Supporting Information

InN Nanorods/Ni(OH)₂ Heterojunction Photoelectrode for Efficient PEC Water splitting

Mengzhou Wu, a,b Haoyang Wu, a,b Shaohua Xie, a,b Wenliang Wang a,b,* and Guoqiang Li a,b,c,*

^a State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.

^b Department of Electronic Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.

^c Guangdong Choicore Optoelectronics Co., Ltd., Heyuan 517003, China

* Corresponding author, E-mail: wenliangwang@scut.edu.cn and msgli@scut.edu.cn

Fig. S1 (a) SEM top-view and (b) cross-sectional images of the $InN/Ni(OH)_2$ -60. (c) SEM top-view and (d) cross-sectional images of the $InN/Ni(OH)_2$ -180.

Fig. S2 In the 0.1 M Na₂PO₄ solution with pH = 9, PEC properties of InN and InN/Ni(OH)₂ photoelectrodes. (a) LSV curves, (b) ABPE curves of all photoelectrodes, (c) I-T curves, (d) EIS spectra of all photoelectrodes at 0.72 V vs. RHE.

Fig. S3 (a) The stability of InN NRs and $InN/Ni(OH)_2$ photoelectrode (pH = 13), (b) the stability of InN/Ni(OH)₂-120 photoelectrode (pH = 9).

Fig. S4 (a) SEM top-view and (b) cross-sectional images of the InN/Ni(OH)₂-120 after PEC test, (c)-(d)XRD patterns and (e) Raman spectra of the InN/Ni(OH)₂-120 after PEC test.

Fig. S5 (a) OCP of the all photoelectrode samples (pH = 13), (b) OCP of the all photoelectrode samples (pH = 9).

Fig. S6 PEC properties of pure $Ni(OH)_2$ (pH = 13).

Fig. S7 PEC properties of InN and InN/Ni(OH)₂ photoelectrodes prepared by immersing method.

Fig. S8 The stability of $InN/Ni(OH)_2$ -120 prepared by electrodepositing method, $InN/Ni(OH)_2$ -300 prepared by immersing method and pure $Ni(OH)_2$ (pH = 13).

PEC photoanode	Conditions	Photocurrent density	Reference
InN NRs/Ni(OH) ₂	0.1 M NaOH	4.43 mA cm ⁻² at 1.47 V vs. RHE	This work
InN/Si	1 M NaOH	0.06 mA cm ⁻² at 1.2 V vs. RHE	Ref. ¹
In ₂ O ₃ /InN	0.1 M PBS	0.795 mA cm ⁻² at 1 V vs. Ag/AgCl	Ref. ²
InN/ZnO	0.1 M Na ₂ SO ₄	0.017 mA cm ⁻² at 1.4 V vs. RHE	Ref. ³
ZnO: InN	0.5 M Na ₂ SO ₄	0.015 mA cm ⁻² at 1 V vs. Ag/AgCl	Ref. ⁴
Ni(OH) ₂ /ZnO	0.5 M Na ₂ SO ₄	1.68 mA cm ⁻² at 1.25 V vs. Ag/AgCl	Ref. ⁵
TiO2/Ni(OH) ₂	1 M NaOH	3.5 mA cm ⁻² at 1.0 V vs. SCE	Ref. ⁶
TNTAs/Ni–Ni(OH) ₂ /NiPi	0.5 M Na ₂ SO ₄	3.12 mA cm ⁻² at 1.5 V vs. RHE	Ref. ⁷
ZnO/Ni(OH) ₂	0.5 M Na ₂ SO ₄	3.75 mA cm ⁻² at 1.5 V vs. SCE	Ref. ⁸

Table 1. Summary of the PEC performance of InN-based and $Ni(OH)_2$ -based photoanodes under illumination of 100 mW cm⁻² (AM 1.5 G).

- J. Kamimura, P. Bogdanoff, M. Ramsteiner, L. Geelhaar and H. Riechert, Semicond. Sci. Technol., 2016, 31, 074001.
- 2. A. Saroni, S. A. Rahman and B. T. Goh, *7th Asian Conference on Colloid and Interface Science* (ACCIS), 2017, **5**, S186-S190.
- H. Q. Liu, X. Z. Ma, Z. X. Chen, Q. G. Li, Z. Y. Lin, H. Liu, L. Y. Zhao and S. Chu, *Small*, 2018, 14, 9.
- S. S. Menon, H. Y. Hafeez, B. Gupta, K. Baskar, G. Bhalerao, S. Hussain, B. Neppolian and S. Singh, *Renewable Energy*, 2019, 141, 760-769.
- Y. C. Mao, H. Yang, J. X. Chen, J. Chen, Y. X. Tong and X. D. Wang, *Nano Energy*, 2014, 6, 10-18.
- 6. H. Li, L. Jiang, J. Xi, J. Mu and X. Wu, *Materials Research Express*, 2017, 4, 126202.
- J. Wang, C. W. Zhuang, Y. K. Zhu, X. D. Wang, W. G. Zhang, Y. M. Liu and D. J. Yang, *Int. J. Hydrog. Energy*, 2022, 47, 22063-22077.
- 8. H. Li, Y. Qi, Z. Li, Z. Ji and X. Wu, Journal of Alloys and Compounds, 2016, 661, 201-205.