5634(19)	5225(15)	29(5)
H(4)	8060(20)	5627(18)	3741(15)	25(5)
H(5)	6220(20)	4417(17)	3278(14)	23(5)

 Table S34 Torsion angles [°] for CCDC 2288836

O(1)-N(1)-C(8)-C(1)	-0.45(15)
O(1)-N(1)-C(8)-C(7)	-178.17(15)
O(1)-N(2)-C(1)-N(3)	179.09(12)
O(1)-N(2)-C(1)-C(8)	-0.89(15)
O(2)-N(4)-C(2)-C(3)	-4.18(18)
O(2)-N(4)-C(2)-C(7)	176.15(12)
O(3)-N(5)-C(6)-C(5)	123.47(14)
O(3)-N(5)-C(6)-C(7)	-55.33(17)
O(4)-N(5)-C(6)-C(5)	-55.41(17)
O(4)-N(5)-C(6)-C(7)	125.79(14)
N(1)-O(1)-N(2)-C(1)	0.63(15)
N(2)-O(1)-N(1)-C(8)	-0.10(15)
N(2)-C(1)-C(8)-N(1)	0.89(17)
N(2)-C(1)-C(8)-C(7)	179.01(12)
N(3)-N(4)-C(2)-C(3)	176.15(13)

N(3)-N(4)-C(2)-C(7)	-3.5(2)
N(3)-C(1)-C(8)-N(1)	-179.08(14)
N(3)-C(1)-C(8)-C(7)	-1.0(2)
N(4)-N(3)-C(1)-N(2)	-178.98(13)
N(4)-N(3)-C(1)-C(8)	1.0(2)
N(4)-C(2)-C(3)-C(4)	-179.54(12)
N(4)-C(2)-C(7)-C(6)	179.93(11)
N(4)-C(2)-C(7)-C(8)	3.27(19)
N(5)-C(6)-C(7)-C(2)	177.94(11)
N(5)-C(6)-C(7)-C(8)	-5.9(2)
C(1)-N(3)-N(4)-O(2)	-178.43(12)
C(1)-N(3)-N(4)-C(2)	1.24(19)
C(2)-C(3)-C(4)-C(5)	0.0(2)
C(2)-C(7)-C(8)-N(1)	176.32(15)
C(2)-C(7)-C(8)-C(1)	-1.26(19)
C(3)-C(2)-C(7)-C(6)	0.3(2)
C(3)-C(2)-C(7)-C(8)	-176.39(12)
C(3)-C(4)-C(5)-C(6)	-0.4(2)
C(4)-C(5)-C(6)-N(5)	-177.85(12)
C(4)-C(5)-C(6)-C(7)	0.9(2)
C(5)-C(6)-C(7)-C(2)	-0.8(2)
C(5)-C(6)-C(7)-C(8)	175.37(13)
C(6)-C(7)-C(8)-N(1)	0.1(3)
C(6)-C(7)-C(8)-C(1)	-177.47(13)
C(7)-C(2)-C(3)-C(4)	0.1(2)

	Х	У	Z	U(eq)
O(1)	3826(2)	4257(2)	7343(2)	27(1)
O(5)	7160(2)	8181(2)	5790(3)	38(1)
O(15)	8355(2)	4227(2)	4247(3)	44(1)
O(16)	7881(2)	2542(3)	2640(3)	44(1)
O(18)	5233(2)	-1339(2)	3752(2)	33(1)
O(19)	3954(2)	-718(2)	5177(3)	38(1)
N(1)	4674(2)	4782(3)	6834(2)	24(1)
N(2)	4994(2)	6210(3)	7180(3)	30(1)
N(4)	6292(2)	8147(3)	6691(3)	36(1)
N(6)	7303(2)	6744(3)	5104(3)	34(1)
N(14)	7720(2)	3286(3)	3709(3)	30(1)
N(17)	4787(2)	-418(3)	4565(3)	28(1)
C(3)	5905(2)	6693(3)	6515(3)	29(1)
C(7)	6534(2)	5808(3)	5550(3)	27(1)
C(8)	6209(2)	4166(3)	5251(3)	23(1)
C(9)	6703(2)	2986(3)	4421(3)	25(1)
C(10)	6257(2)	1494(3)	4189(3)	25(1)
C(11)	5296(2)	1151(3)	4827(3)	23(1)
C(12)	4774(2)	2218(3)	5681(3)	23(1)
C(13)	5243(2)	3710(3)	5883(3)	22(1)

Table S35 Atomic coordinates $(x10^4)$ and equivalent isotropic displacement parameters $(Å^2x10^3)$ for CCDC 2295832. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor

 Table S36 Bond lengths [Å] and angles [°] for CCDC 2295832

O(1)-N(1)	1.248(3)
O(5)-N(4)	1.392(4)
O(5)-N(6)	1.375(3)
O(15)-N(14)	1.229(4)
O(16)-N(14)	1.216(4)
O(18)-N(17)	1.228(3)
O(19)-N(17)	1.225(3)
N(1)-N(2)	1.296(3)
N(1)-C(13)	1.462(3)

N(2)-C(3)	1.368(4)
N(4)-C(3)	1.313(4)
N(6)-C(7)	1.310(4)
N(14)-C(9)	1.468(3)
N(17)-C(11)	1.473(3)
C(3)-C(7)	1.422(4)
C(7)-C(8)	1.452(3)
C(8)-C(9)	1.407(4)
C(8)-C(13)	1.406(3)
C(9)-C(10)	1.378(4)
C(10)-H(10)	0.9500
C(10)-C(11)	1.382(4)
C(11)-C(12)	1.374(4)
C(12)-H(12)	0.9500
C(12)-C(13)	1.386(3)
N(6)-O(5)-N(4)	112.5(2)
O(1)-N(1)-N(2)	118.9(2)
O(1)-N(1)-C(13)	116.6(2)
N(2)-N(1)-C(13)	124.5(2)
N(1)-N(2)-C(3)	114.0(2)
C(3)-N(4)-O(5)	103.1(2)
C(7)-N(6)-O(5)	105.2(2)
O(15)-N(14)-C(9)	118.2(3)
O(16)-N(14)-O(15)	124.9(2)
O(16)-N(14)-C(9)	116.9(2)
O(18)-N(17)-C(11)	117.6(2)
O(19)-N(17)-O(18)	124.6(2)
O(19)-N(17)-C(11)	117.9(2)
N(2)-C(3)-C(7)	128.0(2)
N(4)-C(3)-N(2)	121.1(3)
N(4)-C(3)-C(7)	110.8(3)
N(6)-C(7)-C(3)	108.3(2)
N(6)-C(7)-C(8)	134.4(3)
C(3)-C(7)-C(8)	117.3(2)
C(9)-C(8)-C(7)	130.0(2)
C(13)-C(8)-C(7)	114.2(2)
C(13)-C(8)-C(9)	115.9(2)
C(8)-C(9)-N(14)	121.9(2)
C(10)-C(9)-N(14)	115.4(2)

C(10)-C(9)-C(8)	122.7(2)
C(9)-C(10)-H(10)	121.1
C(9)-C(10)-C(11)	117.9(2)
С(11)-С(10)-Н(10)	121.1
C(10)-C(11)-N(17)	119.0(2)
C(12)-C(11)-N(17)	117.9(2)
C(12)-C(11)-C(10)	123.2(2)
C(11)-C(12)-H(12)	121.3
C(11)-C(12)-C(13)	117.3(2)
C(13)-C(12)-H(12)	121.3
C(8)-C(13)-N(1)	121.8(2)
C(12)-C(13)-N(1)	115.1(2)
C(12)-C(13)-C(8)	123.1(2)

Table S37 Anisotropic displacement parameters (Å²x10³) for CCDC 2295832. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2 a^{*2}U^{11} + ... + 2 h k a^{*} b^{*} U^{12}]$

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	27(1)	28(1)	26(1)	-1(1)	6(1)	-1(1)
O(5)	32(1)	24(1)	59(2)	2(1)	-6(1)	-6(1)
O(15)	29(1)	32(1)	71(2)	3(1)	10(1)	-3(1)
O(16)	37(1)	72(2)	25(1)	3(1)	11(1)	3(1)
O(18)	40(1)	28(1)	30(1)	-10(1)	3(1)	4(1)
O(19)	34(1)	31(1)	48(2)	-10(1)	10(1)	-8(1)
N(1)	28(1)	23(1)	21(1)	-1(1)	0(1)	2(1)
N(2)	35(1)	25(1)	31(1)	-4(1)	-2(1)	-2(1)
N(4)	35(1)	28(1)	45(2)	-1(1)	-4(1)	-2(1)
N(6)	30(1)	27(1)	44(2)	7(1)	-4(1)	-3(1)
N(14)	28(1)	32(1)	31(1)	11(1)	6(1)	4(1)
N(17)	28(1)	25(1)	30(1)	-4(1)	1(1)	1(1)
C(3)	33(1)	23(1)	30(2)	2(1)	-4(1)	0(1)
C(7)	27(1)	24(1)	30(2)	6(1)	-6(1)	-1(1)
C(8)	26(1)	23(1)	22(1)	5(1)	-1(1)	2(1)
C(9)	23(1)	28(1)	22(1)	7(1)	1(1)	1(1)
C(10)	29(1)	26(1)	21(1)	2(1)	1(1)	5(1)
C(11)	29(1)	22(1)	19(1)	1(1)	-2(1)	0(1)
C(12)	26(1)	22(1)	21(1)	4(1)	0(1)	2(1)
C(13)	25(1)	22(1)	19(1)	2(1)	-3(1)	2(1)

	Х	у	Z	U(eq)
H(10)	6600	726	3610	30
H(12)	4118	1944	6115	27

Table S38 Hydrogen coordinates $(x10^4)$ and isotropic displacement parameters $(Å^2x10^3)$ for CCDC 2295832

Table S39 Torsion angles [°] for CCDC 2295832

O(1)-N(1)-N(2)-C(3)	-177.2(2)
O(1)-N(1)-C(13)-C(8)	-179.7(2)
O(1)-N(1)-C(13)-C(12)	-1.0(3)
O(5)-N(4)-C(3)-N(2)	-176.6(3)
O(5)-N(4)-C(3)-C(7)	1.6(3)
O(5)-N(6)-C(7)-C(3)	0.5(3)
O(5)-N(6)-C(7)-C(8)	179.2(3)
O(15)-N(14)-C(9)-C(8)	30.1(4)
O(15)-N(14)-C(9)-C(10)	-151.6(3)
O(16)-N(14)-C(9)-C(8)	-151.7(3)
O(16)-N(14)-C(9)-C(10)	26.6(4)
O(18)-N(17)-C(11)-C(10)	-2.0(4)
O(18)-N(17)-C(11)-C(12)	176.8(2)
O(19)-N(17)-C(11)-C(10)	177.6(3)
O(19)-N(17)-C(11)-C(12)	-3.6(4)
N(1)-N(2)-C(3)-N(4)	175.8(3)
N(1)-N(2)-C(3)-C(7)	-2.0(4)
N(2)-N(1)-C(13)-C(8)	-0.2(4)
N(2)-N(1)-C(13)-C(12)	178.5(3)
N(2)-C(3)-C(7)-N(6)	176.6(3)
N(2)-C(3)-C(7)-C(8)	-2.4(4)
N(4)-O(5)-N(6)-C(7)	0.5(3)
N(4)-C(3)-C(7)-N(6)	-1.4(3)
N(4)-C(3)-C(7)-C(8)	179.6(2)
N(6)-O(5)-N(4)-C(3)	-1.3(3)
N(6)-C(7)-C(8)-C(9)	5.7(5)
N(6)-C(7)-C(8)-C(13)	-173.4(3)
N(14)-C(9)-C(10)-C(11)	-179.6(2)
N(17)-C(11)-C(12)-C(13)	-178.0(2)

C(3)-C(7)-C(8)-C(9)	-175.7(3)
C(3)-C(7)-C(8)-C(13)	5.2(3)
C(7)-C(8)-C(9)-N(14)	1.5(4)
C(7)-C(8)-C(9)-C(10)	-176.7(3)
C(7)-C(8)-C(13)-N(1)	-4.2(3)
C(7)-C(8)-C(13)-C(12)	177.2(2)
C(8)-C(9)-C(10)-C(11)	-1.3(4)
C(9)-C(8)-C(13)-N(1)	176.5(2)
C(9)-C(8)-C(13)-C(12)	-2.1(4)
C(9)-C(10)-C(11)-N(17)	178.3(2)
C(9)-C(10)-C(11)-C(12)	-0.4(4)
C(10)-C(11)-C(12)-C(13)	0.8(4)
C(11)-C(12)-C(13)-N(1)	-178.2(2)
C(11)-C(12)-C(13)-C(8)	0.5(4)
C(13)-N(1)-N(2)-C(3)	3.3(4)
C(13)-C(8)-C(9)-N(14)	-179.4(2)
C(13)-C(8)-C(9)-C(10)	2.4(4)

Table S40 Unit cell volume (V), van der Waals volume (V_{vdW}), Kitaigorodskii packin index (KPI), volume enclosed by the 0.001 a.u. isosurface of the electron density (V_{001}), the biggest spherical void volume (V_{void}) and crystal density at 100 K.

Compound	V, Å ³	Ζ	V_{vdW} , Å ³	KPI	V ₀₀₁ , Å ³	V_{void} , Å ³	d, g cm $^{-3}$
1	769.42(2)	4	138.31	71.82%	193.8	5.58	1.624
3	912.06(2)	4	162.40	71.02%	222.2	4.19	1.698
5	1713.28(7)	8	162.77	75.76%	221.3	2.14	1.808
6	924.783(13)	4	171.04	73.69%	232.0	3.05	1.790
7	2400.54(4)	12	146.87	73.37%	203.6	5.58	1.695
8	1000.81(3)	4	186.13	74.13%	250.1	3.05	1.846

The molecular volume enclosed by the isosurface of the electron density ($\rho(\mathbf{r})=0.001$ a.u.) is calculated using B3LYP/6-31G(d,p) wave function of the optimized molecule. Kitaigorodskii packing indices⁸ are calculated with Olex2 program⁴.

References

- 1 Rigaku, CrysAlisPro Software System 2021.
- 2 G. M. Sheldrick, Acta Crystallogr. Sect. A Found. Crystallogr., 2015, 71, 3–8.
- G. M. Sheldrick, Acta Crystallogr. Sect. C Struct. Chem., 2015, 71, 3–8.
- 4 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann, J. *Appl. Crystallogr.*, 2009, **42**, 339–341.
- 5 C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler, and J. Van De Streek, *J. Appl. Crystallogr.*, 2006, **39**, 453–457.
- 6 M. S. Klenov, V. P. Zelenov, A. M. Churakov, Y. A. Strelenko, and V. A. Tartakovsky, Russ. Chem. Bull., 2011, **60**, 2040–2045.
- 7 V. P. Zelenov, A. A. Voronin, A. M. Churakov, M. S. Klenov, Y. A. Strelenko, and V. A. Tartakovsky, *Russ. Chem. Bull.*, 2011, **60**, 2046–2050.
- 8 A. I. Kitaigorodskii, Molecular crystals and molecules, Academic Press, New York, 1973.