Supporting Information

Anion-exchange synthesis of an MnCo₂S₄ electrocatalyst towards facilitated

ultralong hydrogen evolution reaction in acidic and alkaline Media

Abu Talha Aqueel Ahmed^a, Sankar Sekar^{a,b}, Shubhangi S. Khadtare^c, Nurul Taufiqu Rochman^d, Chinna Bathula^e, Abu Saad Ansari^{d*}

^a Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, South Korea

^b Quantum-functional Semiconductor Research Center, Dongguk University-Seoul, Seoul 04620, Republic of Korea

^c Innovative Compound Semiconductor and Application Laboratory, Department of Electronic and Computer Engineering, Hanyang University, Seoul 04763, Republic of Korea

^d Nano Center Indonesia Research Institute, Puspiptek street, South Tangerang, Banten 15314, Indonesia

^e Division of Electronics and Electrical Engineering, Dongguk University, Seoul 04620, South Korea

Corresponding Author: abusaadphy@gmail.com

Contents:

1.	Table S1. Comparative electrochemical HER performance of various transition	S3
	metal-based catalysts and the proposed $MnCo_2S_4$ catalysts in an acidic 0.5 M	
	H ₂ SO ₄ and alkaline 1.0 M KOH medium	

- 2. Fig. S1. EDS spectra for (a) MnCo₂O₄ and (b) MnCo₂S₄ electrodes, which S4 confirms the complete transformation of oxide phase into sulfide form.....
- S5 3. Fig. S2. EIS plots measured before and after stability in (a) alkaline 1 M KOH and (b) acidic 0.5 M H₂SO₄ medium. (c) Reliability graph for MnCo₂O₄ catalyst performance in acidic and alkaline media.....
- 4. Table S2. EIS fitted parameters for MnCo₂O₄ and MnCo₂S₄ catalysts measured S5 before and after stability.....
- 5. Fig. S3. Non-Faradaic scan rate-dependent CV curves for (a) MnCo₂O₄ and (b) S6 MnCo₂S₄ catalysts recorded in a voltage window range between -0.10 and 0.00 V (vs. RHE). (c) "J vs. v" plot of $MnCo_2O_4$ and $MnCo_2S_4$ catalysts for the estimation of *C_{DL}* and *ECSA*.....
- 6. Table S3. Estimated C_{DL} and ECSA values for MnCo₂O₄ and MnCo₂S₄ catalysts S6 in alkaline KOH medium.....
- Fig. S4. (a) "Vvs. TOF" plots and (b) ECSA-corrected LSV curves for MnCo₂O₄ 7. **S**7 and MnCo₂S₄ catalysts measured at 1.0 mV s⁻¹ in an acidic (0.5 M H₂SO₄) and alkaline (1 M KOH) media.....
- 8. Fig. S5. Post-stability measured (a) Co 2p, (b) Mn 2p, and (c) S 2p high-**S**8 resolution XPS emission spectra of MnCo₂S₄ catalyst..... 9.
- Supporting References..... **S9**

Table S1. Comparative electrochemical HER performance of various transition metal-based catalysts and the proposed $MnCo_2S_4$ catalysts in an acidic 0.5 M H₂SO₄ and alkaline 1.0 M KOH medium.

Obs.	HER catalysts	Electrolyte	Overpotential	Tafel	Ref.
No.			(η; mV) at –10 mA cm ⁻²	Slope (mV dec ⁻¹)	
1	Co:FeS ₂ /CoS ₂ @20 °C	0.5 M H ₂ SO ₄	-90	66	S 1
2	Mn-N-Co ₉ S ₈	1 М КОН	-102	107.2	S2
3	FeO@CCS	1 M KOH	-107	136	25
4	N-CoS ₂	0.5 M H ₂ SO ₄	-97	101	26
		1 M KOH	-137	117	
5	Ce-MnCo ₂ O ₄ -3%	1 М КОН	-389	96	S3
6	MnCo ₂ S ₄	1 М КОН	-167	136.74	30
7	MCO@NiFe LDH	1 М КОН	-129	112.5	21
9	(AgCuZnMnCoInGa)S	0.5 M H ₂ SO ₄	-255	131.6	S4
9	Pt/NiS@Al ₂ O ₃	$0.5 \mathrm{~M~H_2SO_4}$	-34	~ 35	S5
10	Pt/NiS@Al ₂ O ₃	0.5 M H ₂ SO ₄	-34	~ 35	S6
11	MnCo ₂ O ₄ nanosheets	$0.5 \text{ M H}_2 \text{SO}_4$	-138	119	
		1 М КОН	-149	128	Present
12	MnCo ₂ S ₄ nanosheets	0.5 M H ₂ SO ₄	-111	55	Work
		1 M KOH	-124	63	

Fig. S1. EDS spectra for (a) $MnCo_2O_4$ and (b) $MnCo_2S_4$ electrodes, which confirms the complete transformation of oxide phase into sulfide form.

Fig. S2. EIS plots measured before and after stability in (a) alkaline 1 M KOH and (b) acidic 0.5 M H₂SO₄ medium. (c) Reliability graph for MnCo₂O₄ catalyst performance in acidic and alkaline media.

Table S2. EIS fitted parameters for $MnCo_2O_4$ and $MnCo_2S_4$ catalysts measured before and after stability.

MnCo ₂ S4	Before stability		After HER stability	
	$R_{S}\left(\Omega ight)$	$R_{ct}\left(\Omega ight)$	$R_{S}\left(\Omega ight)$	$R_{ct}(\Omega)$
1 М КОН	0.368	8.488	0.394	9.113
0.5 M H ₂ SO ₄	0.358	6.811	0.379	7.345

Fig. S3. Non-Faradaic scan rate-dependent CV curves for (a) $MnCo_2O_4$ and (b) $MnCo_2S_4$ catalysts recorded in a voltage window range between -0.10 and 0.00 V (*vs.* RHE). (c) "*J vs. v*" plot of $MnCo_2O_4$ and $MnCo_2S_4$ catalysts for the estimation of C_{DL} and *ECSA*.

Table S3. Estimated C_{DL} and *ECSA* values for MnCo₂O₄ and MnCo₂S₄ catalysts in alkaline KOH medium.

Catalysts	C_{DL} (mF)	ECSA (cm ²)	
MnCo ₂ O ₄	9.80	245	
MnCo ₂ S ₄	17.57	~ 439	

Fig. S4. (a) "*V vs. TOF*" plots and (b) *ECSA*-corrected LSV curves for $MnCo_2O_4$ and $MnCo_2S_4$ catalysts measured at 1.0 mV s⁻¹ in an acidic (0.5 M H₂SO₄) and alkaline (1 M KOH) media.

The intrinsic reaction kinetics of the catalyst can be assessed by estimating the TOF values. Fig. S4a shows the "V vs. TOF" plots for the MnCo₂O₄ and MnCo₂S₄ catalysts calculated from the following equation as:

$$TOF = (J \times A) / (F \times n \times N)$$
(S1)

where *J*, *A*, *n*, *N*, and *F* signifies the current density, active catalyst loading area $(1 \times 1 \text{ cm}^2)$, Faraday constant (96,485.3329 A s mol⁻¹), the number of moles of catalyst, and number of electrons mol⁻¹ (for HER; N = 2), respectively. The MnCo₂O₄ catalyst demonstrates the *TOF* of –1.9393 and –0.4658 s⁻¹ at –0.275 V in acidic and alkaline electrolyte media, respectively, which is comparatively lower than the MnCo₂S₄ catalysts (–0.1964 and –0.0980 s⁻¹) at the same potential value. The TOF for MnCo₂S₄ is almost 10- and 4-fold compared to pristine MnCo₂O₄ nanosheet catalyst in acidic and alkaline media, indicating that the after anionexchange the intrinsic reaction kinetics improved significantly, which results in the efficient transportation of electron/ion throughout the 2D nanosheets. Moreover, *ECSA*-corrected

 (J_{ECSA}) LSV curves further highlights the HER reaction kinetics, as shown in Fig. S4b catalysts. The J_{ECSA} plots reveals that the MnCo₂S₄ catalyst exhibits the smaller voltage response at each J_{ECSA} compared to the pristine MnCo₂O₄ catalyst, suggesting that MnCo₂S₄ catalyst has better intrinsic reaction kinetics.

Fig. S5. Post-stability measured (a) Co 2p, (b) Mn 2p, and (c) S 2p high-resolution XPS emission spectra of $MnCo_2S_4$ catalyst.

Supporting References

- S1. K. Wang, H. Song, Z. Lin, Y. Gao, H. Wu, S. Yan, J. Wang and Y. Shi, *Materials Express*, 2019, 9, 786-791.
- S2. Y. Xing, D. Li, L. Li, H. Tong, D. Jiang and W. Shi, *International Journal of Hydrogen Energy*, 2021, 46, 7989-8001.
- S3. X. Huang, H. Zheng, G. Lu, P. Wang, L. Xing, J. Wang and G. Wang, ACS Sustainable Chemistry & Engineering, 2019, 7, 1169-1177.
- S4. W. Xiao, Y. Li, A. Elgendy, E. C. Duran, M. A. Buckingham, B. F. Spencer, B. Han, F. Alam, X. Zhong, S. H. Cartmell, R. J. Cernik, A. S. Eggeman, R. A. W. Dryfe and D. J. Lewis, *Chemistry of Materials*, 2023, 35, 7904-7914.
- S5. Y. Feng, Y. Guan, H. Zhang, Z. Huang, J. Li, Z. Jiang, X. Gu and Y. Wang, *Journal of Materials Chemistry A*, 2018, 6, 11783-11789.
- S6. G. Ghanashyam and H. Kyung Jeong, *Inorganica Chimica Acta*, 2022, **541**, 121098.