Electronic Supplementary Information

An electrocatalytic hydrogen production activity with a copper(II) complex supported by dipyridylamine ligand in acidic water

Nilankar Diyali[†], Meena Chettri[†], Subhajit Saha[†], Ankita Saha[†], Subhankar Kundu[†] Debasis Mondal[‡], Debasish Dhak[‡] and Bhaskar Biswas^{,,*}[†]

[†]Department of Chemistry, University of North Bengal, Darjeeling-734013, India.

[‡] Department of Chemistry, Sidho-Kanho-Birsha University Purulia, 732104, India.

Table of Content

			De ee Ne
	- ·		Page No.
А.	Experim	ental	S1- S2
	1.	Physical measurements	S 1
	2.	HER by $[Cu(dpa)_2(N_3)]^+$	S1
	3.	Catalyst concentration dependence study	S1- S2
	4.	DFT Study	S2
B.	Figures		S3-S12
	1.	FT-IR spectra of [Cu(dpa) ₂ (N ₃)] ⁺	S3
	2.	a) UV-Vis spectra of [Cu(dpa) ₂ (N ₃)] ⁺ in water; (b) UV-Vis	S3
		spectra of $[Cu(dpa)_2(N_3)]^+$ in water for stability test over 3	
		days; (c) UV-Vis spectra of $[Cu(dpa)_2(N_3)]^+$ and in presence	
		of 0.1 M KCl in water media.	
	3.	ESI-MS of $[Cu(dpa)_2(N_3)]^+$ in water	S3
	4.	Structural validity of the [Cu(dpa) ₂ (N ₃)]Cl·4H ₂ O with	S4
	E	crystallographic bond distance and bond angle measurement. $CV_{2} \neq CCE_{2} = a_{2} + (C_{2} + (b_{2}) + (N_{2}))^{\dagger}$	C 4
	5.	CVs of GCE, dpa and $[Cu(dpa)_2(N_3)]^2$	S4
	6. -	Plot of current vs. scan rate of $[Cu(dpa)_2(N_3)]^{T}$.	S5
	7.	Comparison of the CV of CuCl ₂ .2H ₂ O salt and IC_{1} (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	S5
	ø	$[Cu(dpa)_2(N_3)]'$ with the addition of 14 mM AcOH.	C (
	0.	(a) upa tituation with AcOH in 0.1 M KCI, (b) only 0.1 M KCI titration with $AcOH$	50
	9.	(a) CVs in 0.1 M KCl solution in the presence of 14 mM	S 6
		AcOH (red) and with $[Cu(dpa)_2(N_3)]^+$ in 14 mM AcOH. (b)	50
		CVs were recorded in an electrolyte-only solution using a	
		freshly polished GCE and an electrode after CPE in a solution	
		of $1 \text{mM} [Cu(dpa)_2(N_3)]^+$ and 14 mM AcOH for 3 h.	
	10.	Plot of catalytic current (i_c) vs. concentration of AcOH.	S 7
	11.	CVs in 0.1 M KCl aqueous solution containing 14 mM AcOH	S 7
		with different concentrations of $[Cu(dpa)_2(N_3)]^+$ at a scan rate	
	10	of 100 mV/s .	C O
	12.	Hydrogen gas detection by gas chromatography (GC).	58
	13.	CV of complex and recovered complex.	S 8
	14.	UV-Vis titration of $[Cu(dpa)_2(N_3)]^+$ using 0.5 to 11 mM of AcOH.	S9
	15.	(a)UV-Vis plot of [Cu(dpa) ₂ (N ₃)] ⁺ in a citrate-phosphate	S9
		buffer in the pH range of 3-7. (b) Plot of absorbance vs. pH at 345 nm.	

	16.	UV-Vis titration of dpa using 0.5 to 11 mM of AcOH.	S10
	17.	Decrement of the d-d band of the $[Cu(dpa)_2(N_3)]^+$.	S10
	18.	Energy profile of different N-protonated species using DFT calculation.	S11
	19.	UV-Vis spectra of $[Cu(dpa)_2(N_3)]^+$ in water and after one equivalent sodium naphthalene as one electron reductant.	S11
	20.	The spin density plot of N-site protonated.	S12
	21.	Optimized structure of intermediates.	S12
C.	Calculat	ion	S13- S14
	1.	Determination of diffusion coefficient (D) of [Cu(dpa) ₂ (N ₃)] ⁺ in 0.1 M KCl aqueous solution	S13
	2.	Calculation of net charge based on Control potential Electrolysis (CPE) in aqueous	S13
	3.	Calculation of theoretical Moles of Hydrogen Made via Total Charge	S13
	4.	Calculation of Turnover number (TON)	S14
D.	Tables		S15-S31
D.	Tables 1.	Crystallographic structural parameters of [Cu(dpa) ₂ (N ₃)]Cl·4H ₂ O	S15-S31 S15
D.	Tables 1. 2.	Crystallographic structural parameters of [Cu(dpa) ₂ (N ₃)]Cl·4H ₂ O Selected bond distances (Å) and angles (°) of [Cu(dpa) ₂ (N ₃)]Cl·4H ₂ O	S15-S31 S15 S16
D.	Tables 1. 2. 3.	Crystallographic structural parameters of [Cu(dpa) ₂ (N ₃)]Cl·4H ₂ O Selected bond distances (Å) and angles (°) of [Cu(dpa) ₂ (N ₃)]Cl·4H ₂ O Hydrogen bond lengths (Å) and angles (°) for [Cu(dpa) ₂ (N ₃)]Cl·4H ₂ O	\$15-\$31 \$15 \$16 \$16
D.	Tables 1. 2. 3. 4.	Crystallographic structural parameters of $[Cu(dpa)_2(N_3)]Cl\cdot 4H_2O$ Selected bond distances (Å) and angles (°) of $[Cu(dpa)_2(N_3)]Cl\cdot 4H_2O$ Hydrogen bond lengths (Å) and angles (°) for $[Cu(dpa)_2(N_3)]Cl\cdot 4H_2O$ X… π bond lengths (Å) and angles (°) for $[Cu(dpa)_2(N_3)]Cl\cdot 4H_2O$	\$15-\$31 \$15 \$16 \$16 \$17
D.	Tables 1. 2. 3. 4. 5.	Crystallographic structural parameters of $[Cu(dpa)_2(N_3)]Cl\cdot4H_2O$ Selected bond distances (Å) and angles (°) of $[Cu(dpa)_2(N_3)]Cl\cdot4H_2O$ Hydrogen bond lengths (Å) and angles (°) for $[Cu(dpa)_2(N_3)]Cl\cdot4H_2O$ X… π bond lengths (Å) and angles (°) for $[Cu(dpa)_2(N_3)]Cl\cdot4H_2O$ Electrochemical experimental results from a typical AcOH titration of $[Cu(dpa)_2(N_3)]^+$	\$15-\$31 \$15 \$16 \$16 \$17 \$17
D.	Tables 1. 2. 3. 4. 5. 6.	Crystallographic structural parameters of $[Cu(dpa)_2(N_3)]Cl\cdot4H_2O$ Selected bond distances (Å) and angles (°) of $[Cu(dpa)_2(N_3)]Cl\cdot4H_2O$ Hydrogen bond lengths (Å) and angles (°) for $[Cu(dpa)_2(N_3)]Cl\cdot4H_2O$ X… π bond lengths (Å) and angles (°) for $[Cu(dpa)_2(N_3)]Cl\cdot4H_2O$ Electrochemical experimental results from a typical AcOH titration of $[Cu(dpa)_2(N_3)]^+$ Approximate catalytic rate constants, <i>k</i> app, with AcOH.	\$15-\$31 \$15 \$16 \$16 \$17 \$17 \$17
D.	Tables 1. 2. 3. 4. 5. 6. 7.	Crystallographic structural parameters of $[Cu(dpa)_2(N_3)]Cl\cdot4H_2O$ Selected bond distances (Å) and angles (°) of $[Cu(dpa)_2(N_3)]Cl\cdot4H_2O$ Hydrogen bond lengths (Å) and angles (°) for $[Cu(dpa)_2(N_3)]Cl\cdot4H_2O$ X… π bond lengths (Å) and angles (°) for $[Cu(dpa)_2(N_3)]Cl\cdot4H_2O$ Electrochemical experimental results from a typical AcOH titration of $[Cu(dpa)_2(N_3)]^+$ Approximate catalytic rate constants, <i>k</i> app, with AcOH. Comparison of homogeneous HER activity with reported Copper complexes.	\$15-\$31 \$15 \$16 \$16 \$17 \$17 \$17 \$17 \$18
D.	Tables 1. 2. 3. 4. 5. 6. 7. 8.	Crystallographic structural parameters of [Cu(dpa) ₂ (N ₃)]Cl·4H ₂ O Selected bond distances (Å) and angles (°) of [Cu(dpa) ₂ (N ₃)]Cl·4H ₂ O Hydrogen bond lengths (Å) and angles (°) for [Cu(dpa) ₂ (N ₃)]Cl·4H ₂ O X··· π bond lengths (Å) and angles (°) for [Cu(dpa) ₂ (N ₃)]Cl·4H ₂ O Electrochemical experimental results from a typical AcOH titration of [Cu(dpa) ₂ (N ₃)] ⁺ Approximate catalytic rate constants, <i>k</i> app, with AcOH. Comparison of homogeneous HER activity with reported Copper complexes. Computational coordinates using B3LYP/6-311g(d,p) in water.	\$15-\$31 \$15 \$16 \$16 \$17 \$17 \$17 \$18 \$18-\$31

A. Experimental

Physical measurements

FT-IR spectra of $[Cu(dpa)_2(N_3)]Cl \cdot 4H_2O$ were recorded using an FTIR-8400S SHIMADZU spectrometer in the 400-3600 cm⁻¹ range. Steady-state absorption spectral data of $[Cu(dpa)_2(N_3)]Cl \cdot 4H_2O$ was measured with a HITACHI U-2910 spectrophotometer. A Perkin Elmer 2400 CHN microanalyzer was employed to carry out the elemental analyses of the compounds. The structural characteristics of $[Cu(dpa)_2(N_3)]Cl \cdot 4H_2O$ were determined by powder X-ray diffractometer (Rigaku SmartLab) using Cu-K_a radiation ranging from 10°-80°. An RVL PG-Lyte-1.0 potentiostat consisting of a glassy-carbon working electrode, Pt counter electrode, and Ag/AgCl reference was employed to study the electrochemical analysis of the compounds.

HER by [Cu(dpa)₂(N₃)]⁺

To investigate the hydrogen evolution activity, CV was recorded by taking 11.1 mg (1 mM) of $[Cu(dpa)_2(N_3)]^+$ in 0.1 M KCl, a supporting electrolyte in 20 ml aqueous solution. The 1 M acetic acid (AcOH) in a 10 ml volumetric flask was prepared as a stock solution to monitor the acid titration. The subsequent CVs were recorded with the addition of AcOH from the 0.1 M stock solution in the following amounts of 100 µL, 200 µL, 300 µL, 400 µL and so on. The pH of the solution of 1 mM [Cu(dpa)_2(N_3)]^+ in 0.1 M KCl was 6.20, recorded using Eutech pH 700 meter. In the same solution, with the addition of 14 mM AcOH and 18 mM AcOH, the pH was 3.56 and 3.17, respectively.

Catalyst concentration dependence study

A 0.1 M stock solution of $[Cu(dpa)_2(N_3)]^+$ was prepared by dissolving 0.555 g $[Cu(dpa)_2(N_3)]Cl\cdot 4H_2O$ crystals with H₂O in a 10 mL volumetric flask. A 20 mL solution of 0.1 M KCl in H₂O was prepared in an electrochemical cell. 14 mM AcOH was added to the cell and

purged with nitrogen. CVs were taken from 0.0 to -1.6 V at 100 mV/s with the addition of 50 μ L, 100 μ L, 150 μ L, 200 μ L, and 250 μ L of the [Cu(dpa)₂(N₃)]⁺stock solution.

DFT study

All the structures were optimized by Density functional theory (DFT) by using the B3LYP functional¹ and 6-311g(d,p) basic set. The calculation in water ($\varepsilon = 78.3553$) medium using IEFPCM solvation methods. Gauss view was used as a visualization tool, and all the analysis was carried out by Gaussian 16.² After obtaining the converged geometry, the vibrational harmonic frequencies were calculated at the same theoretical level to ensure that the imaginary frequency number was zero for the stationary point.

B. Figures

Figure S1. FT-IR spectra of [Cu(dpa)₂(N₃)]Cl·4H₂O.

Figure S2. (a) UV-Vis spectra of [Cu(dpa)₂(N₃)]⁺ in water; (b) UV-Vis spectra of [Cu(dpa)₂(N₃)]⁺ in water for stability test over 3 days; (c) UV-Vis spectra of [Cu(dpa)₂(N₃)]⁺ in water and the presence of 0.1 M KCl in water media.

Figure S3. ESI-MS of [Cu(dpa)₂(N₃)]⁺ in water.

Figure S4. Structural validity of the copper complex with crystallographic bond distance and bond angle measurement.

Figure S5. CVs of GCE (black), dpa (orange), and (blue) [Cu(dpa)₂(N₃)]⁺. Peak around -0.8 V vs. Ag/AgCl is due to dissolved O₂.

Figure S6. Plot of current vs. scan rate of [Cu(dpa)₂(N₃)]⁺.

Figure S7. Comparison of CV of CuCl₂.2H₂O salt and [Cu(dpa)₂(N₃)]⁺ with addition of

14 mM AcOH.

Figure S8. (a) dpa titration with AcOH in 0.1 M KCl; **(b)** only 0.1 M KCl titration with AcOH. (the appearance of a peak at around -0.8V (V vs. Ag/AgCl) is due to the presence of oxygen.)

Figure S9. (a). CVs run in 0.1 M KCl as an electrolyte in aqueous solution (black), in the presence of 14 mM AcOH (red) and the presence of $[Cu(dpa)_2(N_3)]^+$ with 14 mM AcOH (blue). (b) CVs were recorded in an electrolyte-only solution using a freshly polished GCE (black trace) and an electrode after CPE in a solution of 1mM $[Cu(dpa)_2(N_3)]^+$ and 14 mM AcOH for 3 h (red trace).

Figure S10. Plot of catalytic current (i_c) vs. concentration of AcOH.

Figure S11. CVs in 0.1 M KCl aqueous solution containing 14 mM AcOH with different concentrations of $[Cu(dpa)_2(N_3)]^+$ at a scan rate of 100 mV/s. Inset i_p vs. $[Cu(dpa)_2(N_3)]^+$ fitted with a linear correlation exhibiting an R² value of 0.99.

Figure S12. Hydrogen gas detection by gas chromatography (GC).

Figure S13. CV of complex and recovered complex.

Figure S14. UV-Vis titration of [Cu(dpa)₂(N₃)]⁺ using 0.5 to 11 mM of AcOH.

Figure S15. (a)UV-Vis plot of $[Cu(dpa)_2(N_3)]^+$ in a citrate-phosphate buffer in the pH range of 3-7. (b) Plot of absorbance *vs.* pH at 345 nm.

Figure S16. UV-Vis titration of dpa using 0.5 to 11 mM of AcOH.

Figure S17. Decrement of the d-d band of the [Cu(dpa)₂(N₃)]⁺. A high concentration of complex was used to clarify the d-d band.

Figure S18. Energy profile of different N-protonated species using DFT calculation.

Figure S19. UV-Vis spectra of $[Cu(dpa)_2(N_3)]^+$ in water (blue) and after one equivalent sodium naphthalene as one electron reductant (red). Inset: Diminishing nature of d-d band.

Figure S20. The spin density plot of N-site protonated intermediate (B) at an isovalue of 0.003.

Figure S21: Optimized structure of intermediates a) N-site protonation of Cu(II) state, b) N-site protonation of Cu(I) state, c) doubly protonated Cu(II) intermediate state in Tafel step of $[Cu(dpa)_2(N_3)]^+$ electrocatalyst.

C.CALCULATION

1. Determination of the diffusion coefficient (D) of [Cu(dpa)₂(N₃)]⁺ in 0.1 M KCl aqueous solution

The Diffusion Coefficient (D) was extracted from the theoretical slope using the equation below-

$$Slope = [0.4463nFAC^{0} \left(\frac{nFD}{RT}\right)^{\frac{1}{2}}].....(S1)$$

Slope $\equiv 3.65 \times 10^{-3}$

Area of the glassy carbon electrode (A) = 0.071 cm^2

Concentration of the analyte (C) = 1×10^{-3} moles/cm

Faraday constant (F) = 96485 C/mole e^{-}

R = ideal gas constant, and T = 298 K

$$D_0 = 4.432 \times 10^{-3} \text{ cm}^2 / \text{ s}$$

2. Calculations of net charge based on Control potential Electrolysis (CPE) in aqueous 0.1 M KCl:

Total charge = $Q_{with cat} - Q_{blank} = Qnet$

3. Calculation of theoretical Moles of Hydrogen Made via Total Charge

Moles H_2 theoretical = 8.143 x (1 mol e⁻ / 96485 C) x (1 mol H_2 / 2 mol e⁻)

= 4.196×10^{-5} moles H₂ based on the charge from electrolysis

4. Calculation of turnover number (TON)

Moles of H₂ produced

$$TON = Moles of [Cu(dpa)_2(N_3)]^+ used$$

$$TON = \frac{4.196 \times 10^{-5} \text{ moles } H_2 \text{ produced}}{TON = (Cu(dpa)_2(N_3))^+ \text{ used}}$$
$$TON = 41.96$$

Assuming two electrons are passed for each H_2 molecule produced (n=2), and the acid concentration does not change significantly during the measurement, the catalytic turnover frequency (kobs = k[H+]) can be calculated using equation

$$\frac{i_{cat}}{i_p} = \frac{n}{0.4463} \sqrt{\frac{RT(K[H^+])}{Fv}}.....(S3)$$

The apparent rate constant (k_{app}) associated with acid and catalyst is calculated using the equation S4.

$$i_{C} = nFAC_{cat} (Dk_{app}C_{acid})^{1/2} \dots (S4)$$

D. Tables

Table S1. Crystallographic structural parameters of [Cu(dpa) ₂ (N ₃)]Cl·4H ₂ O					
Parameters	[Cu(dpa) ₂ (N ₃)]Cl·4H ₂ O				
CCDC	2299272				
Empirical formula	C ₂₀ H ₂₆ ClCuN ₉ O ₄				
Formula weight	555.49				
T (K)	250K				
Wavelength (Å)	1.54184				
Crystal system	Monoclinic				
Space group	P21/c				
Unit Cell Dimensions					
a (Å)	7.0295(4)				
b (Å)	27.8164(16)				
c (Å)	12.8722(7)				
α (°)	90.00				
β(°)	99.071(5)				
γ (°)	90				
V (Å ³)	2485.5(2)				
Z	4				
ρ (g cm ⁻³)	1.485				
Absorption coefficient (mm ⁻¹)	1.032				
F(000)	1148				
Theta range for data collection	2.7 to 32.8				
Index ranges (h, k, l)	$-8 \le h \le 8, -29 \le k \le 30, -14 \le l \le 9$				
Reflections collected	16212				
Independent reflections	4195				

R(int)	0.021
Final R indices [I>2sigma(I)]	$R_1 = 0.0605, wR_2 = 0.1593$
Largest diff. peak and hole	1.45/-1.13 e. Å-3

Table S2. Selected bond distances (Å) and angles (°) of [Cu(dpa) ₂ (N ₃)]Cl·4H ₂ O.								
	Exp.	DFT		Exp.	DFT			
Cu1-N3	1.999(3)	2.0692	Cu1-N8	2.033(3)	2.0783			
Cu1-N4	2.170(3)	2.2837	Cu1-NC	2.021(3)	1.9547			
Cu1-N5	2.001(3)	2.0624						
∠N3-Cu1-N4	102.27(10)	107.02	∠N3-Cu1-NC	86.33(11)	87.38			
∠N3-Cu1-N5	169.51(11)	167.73	∠N4-Cu1-N5	87.97(10)	85.23			
∠N3-Cu1-N8	87.40(11)	86.52	∠N4-Cu1-N8	96.15(11)	94.29			
∠N4-Cu1-NC	103.38(11)	97.29	∠N5-Cu1-NC	89.09(11)	90.82			
∠N5-Cu1-N8	93.84(11)	92.95	∠N8-Cu1-NC	160.34(11)	168.06			

Table S3. Hydrogen bond lengths (Å) and angles (°) for [Cu(dpa) ₂ (N ₃)]Cl·4H ₂ O.							
D-H···A	d(D-H)	d(H···A)	<i>d</i> (D····A)	∠(DHA)	Symmetry		
O1H1BCl5	0.85	2.31	3.156(3)	171	x,y,1+z		
NAHACl5	0.86	2.55	3.251(2)	139	x,y,1+z		
O2H2BCl5	0.85	2.34	3.193(4)	177	-1+x,y,z		
O3H3AO4	0.85	1.93	2.781(4)	175	-x,1-y,2-z		
O3H3BO2	0.85	1.99	2.842(4)	177	x,y,1+z		
O4H4AO1	0.85	1.99	2.842(4)	177	1-x,1-y,2-z		
CNHNNC	0.93	2.59	3.464(4)	156	x,3/2-y,1/2+z		

Table S4. X… π bond lengths (Å) and angles (°) for [Cu(dpa) ₂ (N ₃)]Cl·4H ₂ O					
X…Cg(<i>I</i>)	<i>d</i> [X···Cg(<i>I</i>)]	∠[CHCg(<i>I</i>)]			
N9-NL[1] -> Cg5	3.357(4)	8.76			

Table	S5.	Electrochemical	experimental	results	from	a	typical	AcOH	titration	of
[[Cu(d	pa)2(N ₃)] ⁺ obtained usin	g equation S3.	•						

[[Cu(dpa) ₂ (N ₃)] ⁺	AcOH	i _c (mA)	i _p (mA)	i _{cat} /i _p	Scan rate	$k_{\rm obs}$ (s ⁻¹)
(mM)	(mM)				(ϑ,V/s)	
1	2	-0.124	-0.0569	2.17	0.1	0.90
1	4	-0.2944	-0.0569	5.166	0.1	5.15
1	6	-0.3847	-0.0569	6.75	0.1	8.79
1	8	-0.5132	-0.0569	9.006	0.1	15.65

Table S7. Comparison of homogeneous HER activity with reported Copper complexes.

S.	1 Electro	catalyst ⁰	-9:67270N	-0.05@Pectr	ochemical	0.stabili	ty/Dur <mark>a</mark> ðiftfy
No	1	12	-0.7517	-0.0569	roton source 13.19	0.1	33.56
	1	14	-0.9157	-0.0569	16.07	0.1	49.81
1	[(bztpen)	$\mathbb{C}u](\mathbf{BF4})_2^3$	10000 s ⁻¹	"Acidic ac	ueous buffer.	Not expl	citly discussed
		· · ·			· ·		
2	[Cu(TMPA)	CI CI (1) and	(1) 6108	CH ₃ CN/H ₂	O solution (9:1,	After ele	ctrolysis for 2 h,
	[Cu(Cl-TM	PA)Cl ₂] $(2)^4$	TON and (2)	v/v) with I	complex as PS	characterist	ic NIR absorption
			10014 TON	and triethyl	amine (TEA) as	of Cu(I	I) species was
			in 6 h	sacrificial	reductant (SR).	dir	ninished.
3	[Cu(QCl-tpy)	(OAc)(Cl)](1),	(1) 1153 s ⁻¹	95:5 DMF/H ₂ O (v/v) in the		Not explicitly discussed	
	and [C	Cu(4Ql-	(2) 1682 s ⁻¹	presence of AcOH as a		1	•
	tpy)(OAc)(OH ₂)]Cl (2) ⁵		proto	on source.		
4	[Cu(tpe	n)](PF ₆) ⁶	3415 s ⁻¹	95:5 DMF/	$H_2O(v/v)$ in the	1)After ele	ectrolysis for 2 h,
		/ - · · /		presence	of AcOH as a	some mino	r spectral changes
				proto	on source.	were observ	ved in the UV-vis
							spectra.
						2)FESEM	and EDX analyses
						revea	aled a slight
						decomposi	tion of conner on
						worki	ng electrode
						WOIKI	ng electrode.

Table S6. Approximate catalytic rate constants, kapp, with AcOH, were obtained using equation S4.

k _{app} (2 mM)	k _{app} (4 mM)	k _{app} (6 mM)	k _{app} (8 mM)	k _{app} (10 mM)	k _{app} (12mM)	k _{app} (14mM)
M ⁻¹ s ⁻¹						
9.214	26.04	29.64	39.56	54.39	56.59	71.99

5	$\label{eq:constraint} \begin{array}{l} [\{(OAc)_2Cu(3py-tpy)\}_2Cu(OAc)_2(H_2O)_2]\ (1),\\ \{[Cu(4pytpy)(OAc)]Cl\}_n\ (2)\\ \text{and}\ [Cu(Ph-tpy)(OAc)_2]\ (3)^7 \end{array}$	(1) 1473 s ⁻¹ (2) 700 s ⁻¹ (3) 926 s ⁻¹	95:5 DMF/H ₂ O (v/v) in the presence of AcOH as a proton source.	No substantial change in the CV and UV-vis spectrum recorded before and after the bulk electrolysis.
6	Cu(II)L, ⁸	10000 s ⁻¹ and TON 52 in ACN and 5100 s ⁻¹ and TON 73 in DMF	ACN and DMF with AcOH as a proton source.	CPE reveals no sign of degradation over 23 h.
7	[Cu(dpa)2(N3)]+ This work	241.75 s ⁻¹ and TON 73.06	AcOH in 0.1 M KCl water.	CPE reveals no sign of degradation over 1.6 h, PXRD, UV-vis spectrum displays negligible change after electrolysis.

Table S8. Computational coordinates using B3LYP/6-311g(d,p) in water.				
[Cu(dpa) ₂ (N ₃)] ⁺				
Cu	0.15354	-0.04865	-0.43176	
N	2.04503	-0.8642	-0.62854	
N	0.8458	-1.09566	1.33476	
Ν	-1.61447	1.00169	-0.58804	
N	-2.97803	-0.69098	0.39302	
Н	-3.92057	-1.04878	0.36296	
Ν	1.04564	1.41737	0.74062	
N	3.11906	1.23032	-0.37668	
Н	3.99588	1.70485	-0.53196	

С	3.16034	-0.12685	-0.70001
С	- 2.1384	-1.41543	1.23658
С	-2.82717	0.48993	-0.31667
С	-2.70956	-2.46581	1.97881
Н	-3.76068	-2.7061	1.8699
С	2.281	1.88954	0.51131
С	4.38883	-0.67407	-1.10142
Н	5.26937	-0.04575	-1.16212
С	-0.08507	-1.78824	2.2028
Н	0.95486	-1.48409	2.25464
С	4.45422	-2.02167	-1.39913
Н	5.39435	-2.46346	-1.70688
С	-1.5469	2.15954	-1.28671
Н	-0.54808	2.53494	-1.47407
С	0.28786	2.03921	1.67228
Н	-0.68297	1.59575	1.84264

С	-4.00322	1.1301	-0.75693
Н	-4.96751	0.69424	-0.52591
С	2.1245	-2.18165	-0.91836
Н	1.18418	-2.71402	-0.88899
С	-1.90783	-3.17518	2.85137
Н	-2.32734	-3.98734	3.4329
С	3.30037	-2.80063	-1.2911
Н	3.30834	-3.85879	-1.51436
С	-0.55957	-2.82734	2.98033
Н	0.09853	-3.35285	3.65923
С	-2.65041	2.83982	-1.74836
Н	-2.53279	3.75643	-2.31003
С	2.76243	3.04717	1.15017
Н	3.75928	3.41042	0.93071
С	-3.91306	2.29917	-1.47872
Н	-4.81224	2.79225	-1.82743
С	0.69701	3.16125	2.36039

Н	0.04643	3.6183	3.09352
С	1.96088	3.68738	2.0724
Н	2.31955	4.57525	2.57911

E			
Cu	-0.00001	-0.00013	0.00004
N	1.36091	1.27771	0.69414
N	-1.36029	1.27841	-0.69394
Ν	-1.36113	-1.27792	0.6938
Ν	-3.23793	0.00044	-0.00082
Н	-3.84142	0.43446	0.66808
Ν	-1.36055	-1.27875	-0.6934
Н	4.2481	-0.0004	-0.00054
С	2.68775	1.06124	0.68852

С	2.68719	1.06219	-0.68901
С	-2.68794	-1.06122	0.6881
С	-3.56984	1.92165	-1.37146
Н	-4.63398	1.72683	-1.34043
С	2.68737	-1.06215	-0.6886
C	3.57089	1.92035	1.37078
Н	4.63499	1.72534	1.33917
С	-0.87579	2.33051	-1.40445
Н	0.1989	2.44856	-1.39645
С	3.06395	2.99009	2.0737
Н	3.73463	3.65515	2.60316
С	-0.87736	-2.32983	1.40505
Н	0.1973	-2.44824	1.39769
С	0.87625	-2.33085	-1.40402
Н	-0.1984	-2.44922	-1.39584
С	-3.57125	-1.92008	1.37046

Н	-4.6353	-1.72485	1.33884
С	0.87693	2.32965	1.40524
Н	-0.19774	2.44791	1.39777
С	-3.06237	2.99154	-2.07378
Н	-3.73267	3.65687	-2.60336
С	1.67987	3.20151	2.10069
Н	1.23986	4.02188	2.64997
С	-1.67824	3.20274	-2.1
Н	-1.23781	4.02322	-2.64878
С	-1.68047	-3.20149	2.10056
Н	-1.24061	-4.02188	2.64995
С	3.57018	-1.9212	-1.37137
Н	4.63427	-1.72607	-1.34047
С	-3.06452	-2.98983	2.07351
Н	-3.73532	-3.6547	2.60304
С	1.67885	-3.20272	-2.09986

Н	1.2386	-4.02323	-2.64874
С	3.06292	-2.99108	-2.07385
Н	3.73332	-3.65609	-2.6037
Н	-3.84045	-0.43368	-0.67053
В			
Cu	-0.00001	-0.00013	0.00004
N	1.36091	1.27771	0.69414
N	-1.36029	1.27841	-0.69394
N	-1.36113	-1.27792	0.6938
N	-3.23793	0.00044	-0.00082
Н	-4.2481	0.0006	-0.0011
N	1.36055	-1.27875	-0.6934
N	3.23794	-0.00047	-0.00016
Н	4.2481	-0.0004	-0.00054
С	2.68775	1.06124	0.68852
С	-2.68719	1.06219	-0.68901
С	-2.68794	-1.06122	0.6881

С	-3.56984	1.92165	-1.37146
Н	-4.63398	1.72683	-1.34043
С	2.68737	-1.06215	-0.6886
С	3.57089	1.92035	1.37078
Н	4.63499	1.72534	1.33917
С	-0.87579	2.33051	-1.40445
Н	0.1989	2.44856	-1.39645
С	3.06395	2.99009	2.0737
Н	3.73463	3.65515	2.60316
С	-0.87736	-2.32983	1.40505
Н	0.1973	-2.44824	1.39769
С	0.87625	-2.33085	-1.40402
Н	-0.1984	-2.44922	-1.39584
С	-3.57125	-1.92008	1.37046
Н	-4.6353	-1.72485	1.33884
С	0.87693	2.32965	1.40524

Н	-0.19774	2.44791	1.39777
С	-3.06237	2.99154	-2.07378
Н	-3.73267	3.65687	-2.60336
С	1.67987	3.20151	2.10069
Н	1.23986	4.02188	2.64997
С	-1.67824	3.20274	-2.1
Н	-1.23781	4.02322	-2.64878
С	-1.68047	-3.20149	2.10056
Н	-1.24061	-4.02188	2.64995
С	3.57018	-1.9212	-1.37137
Н	4.63427	-1.72607	-1.34047
С	-3.06452	-2.98983	2.07351
Н	-3. 73532	-3.6547	2.60304
С	1.67885	-3.20272	-2.09986
Н	1.2386	-4.02323	-2.64874
С	3.06292	-2.99108	-2.07385
Н	3.73332	-3.65609	-2.6037
Н	-0.74308	0.67785	-0.18563

С			
Cu	-0.66152	-0.27456	-0.63694
N	-1.57501	1.37782	-0.89961
N	3.59672	0.94106	0.11706
N	0.81386	-1.52144	-0.99209
N	1.9313	-0.56059	0.83156
Н	1.39113	-0.8833	1.62547
N	-2.02467	-1.08632	0.50166
N	-3.27777	0.92962	0.67801
Н	-4.07585	1.33886	1.14356
С	-2.67493	1.76661	-0.2337
С	2.82968	0.43068	1.10839
С	1.9681	-1.42179	-0.29455
С	2.96096	0.97992	2.39268
Н	2.35847	0.58348	3.19826
С	-3.07276	-0.39786	0.9917
С	-3.236	3.03714	-0.45472
Н	-4.12235	3.33006	0.09246
С	4.49578	1.94549	0.3084
Н	5.04871	2.24964	-0.56775
С	-2.65037	3.88074	-1.37228
Н	-3.07694	4.85956	-1.55126
С	0.75616	-2.36649	-2.04373

Н	-0.19044	-2.43318	-2.56357
С	-1.87792	-2.39656	0.83017
Н	-1.02105	-2.90046	0.4073
С	3.09817	-2.1481	-0.63752
Н	3.99493	-2.06935	-0.03814
С	-1.01	2.21259	-1.81175
Н	-0.13564	1.83762	-2.32896
С	3.85838	2.00479	2.60243
Н	3.96039	2.42436	3.59515
С	-1.51197	3.46321	-2.07512
H-	1.03092	4.09535	-2.80773
С	4.64725	2.49963	1.54875
Н	5.3599	3.29668	1.70055
С	1.85156	-3.10961	-2.45121
Н	1.76381	-3.76614	-3.30552
С	-4.0006	-1.01696	1.84976
Н	-4.83417	-0.44192	2.23116
С	3.04119	-2.99471	-1.74184
Н	3.91134	-3.57343	-2.02378
С	-2.75409	-3.0574	1.65634
Н	-2.59292	-4.10094	1.88652
С	-3.839	-2.34361	2.17952
Н	-4.55206	-2.82674	2.83539

Н	3.49922	0.57482	-0.82437
D	1		I
Cu	-0.00001	-0.00013	0.00004
N	1.36091	1.27771	0.69414
N	-1.36029	1.27841	-0.69394
N	-1.36113	-1.27792	0.6938
N	-3.23793	0.00044	-0.00082
Н	-4.2481	0.0006	-0.0011
N	1.36055	-1.27875	-0.6934
N	3.23794	-0.00047	-0.00016
Н	4.2481	-0.0004	-0.00054
С	2.68775	1.06124	0.68852
С	-2.68719	1.06219	-0.68901
С	-2.68794	-1.06122	0.6881
С	-3.56984	1.92165	-1.37146
Н	-4.63398	1.72683	-1.34043
С	2.68737	-1.06215	-0.6886
С	3.57089	1.92035	1.37078
Н	4.63499	1.72534	1.33917
С	-0.87579	2.33051	-1.40445
Н	0.1989	2.44856	-1.39645
С	3.06395	2.99009	2.0737

Н	3.73463	3.65515	2.60316
С	-0.87736	-2.32983	1.40505
Н	0.1973	-2.44824	1.39769
С	0.87625	-2.33085	-1.40402
Н	-0.1984	-2.44922	-1.39584
С	-3.57125	-1.92008	1.37046
Н	-4.6353	-1.72485	1.33884
С	0.87693	2.32965	1.40524
Н	-0.19774	2.44791	1.39777
С	-3.06237	2.99154	-2.07378
Н	-3.73267	3.65687	-2.60336
С	1.67987	3.20151	2.10069
Н	1.23986	4.02188	2.64997
С	-1.67824	3.20274	-2.1
Н	-1.23781	4.02322	-2.64878
С	-1.68047	-3.20149	2.10056
Н	-1.24061	-4.02188	2.64995
С	3.57018	-1.9212	-1.37137
Н	4.63427	-1.72607	-1.34047
С	-3.06452	-2.98983	2.07351
Н	-3.73532	-3.6547	2.60304
С	1.67885	-3.20272	-2.09986
Н	1.2386	-4.02323	-2.64874

С	3.06292	-2.99108	-2.07385
Н	3.73332	-3.65609	-2.6037
Н	-0.74308	0.67785	-0.18563

E. References

- 1 S. Grimme, J. Comput. Chem., 2006, 27, 1787–1799.
- 2 2016.
- P. Zhang, M. Wang, Y. Yang, T. Yao and L. Sun, *Angew. Chemie Int. Ed.*, 2014, 53, 13803–13807.
- J. Wang, C. Li, Q. Zhou, W. Wang, Y. Hou, B. Zhang and X. Wang, *Dalt. Trans.*, 2016,
 45, 5439–5443.
- 5 S. Rai, S. S. Akhter and S. K. Padhi, *Polyhedron*, 2021, **208**, 115425.

- 6 K. Majee, S. Rai, B. Panda and S. K. Padhi, *Electrochim. Acta*, 2020, **354**, 136614.
- 7 S. Rai and S. K. Padhi, *Electrochim. Acta*, 2020, **364**, 137277.
- A. Z. Haddad, S. P. Cronin, M. S. Mashuta, R. M. Buchanan and C. A. Grapperhaus, *Inorg. Chem.*, 2017, 56, 11254–11265.