Supporting Information

Anion-exchange synthesis of an MnCo2S⁴ electrocatalyst towards facilitated

ultralong hydrogen evolution reaction in acidic and alkaline Media

Abu Talha Aqueel Ahmed^a, Sankar Sekar^{a,b}, Shubhangi S. Khadtare^c, Nurul Taufiqu Rochman^d, Chinna Bathula^e, Abu Saad Ansari^{d*}

^a Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, South Korea

^b Quantum-functional Semiconductor Research Center, Dongguk University-Seoul, Seoul 04620, Republic of Korea

c Innovative Compound Semiconductor and Application Laboratory, Department of Electronic and Computer Engineering, Hanyang University, Seoul 04763, Republic of Korea

^d Nano Center Indonesia Research Institute, Puspiptek street, South Tangerang, Banten 15314, Indonesia

^e Division of Electronics and Electrical Engineering, Dongguk University, Seoul 04620, South Korea

Corresponding Author: abusaadphy@gmail.com

Contents:

- 2. Fig. S1. EDS spectra for (a) $MnCo₂O₄$ and (b) $MnCo₂S₄$ electrodes, which confirms the complete transformation of oxide phase into sulfide form…….….... S4
- 3. Fig. S2. EIS plots measured before and after stability in (a) alkaline 1 M KOH and (b) acidic 0.5 M H₂SO₄ medium. (c) Reliability graph for $MnCo₂O₄$ catalyst performance in acidic and alkaline media.……………………………………….. S5
- 4. Table S2. EIS fitted parameters for $MnCo₂O₄$ and $MnCo₂S₄$ catalysts measured before and after stability.………………………………………………………… S5
- 5. Fig. S3. Non-Faradaic scan rate-dependent CV curves for (a) $MnCo₂O₄$ and (b) MnCo2S⁴ catalysts recorded in a voltage window range between −0.10 and 0.00 V (*vs. RHE*). (c) "*J vs.* v " plot of MnCo₂O₄ and MnCo₂S₄ catalysts for the estimation of *CDL* and *ECSA……………………………………………………………..* S6
- 6. Table S3. Estimated C_{DL} and $ECSA$ values for $MnCo₂O₄$ and $MnCo₂S₄$ catalysts in alkaline KOH medium.………………………………………………………... S6
- 7. Fig. S4. (a) "*V vs. TOF*" plots and (b) *ECSA*-corrected LSV curves for $MnCo₂O₄$ and MnCo₂S₄ catalysts measured at 1.0 mV s⁻¹ in an acidic (0.5 M H₂SO₄) and alkaline (1 M KOH) media………………………………………………………. S7
- 8. Fig. S5. Post-stability measured (a) Co 2p, (b) Mn 2p, and (c) S 2p highresolution XPS emission spectra of MnCo2S⁴ catalyst…………………………… S8
- 9. Supporting References…………………………………………………………... S9

Table S1. Comparative electrochemical HER performance of various transition metal-based catalysts and the proposed $MnCo₂S₄$ catalysts in an acidic 0.5 M $H₂SO₄$ and alkaline 1.0 M KOH medium.

Fig. S1. EDS spectra for (a) $MnCo₂O₄$ and (b) $MnCo₂S₄$ electrodes, which confirms the complete transformation of oxide phase into sulfide form.

Fig. S2. EIS plots measured before and after stability in (a) alkaline 1 M KOH and (b) acidic 0.5 M H₂SO₄ medium. (c) Reliability graph for MnCo₂O₄ catalyst performance in acidic and alkaline media.

Table S2. EIS fitted parameters for MnCo₂O₄ and MnCo₂S₄ catalysts measured before and after stability.

MnCo ₂ S ₄	Before stability		After HER stability	
	$R_S(\Omega)$	$R_{ct}(\Omega)$	$R_S(\Omega)$	$R_{ct}(\Omega)$
1 M KOH	0.368	8.488	0.394	9.113
$0.5 M H_2SO_4$	0.358	6.811	0.379	7.345

Fig. S3. Non-Faradaic scan rate-dependent CV curves for (a) $MnCo₂O₄$ and (b) $MnCo₂S₄$ catalysts recorded in a voltage window range between −0.10 and 0.00 V (*vs*. RHE). (c) "*J vs.* v " plot of MnCo₂O₄ and MnCo₂S₄ catalysts for the estimation of C_{DL} and *ECSA*.

Table S3. Estimated C_{DL} and $ECSA$ values for $MnCo₂O₄$ and $MnCo₂S₄$ catalysts in alkaline KOH medium.

Fig. S4. (a) "*V vs. TOF*" plots and (b) *ECSA*-corrected LSV curves for $MnCo₂O₄$ and $MnCo₂S₄$ catalysts measured at 1.0 mV s⁻¹ in an acidic (0.5 M H_2SO_4) and alkaline (1 M KOH) media.

The intrinsic reaction kinetics of the catalyst can be assessed by estimating the TOF values. Fig. S4a shows the "*V vs. TOF*" plots for the $MnCo₂O₄$ and $MnCo₂S₄$ catalysts calculated from the following equation as:

$$
TOF = (J \times A) / (F \times n \times N)
$$
\n(S1)

where *J*, *A*, *n*, *N*, and *F* signifies the current density, active catalyst loading area (1×1 cm²), Faraday constant $(96,485.3329 \text{ A s mol}^{-1})$, the number of moles of catalyst, and number of electrons mol⁻¹ (for HER; $N = 2$), respectively. The MnCo₂O₄ catalyst demonstrates the *TOF* of -1.9393 and -0.4658 s⁻¹ at -0.275 V in acidic and alkaline electrolyte media, respectively, which is comparatively lower than the $MnCo₂S₄$ catalysts (-0.1964 and -0.0980 s⁻¹) at the same potential value. The TOF for $MnCo₂S₄$ is almost 10- and 4-fold compared to pristine $MnCo₂O₄$ nanosheet catalyst in acidic and alkaline media, indicating that the after anionexchange the intrinsic reaction kinetics improved significantly, which results in the efficient transportation of electron/ion throughout the 2D nanosheets. Moreover, *ECSA*-corrected

(*JECSA*) LSV curves further highlights the HER reaction kinetics, as shown in Fig. S4b catalysts. The *J_{ECSA}* plots reveals that the MnCo₂S₄ catalyst exhibits the smaller voltage response at each J_{ECSA} compared to the pristine MnCo₂O₄ catalyst, suggesting that MnCo₂S₄ catalyst has better intrinsic reaction kinetics.

Fig. S5. Post-stability measured (a) Co 2p, (b) Mn 2p, and (c) S 2p high-resolution XPS emission spectra of MnCo₂S₄ catalyst.

Supporting References

- S1. K. Wang, H. Song, Z. Lin, Y. Gao, H. Wu, S. Yan, J. Wang and Y. Shi, *Materials Express*, 2019, **9**, 786-791.
- S2. Y. Xing, D. Li, L. Li, H. Tong, D. Jiang and W. Shi, *International Journal of Hydrogen Energy*, 2021, **46**, 7989-8001.
- S3. X. Huang, H. Zheng, G. Lu, P. Wang, L. Xing, J. Wang and G. Wang, *ACS Sustainable Chemistry & Engineering*, 2019, **7**, 1169-1177.
- S4. W. Xiao, Y. Li, A. Elgendy, E. C. Duran, M. A. Buckingham, B. F. Spencer, B. Han, F. Alam, X. Zhong, S. H. Cartmell, R. J. Cernik, A. S. Eggeman, R. A. W. Dryfe and D. J. Lewis, *Chemistry of Materials*, 2023, **35**, 7904-7914.
- S5. Y. Feng, Y. Guan, H. Zhang, Z. Huang, J. Li, Z. Jiang, X. Gu and Y. Wang, *Journal of Materials Chemistry A*, 2018, **6**, 11783-11789.
- S6. G. Ghanashyam and H. Kyung Jeong, *Inorganica Chimica Acta*, 2022, **541**, 121098.