## **Supporting Information**

## A strategy for obtaining isostructurality in spite of structural diversity in coordination compounds

Vahid Amani,<sup>1\*</sup> Maryam Esmaeili,<sup>2</sup> Fataneh Norouzi,<sup>2</sup> Hamid Reza Khavasi<sup>2\*</sup>

<sup>1</sup>Department of Chemistry Education, Farhangian University, P.O. Box 14665-889, Tehran, Iran <sup>2</sup>Department of Inorganic Chemistry and Catalysis, Shahid Beheshti University, General Campus, Evin, Tehran 1983963113, Iran

E-mail: (V. Amani) v.amani@cfu.ac.ir, v\_amani2002@yahoo.com

| Figure S1. The ORTEP diagram of coordination compound in A, B and C series.            | page 2 |
|----------------------------------------------------------------------------------------|--------|
| Figure S2. Fragments selected for calculation of dimer binding energies in A and B     | page 3 |
| series.                                                                                |        |
| Table S1. Crystallographic data                                                        | Page 4 |
| Table S2. Geometrical parameters of hydrogen bonding in A, B and C series.             | page 5 |
| Table S3. Geometrical parameters around central metal in <b>B</b> and <b>C</b> series. | page 6 |
| References                                                                             | Page 6 |



Figure S1. The ORTEP diagram of coordination compounds A, B and C series, showing coordination geometry around central metal. Ellipsoids are drawn at 30% probability level.



Figure S2. Selected fragments for calculating energy of (a) X...X interaction in  $A_1$ ,  $A_2$ ,  $A_4$ ,  $A_5$  and  $A_6$ , (b) Type I X... $\pi$  interaction in  $A_3$  and (c) Type I X...X interaction in  $B_1$  and  $B_2$ .

|                                                                                                                                                                                                                                                        | $\mathbf{A}_1$                                                                                                                                                                                                                                                              | A <sub>2</sub>                                                                                                                                                                                                                                                                                                                       | A <sub>3</sub>                                                                                                                                                                                                                                                               | A <sub>4</sub>                                                                                                                                                                                                                                                | A <sub>5</sub>                                                                                                                                                                                                                                                                                                    | A <sub>6</sub> <sup>i</sup>   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| formula                                                                                                                                                                                                                                                | C24H18Cl4HgN4O2                                                                                                                                                                                                                                                             | $C_{24}H_{18}Br_2Cl_2HgN_4O_2$                                                                                                                                                                                                                                                                                                       | $C_{24}H_{18}Cl_2HgI_2N_4O_2$                                                                                                                                                                                                                                                | $C_{24}H_{18}Br_2Cl_2HgN_4O_2$                                                                                                                                                                                                                                | $\mathrm{C}_{24}\mathrm{H}_{18}\mathrm{Br}_{4}\mathrm{HgN}_{4}\mathrm{O}_{2}$                                                                                                                                                                                                                                     | $C_{24}H_{18}Br_2HgI_2N_4O_2$ |
| fw                                                                                                                                                                                                                                                     | 736.81                                                                                                                                                                                                                                                                      | 825.71                                                                                                                                                                                                                                                                                                                               | 919.71                                                                                                                                                                                                                                                                       | 825.71                                                                                                                                                                                                                                                        | 914.61                                                                                                                                                                                                                                                                                                            | 1008.61                       |
| crystal system                                                                                                                                                                                                                                         | monoclinic                                                                                                                                                                                                                                                                  | monoclinic                                                                                                                                                                                                                                                                                                                           | monoclinic                                                                                                                                                                                                                                                                   | monoclinic                                                                                                                                                                                                                                                    | monoclinic                                                                                                                                                                                                                                                                                                        | monoclinic                    |
| space group                                                                                                                                                                                                                                            | C2/c                                                                                                                                                                                                                                                                        | C2/c                                                                                                                                                                                                                                                                                                                                 | C2/c                                                                                                                                                                                                                                                                         | C2/c                                                                                                                                                                                                                                                          | C2/c                                                                                                                                                                                                                                                                                                              | C2/c                          |
| a/Å                                                                                                                                                                                                                                                    | 22.366(2)                                                                                                                                                                                                                                                                   | 22.680(2)                                                                                                                                                                                                                                                                                                                            | 38.520(7)                                                                                                                                                                                                                                                                    | 23.266(3)                                                                                                                                                                                                                                                     | 23.569(3)                                                                                                                                                                                                                                                                                                         | 24.3489(18)                   |
| b/Å                                                                                                                                                                                                                                                    | 4.9665(5)                                                                                                                                                                                                                                                                   | 4.9699(3)                                                                                                                                                                                                                                                                                                                            | 4.8018(8)                                                                                                                                                                                                                                                                    | 4.9212(4)                                                                                                                                                                                                                                                     | 4.9189(4)                                                                                                                                                                                                                                                                                                         | 4.9200(6)                     |
| c/Å                                                                                                                                                                                                                                                    | 27.267(3)                                                                                                                                                                                                                                                                   | 27.573(3)                                                                                                                                                                                                                                                                                                                            | 14.841(2)                                                                                                                                                                                                                                                                    | 27.288(3)                                                                                                                                                                                                                                                     | 27.722(3)                                                                                                                                                                                                                                                                                                         | 28.395(2)                     |
| $\beta$ /°                                                                                                                                                                                                                                             | 124.115(7)                                                                                                                                                                                                                                                                  | 123.819(7)                                                                                                                                                                                                                                                                                                                           | 100.118(13)                                                                                                                                                                                                                                                                  | 124.251(8)                                                                                                                                                                                                                                                    | 124.465(7)                                                                                                                                                                                                                                                                                                        | 125.751(4)                    |
| $V/Å^3$                                                                                                                                                                                                                                                | 2507.6(4)                                                                                                                                                                                                                                                                   | 2582.1(4)                                                                                                                                                                                                                                                                                                                            | 2702.4(8)                                                                                                                                                                                                                                                                    | 2582.5(5)                                                                                                                                                                                                                                                     | 2649.8(5)                                                                                                                                                                                                                                                                                                         | 2760.6(4)                     |
| $D_{\rm calc}/{\rm Mg.m^{-3}}$                                                                                                                                                                                                                         | 1.952                                                                                                                                                                                                                                                                       | 2.124                                                                                                                                                                                                                                                                                                                                | 2.261                                                                                                                                                                                                                                                                        | 2.124                                                                                                                                                                                                                                                         | 2.293                                                                                                                                                                                                                                                                                                             | 2.427                         |
| Ζ                                                                                                                                                                                                                                                      | 4                                                                                                                                                                                                                                                                           | 4                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                            | 4                                                                                                                                                                                                                                                             | 4                                                                                                                                                                                                                                                                                                                 | 4                             |
| $\mu$ (mm <sup>-1</sup> )                                                                                                                                                                                                                              | 6.595                                                                                                                                                                                                                                                                       | 9.293                                                                                                                                                                                                                                                                                                                                | 17.266                                                                                                                                                                                                                                                                       | 9.291                                                                                                                                                                                                                                                         | 11.870                                                                                                                                                                                                                                                                                                            | 10.735                        |
| <i>F</i> (000)                                                                                                                                                                                                                                         | 1416                                                                                                                                                                                                                                                                        | 1560                                                                                                                                                                                                                                                                                                                                 | 1704                                                                                                                                                                                                                                                                         | 1560                                                                                                                                                                                                                                                          | 1704                                                                                                                                                                                                                                                                                                              | 1848                          |
| 2θ (°)                                                                                                                                                                                                                                                 | 58.54                                                                                                                                                                                                                                                                       | 54                                                                                                                                                                                                                                                                                                                                   | 58.52                                                                                                                                                                                                                                                                        | 58.60                                                                                                                                                                                                                                                         | 58.42                                                                                                                                                                                                                                                                                                             | 52                            |
| R (int)                                                                                                                                                                                                                                                | 0.1221                                                                                                                                                                                                                                                                      | 0.0895                                                                                                                                                                                                                                                                                                                               | 0.0945                                                                                                                                                                                                                                                                       | 0.0984                                                                                                                                                                                                                                                        | 0.1032                                                                                                                                                                                                                                                                                                            | 0.1053                        |
| GOOF                                                                                                                                                                                                                                                   | 1.042                                                                                                                                                                                                                                                                       | 1.004                                                                                                                                                                                                                                                                                                                                | 0.909                                                                                                                                                                                                                                                                        | 0.971                                                                                                                                                                                                                                                         | 1.011                                                                                                                                                                                                                                                                                                             | 0.885                         |
| $R_1^a(I \ge 2\sigma(I))$                                                                                                                                                                                                                              | 0.0697                                                                                                                                                                                                                                                                      | 0.0763                                                                                                                                                                                                                                                                                                                               | 0.0719                                                                                                                                                                                                                                                                       | 0.0701                                                                                                                                                                                                                                                        | 0.0705                                                                                                                                                                                                                                                                                                            | 0.0489                        |
| $wR_2^b(I \ge 2\sigma(I))$                                                                                                                                                                                                                             | 0.1615                                                                                                                                                                                                                                                                      | 0.1102                                                                                                                                                                                                                                                                                                                               | 0.1196                                                                                                                                                                                                                                                                       | 0.1680                                                                                                                                                                                                                                                        | 0.1562                                                                                                                                                                                                                                                                                                            | 0.1203                        |
| CCDC No.                                                                                                                                                                                                                                               | 1016912                                                                                                                                                                                                                                                                     | 1016668                                                                                                                                                                                                                                                                                                                              | 1016669                                                                                                                                                                                                                                                                      | 1016675                                                                                                                                                                                                                                                       | 1016674                                                                                                                                                                                                                                                                                                           | 991771                        |
|                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                   |                               |
|                                                                                                                                                                                                                                                        | <b>B</b> <sub>1</sub>                                                                                                                                                                                                                                                       | B <sub>2</sub> <sup>i</sup>                                                                                                                                                                                                                                                                                                          | C <sub>1</sub>                                                                                                                                                                                                                                                               | C <sub>2</sub>                                                                                                                                                                                                                                                | C <sub>3</sub>                                                                                                                                                                                                                                                                                                    |                               |
| formula                                                                                                                                                                                                                                                | B <sub>1</sub><br>C <sub>12</sub> H <sub>9</sub> ClHgI <sub>2</sub> N <sub>2</sub> O                                                                                                                                                                                        | <b>B</b> <sub>2</sub> <sup>i</sup><br>C <sub>12</sub> H <sub>9</sub> BrHgI <sub>2</sub> N <sub>2</sub> O                                                                                                                                                                                                                             | $\frac{C_{1}}{C_{24}H_{18}Cl_{2}Hg_{3}I_{6}N_{4}O_{2}}$                                                                                                                                                                                                                      | $\frac{C_2}{C_{24}H_{18}Br_2Hg_3I_6N_4O_2}$                                                                                                                                                                                                                   | $\frac{C_{3}}{C_{24}H_{18}Hg_{3}I_{8}N_{4}O_{2}}$                                                                                                                                                                                                                                                                 |                               |
| formula                                                                                                                                                                                                                                                | <b>B</b> <sub>1</sub><br>C <sub>12</sub> H <sub>9</sub> ClHgI <sub>2</sub> N <sub>2</sub> O<br>687.05                                                                                                                                                                       | <b>B2<sup>i</sup></b><br>C <sub>12</sub> H <sub>9</sub> BrHgI <sub>2</sub> N <sub>2</sub> O<br>731.50                                                                                                                                                                                                                                | C <sub>1</sub><br>C <sub>24</sub> H <sub>18</sub> Cl <sub>2</sub> Hg <sub>3</sub> I <sub>6</sub> N <sub>4</sub> O <sub>2</sub><br>1828.49                                                                                                                                    | C <sub>2</sub><br>C <sub>24</sub> H <sub>18</sub> Br <sub>2</sub> Hg <sub>3</sub> I <sub>6</sub> N <sub>4</sub> O <sub>2</sub><br>1917.39                                                                                                                     | C <sub>3</sub><br>C <sub>24</sub> H <sub>18</sub> Hg <sub>3</sub> I <sub>8</sub> N <sub>4</sub> O <sub>2</sub><br>2011.39                                                                                                                                                                                         |                               |
| formula<br>fw<br>crystal system                                                                                                                                                                                                                        | <b>B</b> <sub>1</sub><br>C <sub>12</sub> H <sub>9</sub> CIHgI <sub>2</sub> N <sub>2</sub> O<br>687.05<br>monoclinic                                                                                                                                                         | <b>B2<sup>i</sup></b><br>C <sub>12</sub> H <sub>9</sub> BrHgI <sub>2</sub> N <sub>2</sub> O<br>731.50<br>monoclinic                                                                                                                                                                                                                  | C <sub>1</sub><br>C <sub>24</sub> H <sub>18</sub> Cl <sub>2</sub> Hg <sub>3</sub> I <sub>6</sub> N <sub>4</sub> O <sub>2</sub><br>1828.49<br>Monoclinic                                                                                                                      | C <sub>2</sub><br>C <sub>24</sub> H <sub>18</sub> Br <sub>2</sub> Hg <sub>3</sub> I <sub>6</sub> N <sub>4</sub> O <sub>2</sub><br>1917.39<br>monoclinic                                                                                                       | C <sub>3</sub><br>C <sub>24</sub> H <sub>18</sub> Hg <sub>3</sub> I <sub>8</sub> N <sub>4</sub> O <sub>2</sub><br>2011.39<br>monoclinic                                                                                                                                                                           |                               |
| formula<br>fw<br>crystal system<br>space group                                                                                                                                                                                                         | B <sub>1</sub><br>C <sub>12</sub> H <sub>9</sub> ClHgI <sub>2</sub> N <sub>2</sub> O<br>687.05<br>monoclinic<br>C2/c                                                                                                                                                        | B2 <sup>i</sup><br>C <sub>12</sub> H9BrHgI2N2O<br>731.50<br>monoclinic<br>C2/c                                                                                                                                                                                                                                                       | $C_1$ $C_{24}H_{18}Cl_2Hg_3I_6N_4O_2$ 1828.49 Monoclinic $P2_1/n$                                                                                                                                                                                                            | $\frac{C_2}{C_{24}H_{18}Br_2Hg_3I_6N_4O_2}$ 1917.39 monoclinic $P2_1/n$                                                                                                                                                                                       | $\frac{C_{3}}{C_{24}H_{18}Hg_{3}I_{8}N_{4}O_{2}}$ 2011.39 monoclinic $P2_{1}/n$                                                                                                                                                                                                                                   |                               |
| formula<br>fw<br>crystal system<br>space group<br><i>a</i> /Å                                                                                                                                                                                          | <b>B</b> <sub>1</sub><br>C <sub>12</sub> H <sub>9</sub> ClHgI <sub>2</sub> N <sub>2</sub> O<br>687.05<br>monoclinic<br>C2/c<br>25.080(6)                                                                                                                                    | <b>B</b> <sub>2</sub> <sup>i</sup><br>C <sub>12</sub> H <sub>9</sub> BrHgI <sub>2</sub> N <sub>2</sub> O<br>731.50<br>monoclinic<br>C2/c<br>25.3903(15)                                                                                                                                                                              | $\frac{C_{1}}{C_{24}H_{18}Cl_{2}Hg_{3}I_{6}N_{4}O_{2}}$ 1828.49<br>Monoclinic<br>$P2_{1}/n$<br>4.5347(4)                                                                                                                                                                     | $\frac{C_2}{C_{24}H_{18}Br_2Hg_3I_6N_4O_2}$ 1917.39 monoclinic $\frac{P2_1/n}{4.5326(4)}$                                                                                                                                                                     | C3 $C_{24}H_{18}Hg_3I_8N_4O_2$ 2011.39           monoclinic $P2_1/n$ 4.5421(3)                                                                                                                                                                                                                                    |                               |
| formula<br>fw<br>crystal system<br>space group<br><i>a</i> /Å<br><i>b</i> /Å                                                                                                                                                                           | <b>B</b> <sub>1</sub><br>C <sub>12</sub> H <sub>9</sub> ClHgI <sub>2</sub> N <sub>2</sub> O<br>687.05<br>monoclinic<br>C2/c<br>25.080(6)<br>14.097(4)                                                                                                                       | <b>B</b> <sub>2</sub> <sup>i</sup><br>C <sub>12</sub> H <sub>9</sub> BrHgI <sub>2</sub> N <sub>2</sub> O<br>731.50<br>monoclinic<br><i>C</i> 2/ <i>c</i><br>25.3903(15)<br>14.1304(6)                                                                                                                                                | $\frac{C_1}{C_{24}H_{18}Cl_2Hg_3I_6N_4O_2}$ 1828.49<br>Monoclinic<br>$P2_1/n$<br>4.5347(4)<br>21.3006(12)                                                                                                                                                                    | $\begin{array}{c} C_2 \\ C_{24}H_{18}Br_2Hg_3I_6N_4O_2 \\ 1917.39 \\ monoclinic \\ P2_1/n \\ 4.5326(4) \\ 21.4340(12) \end{array}$                                                                                                                            | C <sub>3</sub><br>C <sub>24</sub> H <sub>18</sub> Hg <sub>3</sub> I <sub>8</sub> N <sub>4</sub> O <sub>2</sub><br>2011.39<br>monoclinic<br><i>P</i> 2 <sub>1</sub> / <i>n</i><br>4.5421(3)<br>21.7134(19)                                                                                                         |                               |
| formula<br>fw<br>crystal system<br>space group<br><i>a</i> /Å<br><i>b</i> /Å<br><i>c</i> /Å                                                                                                                                                            | <b>B</b> <sub>1</sub><br>C <sub>12</sub> H <sub>9</sub> ClHgI <sub>2</sub> N <sub>2</sub> O<br>687.05<br>monoclinic<br><i>C</i> 2/ <i>c</i><br>25.080(6)<br>14.097(4)<br>9.200(2)                                                                                           | B2 <sup>i</sup> C12H9BrHgI2N2O           731.50           monoclinic           C2/c           25.3903(15)           14.1304(6)           9.1996(6)                                                                                                                                                                                   | $\begin{array}{c} C_{1} \\ C_{24}H_{18}Cl_{2}Hg_{3}I_{6}N_{4}O_{2} \\ 1828.49 \\ Monoclinic \\ P2_{1}/n \\ 4.5347(4) \\ 21.3006(12) \\ 19.0448(15) \end{array}$                                                                                                              | $\begin{array}{c} C_2 \\ \hline C_{24}H_{18}Br_2Hg_3I_6N_4O_2 \\ 1917.39 \\ monoclinic \\ P2_1/n \\ 4.5326(4) \\ 21.4340(12) \\ 19.1582(16) \end{array}$                                                                                                      | C <sub>3</sub><br>C <sub>24</sub> H <sub>18</sub> Hg <sub>3</sub> I <sub>8</sub> N <sub>4</sub> O <sub>2</sub><br>2011.39<br>monoclinic<br><i>P</i> 2 <sub>1</sub> / <i>n</i><br>4.5421(3)<br>21.7134(19)<br>19.3708(13)                                                                                          |                               |
| formula<br>fw<br>crystal system<br>space group<br><i>a</i> /Å<br><i>b</i> /Å<br><i>c</i> /Å<br>β/°                                                                                                                                                     | <b>B</b> <sub>1</sub><br>C <sub>12</sub> H <sub>9</sub> ClHgI <sub>2</sub> N <sub>2</sub> O<br>687.05<br>monoclinic<br><i>C</i> 2/ <i>c</i><br>25.080(6)<br>14.097(4)<br>9.200(2)<br>100.394(18)                                                                            | B2 <sup>i</sup> C12H9BrHgI2N2O           731.50           monoclinic           C2/c           25.3903(15)           14.1304(6)           9.1996(6)           99.658(5)                                                                                                                                                               | $\begin{array}{c} C_1 \\ \hline C_{24}H_{18}Cl_2Hg_3I_6N_4O_2 \\ 1828.49 \\ Monoclinic \\ P2_1/n \\ 4.5347(4) \\ 21.3006(12) \\ 19.0448(15) \\ 91.533(7) \end{array}$                                                                                                        | $\frac{C_2}{C_{24}H_{18}Br_2Hg_3I_6N_4O_2}$ 1917.39<br>monoclinic<br>$P2_{1/n}$<br>4.5326(4)<br>21.4340(12)<br>19.1582(16)<br>92.076(7)                                                                                                                       | $\begin{array}{c} C_{3} \\ \hline C_{24}H_{18}Hg_{3}I_{8}N_{4}O_{2} \\ 2011.39 \\ monoclinic \\ P2_{1}/n \\ 4.5421(3) \\ 21.7134(19) \\ 19.3708(13) \\ 92.541(6) \end{array}$                                                                                                                                     |                               |
| formula<br>fw<br>crystal system<br>space group<br>a/Å<br>b/Å<br>c/Å<br>β/°<br>V/Å <sup>3</sup>                                                                                                                                                         | <b>B</b> <sub>1</sub><br>C <sub>12</sub> H <sub>9</sub> ClHgI <sub>2</sub> N <sub>2</sub> O<br>687.05<br>monoclinic<br><i>C</i> 2/ <i>c</i><br>25.080(6)<br>14.097(4)<br>9.200(2)<br>100.394(18)<br>3199.4(13)                                                              | <b>B</b> <sub>2</sub> <sup>i</sup><br>C <sub>12</sub> H <sub>9</sub> BrHgI <sub>2</sub> N <sub>2</sub> O<br>731.50<br>monoclinic<br><i>C</i> 2/ <i>c</i><br>25.3903(15)<br>14.1304(6)<br>9.1996(6)<br>99.658(5)<br>3253.8(3)                                                                                                         | $\begin{array}{c} C_1 \\ \hline C_{24}H_{18}Cl_2Hg_3I_6N_4O_2 \\ 1828.49 \\ Monoclinic \\ P2_1/n \\ 4.5347(4) \\ 21.3006(12) \\ 19.0448(15) \\ 91.533(7) \\ 1838.9(2) \end{array}$                                                                                           | $\begin{array}{c} C_2 \\ \hline C_{24}H_{18}Br_2Hg_3I_6N_4O_2 \\ 1917.39 \\ monoclinic \\ P2_{1}/n \\ 4.5326(4) \\ 21.4340(12) \\ 19.1582(16) \\ 92.076(7) \\ 1860.0(2) \end{array}$                                                                          | $C_3$ $C_{24}H_{18}Hg_3I_8N_4O_2$ 2011.39           monoclinic $P2_1/n$ 4.5421(3)           21.7134(19)           19.3708(13)           92.541(6)           1908.6(2)                                                                                                                                             |                               |
| formula<br>fw<br>crystal system<br>space group<br>a/Å<br>b/Å<br>c/Å<br>$\beta/^{\circ}$<br>$V/Å^{3}$<br>$D_{calc}/Mg.m^{-3}$                                                                                                                           | <b>B</b> <sub>1</sub><br>C <sub>12</sub> H <sub>9</sub> ClHgI <sub>2</sub> N <sub>2</sub> O<br>687.05<br>monoclinic<br><i>C</i> 2/ <i>c</i><br>25.080(6)<br>14.097(4)<br>9.200(2)<br>100.394(18)<br>3199.4(13)<br>2.853                                                     | B2 <sup>i</sup> C12H9BrHgI2N2O           731.50           monoclinic           C2/c           25.3903(15)           14.1304(6)           9.1996(6)           99.658(5)           3253.8(3)           2.987                                                                                                                           | $\begin{array}{c} C_1 \\ \hline C_{24}H_{18}Cl_2Hg_3I_6N_4O_2 \\ 1828.49 \\ \hline Monoclinic \\ P2_1/n \\ 4.5347(4) \\ 21.3006(12) \\ 19.0448(15) \\ 91.533(7) \\ 1838.9(2) \\ 3.302 \\ \end{array}$                                                                        | $\begin{array}{c} C_2 \\ \hline C_{24}H_{18}Br_2Hg_3I_6N_4O_2 \\ 1917.39 \\ monoclinic \\ P2_1/n \\ 4.5326(4) \\ 21.4340(12) \\ 19.1582(16) \\ 92.076(7) \\ 1860.0(2) \\ 3.424 \end{array}$                                                                   | $\begin{array}{c} C_{3} \\ \hline C_{24}H_{18}Hg_{3}I_{8}N_{4}O_{2} \\ 2011.39 \\ monoclinic \\ P2_{1}/n \\ 4.5421(3) \\ 21.7134(19) \\ 19.3708(13) \\ 92.541(6) \\ 1908.6(2) \\ 3.500 \end{array}$                                                                                                               |                               |
| formula<br>fw<br>crystal system<br>space group<br>a/Å<br>b/Å<br>c/Å<br>$\beta/^{\circ}$<br>$V/Å^{3}$<br>$D_{calc}/Mg.m^{-3}$<br>Z                                                                                                                      | <b>B</b> <sub>1</sub><br>C <sub>12</sub> H <sub>9</sub> ClHgI <sub>2</sub> N <sub>2</sub> O<br>687.05<br>monoclinic<br><i>C</i> 2/ <i>c</i><br>25.080(6)<br>14.097(4)<br>9.200(2)<br>100.394(18)<br>3199.4(13)<br>2.853<br>8                                                | <b>B</b> <sub>2</sub> <sup>i</sup><br>C <sub>12</sub> H <sub>9</sub> BrHgI <sub>2</sub> N <sub>2</sub> O<br>731.50<br>monoclinic<br><i>C2/c</i><br>25.3903(15)<br>14.1304(6)<br>9.1996(6)<br>99.658(5)<br>3253.8(3)<br>2.987<br>8                                                                                                    | $\begin{array}{c} C_1 \\ \hline C_{24}H_{18}Cl_2Hg_3I_6N_4O_2 \\ 1828.49 \\ Monoclinic \\ P2_1/n \\ 4.5347(4) \\ 21.3006(12) \\ 19.0448(15) \\ 91.533(7) \\ 1838.9(2) \\ 3.302 \\ 2 \end{array}$                                                                             | $\begin{array}{c} C_2 \\ C_{24}H_{18}Br_2Hg_3I_6N_4O_2 \\ 1917.39 \\ monoclinic \\ P2_{1\prime}/n \\ 4.5326(4) \\ 21.4340(12) \\ 19.1582(16) \\ 92.076(7) \\ 1860.0(2) \\ 3.424 \\ 2 \end{array}$                                                             | C3 $C_{24}H_{18}Hg_3I_8N_4O_2$ 2011.39           monoclinic $P2_1/n$ 4.5421(3)           21.7134(19)           19.3708(13)           92.541(6)           1908.6(2)           3.500           2                                                                                                                    |                               |
| formula<br>fw<br>crystal system<br>space group<br>a/Å<br>b/Å<br>c/Å<br>$\beta/^{\circ}$<br>$V/Å^{3}$<br>$D_{calc}/Mg.m^{-3}$<br>Z<br>$\mu$ (mm <sup>-1</sup> )                                                                                         | <b>B</b> <sub>1</sub><br>C <sub>12</sub> H <sub>9</sub> ClHgI <sub>2</sub> N <sub>2</sub> O<br>687.05<br>monoclinic<br>C2/c<br>25.080(6)<br>14.097(4)<br>9.200(2)<br>100.394(18)<br>3199.4(13)<br>2.853<br>8<br>13.641                                                      | B2 <sup>i</sup> C12H9BrHgI2N2O           731.50           monoclinic           C2/c           25.3903(15)           14.1304(6)           9.1996(6)           99.658(5)           3253.8(3)           2.987           8           15.705                                                                                              | $\begin{array}{c} C_1 \\ \hline C_{24}H_{18}Cl_2Hg_3I_6N_4O_2 \\ 1828.49 \\ Monoclinic \\ P2_1/n \\ 4.5347(4) \\ 21.3006(12) \\ 19.0448(15) \\ 91.533(7) \\ 1838.9(2) \\ 3.302 \\ 2 \\ 17.703 \end{array}$                                                                   | $\begin{array}{c} C_2 \\ \hline C_{24}H_{18}Br_2Hg_3I_6N_4O_2 \\ 1917.39 \\ monoclinic \\ P2_1/n \\ 4.5326(4) \\ 21.4340(12) \\ 19.1582(16) \\ 92.076(7) \\ 1860.0(2) \\ 3.424 \\ 2 \\ 19.507 \\ \end{array}$                                                 | $C_3$ $C_{24}H_{18}Hg_3I_8N_4O_2$ 2011.39           monoclinic $P2_1/n$ 4.5421(3)           21.7134(19)           19.3708(13)           92.541(6)           1908.6(2)           3.500           2           18.534                                                                                                |                               |
| formula<br>fw<br>crystal system<br>space group<br>a/Å<br>b/Å<br>c/Å<br>$\beta/^{\circ}$<br>$V/Å^{3}$<br>$D_{calc}/Mg.m^{-3}$<br>Z<br>$\mu$ (mm <sup>-1</sup> )<br>F(000)                                                                               | B <sub>1</sub><br>C <sub>12</sub> H <sub>9</sub> ClHgI <sub>2</sub> N <sub>2</sub> O<br>687.05<br>monoclinic<br>C2/c<br>25.080(6)<br>14.097(4)<br>9.200(2)<br>100.394(18)<br>3199.4(13)<br>2.853<br>8<br>13.641<br>2448                                                     | <b>B</b> <sub>2</sub> <sup>i</sup><br>C <sub>12</sub> H <sub>9</sub> BrHgI <sub>2</sub> N <sub>2</sub> O<br>731.50<br>monoclinic<br><i>C</i> 2/ <i>c</i><br>25.3903(15)<br>14.1304(6)<br>9.1996(6)<br>99.658(5)<br>3253.8(3)<br>2.987<br>8<br>15.705<br>2592                                                                         | $\begin{array}{c} C_1 \\ \hline C_{24}H_{18}Cl_2Hg_3I_6N_4O_2 \\ 1828.49 \\ \hline Monoclinic \\ P2_{1/n} \\ 4.5347(4) \\ 21.3006(12) \\ 19.0448(15) \\ 91.533(7) \\ 1838.9(2) \\ 3.302 \\ 2 \\ 17.703 \\ 1596 \end{array}$                                                  | $\begin{array}{c} C_2 \\ \hline C_{24}H_{18}Br_2Hg_3I_6N_4O_2 \\ 1917.39 \\ monoclinic \\ P2_1/n \\ 4.5326(4) \\ 21.4340(12) \\ 19.1582(16) \\ 92.076(7) \\ 1860.0(2) \\ 3.424 \\ 2 \\ 19.507 \\ 1668 \end{array}$                                            | $\begin{array}{c} C_{3} \\ \hline C_{24}H_{18}Hg_{3}I_{8}N_{4}O_{2} \\ 2011.39 \\ monoclinic \\ P2_{1}/n \\ 4.5421(3) \\ 21.7134(19) \\ 19.3708(13) \\ 92.541(6) \\ 1908.6(2) \\ 3.500 \\ 2 \\ 18.534 \\ 1740 \end{array}$                                                                                        |                               |
| formula<br>fw<br>crystal system<br>space group<br>a/Å<br>b/Å<br>c/Å<br>$\beta/^{\circ}$<br>$V/Å^{3}$<br>$D_{calc}/Mg.m^{-3}$<br>Z<br>$\mu$ (mm <sup>-1</sup> )<br>F(000)<br>$2\theta$ (°)                                                              | B <sub>1</sub><br>C <sub>12</sub> H <sub>9</sub> ClHgI <sub>2</sub> N <sub>2</sub> O<br>687.05<br>monoclinic<br>C2/c<br>25.080(6)<br>14.097(4)<br>9.200(2)<br>100.394(18)<br>3199.4(13)<br>2.853<br>8<br>13.641<br>2448<br>54                                               | <b>B</b> <sub>2</sub> <sup>i</sup><br>C <sub>12</sub> H <sub>9</sub> BrHgI <sub>2</sub> N <sub>2</sub> O<br>731.50<br>monoclinic<br><i>C</i> 2/ <i>c</i><br>25.3903(15)<br>14.1304(6)<br>9.1996(6)<br>99.658(5)<br>3253.8(3)<br>2.987<br>8<br>15.705<br>2592<br>52                                                                   | $\begin{array}{c} C_1 \\ \hline C_{24}H_{18}Cl_2Hg_3I_6N_4O_2 \\ 1828.49 \\ Monoclinic \\ P2_{1/n} \\ 4.5347(4) \\ 21.3006(12) \\ 19.0448(15) \\ 91.533(7) \\ 1838.9(2) \\ 3.302 \\ 2 \\ 17.703 \\ 1596 \\ 58.50 \\ \end{array}$                                             | $\begin{array}{c} C_2 \\ C_{24}H_{18}Br_2Hg_3I_6N_4O_2 \\ 1917.39 \\ monoclinic \\ P2_{1/n} \\ 4.5326(4) \\ 21.4340(12) \\ 19.1582(16) \\ 92.076(7) \\ 1860.0(2) \\ 3.424 \\ 2 \\ 19.507 \\ 1668 \\ 58.40 \end{array}$                                        | C3 $C_{24}H_{18}Hg_3I_8N_4O_2$ 2011.39           monoclinic $P2_1/n$ 4.5421(3)           21.7134(19)           19.3708(13)           92.541(6)           1908.6(2)           3.500           2           18.534           1740           58.58                                                                    |                               |
| formula<br>fw<br>crystal system<br>space group<br>a/Å<br>b/Å<br>c/Å<br>$\beta/^{\circ}$<br>$V/Å^{3}$<br>$D_{calc}/Mg.m^{-3}$<br>Z<br>$\mu$ (mm <sup>-1</sup> )<br>F(000)<br>$2\theta$ (°)<br>R (int)                                                   | <b>B</b> <sub>1</sub><br>C <sub>12</sub> H <sub>9</sub> ClHgI <sub>2</sub> N <sub>2</sub> O<br>687.05<br>monoclinic<br>C2/c<br>25.080(6)<br>14.097(4)<br>9.200(2)<br>100.394(18)<br>3199.4(13)<br>2.853<br>8<br>13.641<br>2448<br>54<br>0.0992                              | <b>B</b> <sub>2</sub> <sup>i</sup><br>C <sub>12</sub> H <sub>9</sub> BrHgI <sub>2</sub> N <sub>2</sub> O<br>731.50<br>monoclinic<br>C2/c<br>25.3903(15)<br>14.1304(6)<br>9.1996(6)<br>99.658(5)<br>3253.8(3)<br>2.987<br>8<br>15.705<br>2592<br>52<br>0.0985                                                                         | $\begin{array}{c} C_1 \\ \hline C_{24}H_{18}Cl_2Hg_3I_6N_4O_2 \\ 1828.49 \\ \hline Monoclinic \\ P2_1/n \\ 4.5347(4) \\ 21.3006(12) \\ 19.0448(15) \\ 91.533(7) \\ 1838.9(2) \\ 3.302 \\ 2 \\ 17.703 \\ 1596 \\ 58.50 \\ 0.0915 \end{array}$                                 | $\begin{array}{c} C_2 \\ \hline C_{24}H_{18}Br_2Hg_3I_6N_4O_2 \\ 1917.39 \\ \hline monoclinic \\ P2_1/n \\ 4.5326(4) \\ 21.4340(12) \\ 19.1582(16) \\ 92.076(7) \\ 1860.0(2) \\ 3.424 \\ 2 \\ 19.507 \\ 1668 \\ 58.40 \\ 0.0998 \\ \end{array}$               | C3 $C_{24}H_{18}Hg_3I_8N_4O_2$ 2011.39           monoclinic $P2_1/n$ 4.5421(3)           21.7134(19)           19.3708(13)           92.541(6)           1908.6(2)           3.500           2           18.534           1740           58.58           0.0998                                                   |                               |
| formula<br>fw<br>crystal system<br>space group<br>a/Å<br>b/Å<br>c/Å<br>$\beta/°$<br>$V/Å^3$<br>$D_{calc}/Mg.m^{-3}$<br>Z<br>$\mu$ (mm <sup>-1</sup> )<br>F(000)<br>$2\theta$ (°)<br>R (int)<br>GOOF                                                    | <b>B</b> <sub>1</sub><br>C <sub>12</sub> H <sub>9</sub> ClHgI <sub>2</sub> N <sub>2</sub> O<br>687.05<br>monoclinic<br><i>C</i> 2/ <i>c</i><br>25.080(6)<br>14.097(4)<br>9.200(2)<br>100.394(18)<br>3199.4(13)<br>2.853<br>8<br>13.641<br>2448<br>54<br>0.0992<br>0.895     | <b>B</b> <sub>2</sub> <sup>i</sup><br>C <sub>12</sub> H <sub>9</sub> BrHgI <sub>2</sub> N <sub>2</sub> O<br>731.50<br>monoclinic<br><i>C</i> 2/ <i>c</i><br>25.3903(15)<br>14.1304(6)<br>9.1996(6)<br>99.658(5)<br>3253.8(3)<br>2.987<br>8<br>15.705<br>2592<br>52<br>0.0985<br>1.023                                                | $\begin{array}{c} C_1 \\ \hline C_{24}H_{18}Cl_2Hg_3I_6N_4O_2 \\ 1828.49 \\ \hline Monoclinic \\ P2_1/n \\ 4.5347(4) \\ 21.3006(12) \\ 19.0448(15) \\ 91.533(7) \\ 1838.9(2) \\ 3.302 \\ 2 \\ 17.703 \\ 1596 \\ 58.50 \\ 0.0915 \\ 0.939 \\ \end{array}$                     | $\begin{array}{c} C_2 \\ \hline C_{24}H_{18}Br_2Hg_3I_6N_4O_2 \\ 1917.39 \\ monoclinic \\ P2_{1}/n \\ 4.5326(4) \\ 21.4340(12) \\ 19.1582(16) \\ 92.076(7) \\ 1860.0(2) \\ 3.424 \\ 2 \\ 19.507 \\ 1668 \\ 58.40 \\ 0.0998 \\ 1.028 \end{array}$              | $C_3$ $C_{24}H_{18}Hg_3I_8N_4O_2$ 2011.39           monoclinic $P2_1/n$ 4.5421(3)           21.71134(19)           19.3708(13)           92.541(6)           1908.6(2)           3.500           2           18.534           1740           58.58           0.0998           0.912                               |                               |
| formula<br>fw<br>crystal system<br>space group<br>a/Å<br>b/Å<br>c/Å<br>$\beta/^{\circ}$<br>$V/Å^{3}$<br>$D_{cale}/Mg.m^{-3}$<br>Z<br>$\mu$ (mm <sup>-1</sup> )<br>F(000)<br>$2\theta$ (°)<br>R (int)<br>GOOF<br>$R_1^a(I>2\sigma(I))$                  | B <sub>1</sub><br>C <sub>12</sub> H <sub>9</sub> ClHgI <sub>2</sub> N <sub>2</sub> O<br>687.05<br>monoclinic<br>C2/c<br>25.080(6)<br>14.097(4)<br>9.200(2)<br>100.394(18)<br>3199.4(13)<br>2.853<br>8<br>13.641<br>2448<br>54<br>0.0992<br>0.895<br>0.0861                  | B2 <sup>i</sup> C <sub>12</sub> H9BrHgI2N2O           731.50           monoclinic           C2/c           25.3903(15)           14.1304(6)           9.1996(6)           99.658(5)           3253.8(3)           2.987           8           15.705           2592           52           0.0985           1.023           0.0640   | $\begin{array}{c} C_1 \\ \hline C_{24}H_{18}Cl_2Hg_3I_6N_4O_2 \\ 1828.49 \\ \hline Monoclinic \\ P2_{1/n} \\ 4.5347(4) \\ 21.3006(12) \\ 19.0448(15) \\ 91.533(7) \\ 1838.9(2) \\ 3.302 \\ 2 \\ 17.703 \\ 1596 \\ 58.50 \\ 0.0915 \\ 0.939 \\ 0.0906 \\ \end{array}$         | $\begin{array}{c} C_2 \\ C_{24}H_{18}Br_2Hg_3I_6N_4O_2 \\ 1917.39 \\ monoclinic \\ P2_{1/n} \\ 4.5326(4) \\ 21.4340(12) \\ 19.1582(16) \\ 92.076(7) \\ 1860.0(2) \\ 3.424 \\ 2 \\ 19.507 \\ 1668 \\ 58.40 \\ 0.0998 \\ 1.028 \\ 0.0528 \end{array}$           | C3 $C_{24}H_{18}Hg_3I_8N_4O_2$ 2011.39           monoclinic $P2_1/n$ 4.5421(3)           21.7134(19)           19.3708(13)           92.541(6)           1908.6(2)           3.500           2           18.534           1740           58.58           0.0998           0.912           0.0640                  |                               |
| formula<br>fw<br>crystal system<br>space group<br>a/Å<br>b/Å<br>c/Å<br>$\beta/°$<br>$V/Å^3$<br>$D_{calc}/Mg.m^{-3}$<br>Z<br>$\mu$ (mm <sup>-1</sup> )<br>F(000)<br>$2\theta$ (°)<br>R (int)<br>GOOF<br>$R_1^a(I>2\sigma(I))$<br>$wR_2^b(I>2\sigma(I))$ | <b>B</b> <sub>1</sub><br>C <sub>12</sub> H <sub>9</sub> ClHgI <sub>2</sub> N <sub>2</sub> O<br>687.05<br>monoclinic<br>C2/c<br>25.080(6)<br>14.097(4)<br>9.200(2)<br>100.394(18)<br>3199.4(13)<br>2.853<br>8<br>13.641<br>2448<br>54<br>0.0992<br>0.895<br>0.0861<br>0.1658 | B2i           C12H9BrHgI2N2O           731.50           monoclinic           C2/c           25.3903(15)           14.1304(6)           9.1996(6)           99.658(5)           3253.8(3)           2.987           8           15.705           2592           52           0.0985           1.023           0.0640           0.1406 | $\begin{array}{c} C_1 \\ \hline C_{24}H_{18}Cl_2Hg_3I_6N_4O_2 \\ 1828.49 \\ \hline Monoclinic \\ P2_1/n \\ 4.5347(4) \\ 21.3006(12) \\ 19.0448(15) \\ 91.533(7) \\ 1838.9(2) \\ 3.302 \\ 2 \\ 17.703 \\ 1596 \\ 58.50 \\ 0.0915 \\ 0.939 \\ 0.0906 \\ 0.1101 \\ \end{array}$ | $\begin{array}{c} C_2 \\ C_{24}H_{18}Br_2Hg_3I_6N_4O_2 \\ 1917.39 \\ monoclinic \\ P2_{1/n} \\ 4.5326(4) \\ 21.4340(12) \\ 19.1582(16) \\ 92.076(7) \\ 1860.0(2) \\ 3.424 \\ 2 \\ 19.507 \\ 1668 \\ 58.40 \\ 0.0998 \\ 1.028 \\ 0.0528 \\ 0.1174 \end{array}$ | C3 $C_{24}H_{18}Hg_3I_8N_4O_2$ 2011.39           monoclinic $P2_1/n$ 4.5421(3)           21.7134(19)           19.3708(13)           92.541(6)           1908.6(2)           3.500           2           18.534           1740           58.58           0.0998           0.912           0.0640           0.1055 |                               |

Table S1. Structural data and refinement parameters for A, B and C series.

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|. {}^{b}wR_{2} = [\Sigma(w(F_{o}^{2} - F_{c}^{2})^{2}) / \Sigma w(F_{o}^{2})2]^{\frac{1}{2}}. {}^{i} \text{ From reference [1]}.$ 

Table S2. Geometrical parameters of hydrogen bonding in complexes A-C series.

| Complexes      | D-HA           | d(D-H)/Å | d(HA)/Å  | d(DA)/Å  | <d-ha th="" °<=""><th>Sym. Code</th></d-ha> | Sym. Code           |
|----------------|----------------|----------|----------|----------|---------------------------------------------|---------------------|
| A <sub>1</sub> | N2-H2AO1=C6    | 0.860(8) | 2.071(7) | 2.89(1)  | 160.2(7)                                    | x,-1+y,z            |
| $A_2$          | N2-H2AO1=C6    | 0.86(1)  | 2.069(1) | 2.90(1)  | 161.5(9)                                    | x, 1+y,z            |
| $A_3$          | N2-H2AO1=C6    | 0.860(9) | 2.087(9) | 2.88(1)  | 153.2(7)                                    | x,-1+y,z            |
|                | C2-H2 Cl1-Hg1  | 0.93(2)  | 2.869(3) | 3.48(1)  | 124.7(9)                                    | x,2-y,-1/2+z        |
| $A_4$          | N2-H2AO1=C6    | 0.860(9) | 2.86(1)  | 2.016(9) | 167.8(8)                                    | x,-1+y,z            |
| A <sub>5</sub> | N2-H2AO1=C6    | 0.86(1)  | 2.039(8) | 2.87(1)  | 163.3(8)                                    | x,1+y,z             |
| $A_6$          | N2-H2AO1=C6    | 0.860(8) | 2.048(7) | 2.88(1)  | 161.1(6)                                    | x,1+y,z             |
| $\mathbf{B}_1$ | N2-H2AO1=C6    | 0.86(1)  | 2.08(1)  | 2.88(2)  | 155(1)                                      | x,1-y,-1/2+z        |
|                | C12-H12O1=C6   | 0.93(2)  | 2.59(1)  | 3.22(2)  | 126(1)                                      | x,1-y,-1/2+z        |
|                | C2-H2I2-Hg     | 0.93(1)  | 3.107(2) | 3.91(2)  | 146(1)                                      | 1/2-x,1/2+y,1.5-z   |
| $\mathbf{B}_2$ | N2-H2AO1=C6    | 0.859(7) | 2.118(8) | 2.91(1)  | 152.5(6)                                    | x,1-y,1/2+z         |
|                | C12-H12O1=C6   | 0.93(1)  | 2.540(8) | 3.19(1)  | 127.0(8)                                    | x,1-y,1/2+z         |
|                | C2-H2I2-Hg     | 0.93(1)  | 3.139(9) | 3.92(1)  | 143.1(7)                                    | 1/2-x,1/2+y,1/2-z   |
| C <sub>1</sub> | N2-H2AO1 = C6  | 0.86(1)  | 2.15(1)  | 2.84(2)  | 138(1)                                      | 1+x,y,z             |
|                | C10-H10 I1-Hg1 | 0.93(2)  | 3.225(1) | 4.05(2)  | 149(1)                                      | 2-x,-y,1-z          |
|                | C4-H4 I2-Hg1   | 0.93(2)  | 3.259(1) | 4.11(2)  | 154(1)                                      | 1/2+x, 1/2-y, 1/2+z |
| C <sub>2</sub> | N2-H2AO1=C6    | 0.860(7) | 2.115(7) | 2.84(1)  | 142.1(6)                                    | 1+x,y,z             |
|                | C11-H11O1=C6   | 0.93(1)  | 2.746(8) | 3.55(1)  | 145.6(8)                                    | -x,-y,1-z           |
|                | C10-H10 I1-Hg1 | 0.93(1)  | 3.239(7) | 4.07(1)  | 149.0(6)                                    | -x,-y,1-z           |
|                | C4-H4 I2-Hg1   | 0.93(1)  | 3.242(8) | 4.11(1)  | 155.8(7)                                    | -1/2+x,1/2-y,-1/2+z |
| C <sub>3</sub> | N2-H2AO1 = C6  | 0.862(9) | 2.15(1)  | 2.85(1)  | 137.9(7)                                    | 1+x,y,z             |
|                | C11-H11O1=C6   | 0.93(1)  | 2.63(1)  | 3.45(2)  | 147.3(9)                                    | 2-x,-y,1-z          |
|                | C10-H10 I1-Hg1 | 0.93(2)  | 3.321(1) | 4.17(1)  | 152.2(9)                                    | 2-x,-y,1-z          |
|                | C4-H4 I2-Hg1   | 0.93(2)  | 3.286(1) | 4.16(1)  | 157.8(9)                                    | -1/2+x,1/2-y,-1/2+z |

Table S3. Geometrical parameters of central atom in B- and C-series complexes.

|               |                              | Complex                            |                              |                                              |                        |                                   |                        |                           |  |
|---------------|------------------------------|------------------------------------|------------------------------|----------------------------------------------|------------------------|-----------------------------------|------------------------|---------------------------|--|
|               |                              | $[Hg_3I_6(L^{3-Cl-nic})_2]_n, C_1$ |                              | $[Hg_{3}I_{6}(L^{3-Br-nic})_{2}]_{n}, C_{2}$ |                        | $[Hg_3I_6(L^{3-1-nic})_2]_n, C_3$ |                        | Sym. Code                 |  |
|               |                              | Hg1                                | Hg2                          | Hg1                                          | Hg2                    | Hg1                               | Hg2                    |                           |  |
| Bond distance | Hg-X1                        | 2.633(2)                           | 3.499(2)                     | 2.6339(8)                                    | 3.5160(6)              | 2.639(1)                          | 3.576(1)               | -                         |  |
|               | Hg-X2                        | 2.621(2)                           | -                            | 2.6230(8)                                    | -                      | 2.620(1)                          | -                      | -                         |  |
|               | Hg-X3                        | -                                  | 2.592(2)                     | -                                            | 2.5897(9)              | -                                 | 2.588(1)               | -                         |  |
|               | Hg-X1                        | 3.430(2) <sup>b</sup>              | -                            | 3.4264(8) <sup>a</sup>                       | -                      | 3.420(1) <sup>b</sup>             | -                      | a=1+x,y,z, $b=-1+x,y,z$   |  |
|               | Hg-X3                        | -                                  | 3.598(2) <sup>b</sup>        | -                                            | 3.5976(9) <sup>a</sup> | -                                 | 3.615(1) <sup>b</sup>  | a=-1+x,y,z , b=1+x,y,z    |  |
|               | Hg-N1                        | 2.45(2)                            | -                            | 2.488(8)                                     | -                      | 2.50(1)                           | -                      | -                         |  |
| Bond angle    | X1-Hg-X2                     | 159.98(6)                          | -                            | 159.75(3)                                    | -                      | 159.29(4)                         | -                      | -                         |  |
|               | X1-Hg-X3                     | -                                  | 91.99(5)                     | -                                            | 91.07(2)               | -                                 | 91.10(3)               | -                         |  |
|               | N1-Hg-X1                     | 97.7(4)                            | -                            | 90.34(2)                                     | -                      | 98.6(3)                           | -                      | -                         |  |
|               | N1-Hg-X2                     | 102.0(4)                           | -                            | 100.8(2)                                     | -                      | 101.5(3)                          | -                      | -                         |  |
|               | N1-Hg-X1                     | 82.7(4) <sup>b</sup>               | -                            | 83.9(2) <sup>a</sup>                         | -                      | 83.7(3) <sup>b</sup>              | -                      | a=1+x,y,z, $b=-1+x,y,z$   |  |
|               | X1-Hg-X1                     | 95.92(5) <sup>b</sup>              | -                            | 95.94(2) <sup>a</sup>                        | -                      | 96.27(3) <sup>b</sup>             | -                      | a=1+x,y,z, $b=-1+x,y,z$   |  |
|               | X2-Hg-X1                     | 90.19(5) <sup>b</sup>              | -                            | 90.34(2) <sup>a</sup>                        | -                      | 90.74(3) <sup>b</sup>             | -                      | a=1+x,y,z, b=-1+x,y,z     |  |
|               | X1-Hg-X3                     | -                                  | 88.01(5) <sup>b</sup>        | -                                            | 88.93(2) <sup>a</sup>  | -                                 | 88.90(4) <sup>b</sup>  | a=-x,-y,-z, b=2-x,-y,2-z  |  |
|               | X1-Hg-X1                     | -                                  | 180.00(3) <sup>b</sup>       | -                                            | 180.00(1) <sup>a</sup> | -                                 | 180.00(2) <sup>b</sup> | a=-x,-y,-z , b=2-x,-y,2-z |  |
|               | X3-Hg-X3                     | -                                  | 180.00(6) <sup>b</sup>       | -                                            | 180.00(3) <sup>a</sup> | -                                 | 180.00(4) <sup>b</sup> | a=-x,-y,-z , b=2-x,-y,2-z |  |
|               | Complex                      |                                    |                              |                                              | Sym.code               |                                   |                        |                           |  |
|               | $[HgI_2(L^{3-Cl-nic})], B_1$ |                                    | $[HgI_2(L^{3-Br-nic})], B_2$ |                                              |                        |                                   |                        |                           |  |
| Bond distance | Hg1-X1                       | 2.6                                | 2.612(2)                     |                                              | 2.618(1)               |                                   | -                      |                           |  |
|               | Hg1-X2                       | 2.634(2)                           |                              | 2.636(1)                                     |                        | -                                 |                        |                           |  |
|               | Hg1-N1                       | 2.43(1)                            |                              | 2.40(1)                                      |                        | -                                 |                        |                           |  |
| Bond angle    | X1-Hg1-X2                    | 148                                | .43(4)                       | 148.48(4)                                    |                        | -                                 |                        |                           |  |
|               | N1-Hg1-X1                    | 106                                | 5.0(4)                       | 107                                          | .6(2)                  |                                   | -                      |                           |  |
|               | N1-Hg1-X2                    | 104                                | .7(4)                        | 102                                          | .9(2)                  |                                   | -                      |                           |  |
|               |                              |                                    |                              |                                              |                        |                                   |                        |                           |  |

## **References:**

[S1] Khavasi, H. R.; Esmaeili, M.CrystEngComm 2014, 16, 8479-8485.