Electronic Supplementary Information

(CrystEngComm)

NiFe-LDH/g-C₃N₄ binary heterostructures with 2D/2D configuration for highly efficient photocatalytic degradation of antibiotics and

hydrogen production

Yujie Jia ^{a,†}, Shuhan Jiang ^{a,†}, Qianchen Ou ^a, Yanan Liu ^a, Jian Zhang ^c, Yangjie Zhou ^a, Yuan Lian ^{b,*}, Hongmei Wang ^{a,*}

 ^a Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
 ^b College of Material and Textile Engineering, Jiaxing University, Jiaxing 314001, China
 ^c Analysis and testing center, Jiaxing University, Jiaxing 314001, China

Photoelectrochemical measurements

The PEC performance was tested using a three-electrode working system, that is, the electrode containing the sample as the working electrode, the standard Ag/AgCl electrode as the reference electrode, the platinum electrode as the counter electrode, and the electrolyte solution was 0.100 M Na₂SO₄ solution as the electrolyte. The working electrode was prepared by the following procedure. 5.00 mg samples were dispersed with 800 μ L isopropanol, 200 μ L deionized water and 50 μ L Nafion solution by ultrasound, then the mixture was coated on conductive glass (FTO) with an area of about 2 cm².

Catalysts	Light source	Sacrificial reagent	H ₂ yield (μmol·g ⁻¹)	Reaction time (h)	Refs.
NiFe-LDH/ g-C ₃ N ₄	λ>400 nm 300 W Xe	15 vol.% TEOA	3122	4	This work
NiCo-LDH/ g-C ₃ N ₄	λ>400 nm 300 W Xe	15 vol.% TEOA	1355.1	3	[S1]
CoAl-LDH/ g-C ₃ N ₄	Optical filter AM 1.5 300 W Xe	10 vol.% TEOA	2720.5	4	[S2]
In ₂ S ₃ /g-C ₃ N ₄ / CoZnAl-LDH	λ>410 nm 300 W Xe	methanol	404.78	8	[S3]
Pt/CoO/g- C ₃ N ₄	λ>400 nm 300 W Xe	10 vol.% TEOA	2605.2	4	[S4]
Pt/Al ₂ O ₃ / g-C ₃ N ₄	λ>420nm 300 W Xe	25 vol.% TEOA	3126	6	[85]
ACN-550	λ>190nm 300 W Xe	10 vol.% TEOA	4570.8±25.8	6	[S6]

Table S1 Comparison of the H_2 revolution rates with other photocatalysts.

Table S2 Comparison of the degradation efficiency with other photocatalysts.

Catalysts	Light source	Degradation efficiency	Pollutants	Reaction time (min)	Refs.
1.8LDH/CN	λ>400 nm 300 W Xe	76.3%	TC	80	This work
NTU-9/C ₃ N ₄	LED	65%	toluene	60	[S7]
BiOI/ZnFe ₂ O ₄ / g-C ₃ N ₄	LED	66.6%	phenol	120	[S8]
g-C ₃ N ₄ /LDH- OVs	λ>420 nm 300 W Xe	95%	TC	90	[89]
Fe ₂ O ₃ /g-C ₃ N ₄ /	λ>420 nm 300 W Xe	70%	MB	90	[S10]

Notes and references

[S1] Nong J, Jin Y, Tan J, et al. Construction of NiCo-LDH/g-C₃N₄ heterojunctions as efficient

photocatalysts for enhanced degradation of tetracycline hydrochloride and hydrogen evolution. New J. Chem., 2022, 46, 22830-22840.

[S2] Zhang J, Zhu Q, Wang L, et al. g-C₃N₄/CoAl-LDH 2D/2D Hybrid Heterojunction for Boosting Photocatalytic Hydrogen Evolution. Int. J. Hydrogen Energ., 2020, 45(41), 21331-21340.

[S3] Sun X, Li L, Hu T, *et al.* In₂S₃/g-C₃N₄/CoZnAl-LDH composites with the lamellar dual Sscheme heterostructure and its enhanced photocatalytic performance. Colloid Surface A, 2023, 658, 130744.

[S4] Mao Z, Chen J, Yang Y, *et al.* Fahlman BD. Novel $g-C_3N_4/CoO$ nanocomposites with significantly enhanced visible-light photocatalytic activity for H₂ evolution. ACS Appl. Mater. Interfaces, 2017, 9(14), 12427e35.

[S5] Li F, Liu S, Xue Y, *et al.* Structure modification function of g-C₃N₄ for Al₂O₃ in the in situ hydrothermal process for enhanced photocatalytic activity. Chem. Eur. J., 2015, 21(28), 10149e59.
[S6] Meng F, Tian W, Tia Z, *et al.* Enhanced photocatalytic organic pollutant degradation and H₂ evolution reaction over carbon nitride nanosheets: N defects abundant materials. Sci. Total Environ., 2022, 851, 158360.

[S7] Makowski D, Lisowski W, Baluk M A, *et al.* Design and Synthesis of NTU-9/ C_3N_4 Photocatalysts: Effects of NTU-9 Content and Composite Preparation Method. Materials, 2023, 16 (14), 5007.

[S8] Khasevani S G, Gholami M R. Synthesis of BiOI/ZnFe₂O₄-metal-organic framework and g- C_3N_4 -based nanocomposites for applications in photocatalysis. Ind. Eng. Chem. Res., 2019, 58 (23), 9806-9818.

[S9] Zheng J, Fan C, Li X, *et al.* Effective mineralization and detoxification of tetracycline hydrochloride enabled by oxygen vacancies in g-C₃N₄/LDH composites. Sep. Purif. Technol., 2023, 305, 122554.

[S10] Karimi M A, lliyat M, Atashkadi M, *et al.* Microwave-assisted synthesis of the $Fe_2O_3/g-C_3N_4$ nanocomposites with enhanced photocatalytic activity for degradation of methylene blue. J. Chin. chem. soc., 2020, 67(11), 2032-2041.