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Experimental

1. Materials

All reagents were commercially available and used as received. Zirconium chloride (ZrCl4, 98%), 

Biphenyl-4,4'-dicarboxylic acid (H2BPDC, 99%), 2,2'-Bipyridine-5,5'-dicarboxylic acid (H2bpydc, 

98%), Copper chloride dihydrate (CuCl2, 99%), Benzoic Acid (BenAc, 99.5%), N,N-

dimethylformamide (DMF, 99.5%), methanol (99.5%), ethanol (EtOH, 99.5%). 

2. Synthesis of UiO-67

UiO-67 was synthesized according to a reported work. 0.36 g (1.542 mmol) of ZrCl4 and 7.53 

g of benzoic acid were ultrasonically dissolved in 40 mL of DMF (solution A). Subsequently, 0.375 

g (1.542 mmol) of H2BPDC was fully dissolved in 20 mL of DMF by ultrasound (solution B). 

Finally, the solution A and solution B were fully mixed in a 100 mL Teflon-lined stainless-steel 

auto-clave reactor and placed in an oven at 120 ℃ for 24 h. After cooling to room temperature, the 

precipitates were isolated through centrifugation and washed with DMF and methanol for three 

times, respectively. The synthesized particles were dispersed in acetone and placed for 24 h at room 

temperature, followed by centrifugation. This treatment was repeated three times. The obtained 

particles were dried at 120 ℃ under vacuum for further procedures.

3. Synthesis of H2bpydc-CuCl2

H2bpydc-CuCl2 was synthesized according to the literature[23]. 60 mg (0.24 mmol) of H2bpydc 

was dissolved in 20 mL of DMF (solution A) under 15 min stir. 45 mg (0.26 mmol) of CuCl2 was 

ultrasonically dissolved in 10 mL of DMF (solution B). Solution B was then added to solution A at 

65 ℃ and stirring was continued at this temperature for 6 h to prepare a solution of H2bpydc-CuCl2. 

4. Synthesis of CuO@UiO-67

90 mg of UiO-67 was ultrasonically dispersed in 10 mL DMF, the dispersion emulsion was 

added to the above H2bpydc-CuCl2 solution and then stirred for 1 h at 60 ℃. By centrifuging it, 

washed several times (three times at least) with DMF, Then, the prepared solid was isolated 

followed by three times washing with EtOH. The resulting solid after centrifugation was then dried 

under vacuum at 60 ℃ for 12h. The dried powder was placed in a 5% H2/Ar gas stream, heated at 

5 ℃ min-1 from room temperature to 250 ℃, and held at 250 ℃ for 6 h. Then raised from room 



temperature to 300 ℃ at a heating rate of 5 ℃ min-1 under air atmosphere, it was also maintained 

at 300 ℃ for 3h.

5. Adsorption Experiments

CO2, CH4, and N2 adsorption experiments were performed on a 3Flex surface characterization 

analyzer (Micromeritics, USA) at 273 and 298 K. The cuvette was placed in a circulating water bath 

to keep the adsorption temperature constant. The free space of the system was determined by dozing 

the heliumgas. Prior to the measurements, 60-80 mg samples were degassed at 393 K for 12h. Gas 

adsorption isotherms were obtained at pressures from 0 to 100 kPa. Ultra-high purity CO2 (99.99%), 

CH4 (99.99%), and N2 (99.99%) were used.

6. Calculations of the Adsorption Selectivity

In a mixture containing 1 and 2, the preferential adsorption selectivity of component 1 to 

component 2 can be formally defined as

𝑆𝑎𝑑𝑠 =
𝑞1/𝑞2

𝑝1/𝑝2

where q1 and q2 are the absolute loads. In all calculations below, Sads are calculated based on 

the use of Myers and Prausnitz's Ideal Adsorption Solution Theory (IAST). These calculations were 

performed using a pure component isotherm fit of the absolute load.

7. Isosteric Heat of Adsorption

The isosteric heat of adsorption represents the strength of the interaction between adsorbent 

molecules and adsorbent lattice atoms and can be used to measure the energy inhomogeneity of a 

solid surface. The isosteric heat of adsorption can be calculated from the Clausius-Clapeyron 

equation as

𝑄𝑠𝑡 = −𝑅𝑇2(
∂ 𝑙𝑛 𝑃

∂𝑇
)𝑛𝑎

where Qst is the isosteric heat of adsorption (kJ/mol), P is the pressure (kPa), T is the 

temperature, R is the gas constant, and na is the adsorption amount (mmol/g).

8. Gas separation measurements

Breakthrough experiments on the gas separation performance of CuO@UiO-67 are 

carried out using a CO2/N2 (15:85 v/v) gas mixture. 1g of activated CuO@UiO-67 is 

loaded into the instrumental multicomponent adsorption penetration profile analyzer 

BSD-MAB for testing at 298 K and 1 bar. Helium is used for initial blowdown of the 



sample column, which is heated at 150 °C for 2 h for activation. The gas flow rate is 10 

ml/min. The relative amount of gas passing through the column is monitored by a gas 

analysis system and the ion peaks are detected at m/z+= 15 44 (CO2), 14 (N2), 40 (Ar).

9. Cyclic Stability Test

The cyclic stability of CO2 was assessed using the TGA method on a thermogravimetric 

analyzer (PerkinElmer STA 8000, USA). The adsorbent underwent initial degassing at 120 ℃ under 

an argon atmosphere for 0.5 h, followed by cooling to 25 ℃. At the onset of the first cycle, the gas 

flow was switched to CO2 for a 0.5 h adsorption phase. Subsequently, the CO2 atmosphere 

transitioned to an argon atmosphere, and the temperature was raised to 120 ℃ to desorb the 

adsorbent for 30 minutes. The material was then cooled to 25 ℃, completing the first cycle. This 

entire process was repeated for a total of five cycles in the adsorption experiment. In each 

subsequent cycle, the steps of the first cycle were precisely replicated.

10. Stability under humidity, acid and alkali condition

To assess the stability of the samples in acidic, alkaline, and humid environments, the 

specimens were subjected to exposure conditions: HCl with a pH of 2, NaOH solution with a pH of 

13, and humid air with a relative humidity (RH) of 80%, each for 24 hours at ambient temperature. 

The stability was confirmed through PXRD analysis.

 



Fig. S1. Ex-situ high-resolution XPS spectra of bpydc@UiO-67.

Fig. S1 shows the XPS plot of bpydc@UiO-67 and we found that the peak position of 

substituted N (398.6 eV) is similar to that of H2bpydc (398.5 eV).The XPS analysis of 

H2bpydc-CuCl2 into UiO-67 is shown in Fig. (Fig. 3b).



Fig. S2. XRD of CuO@UiO-67 after 24h at PH=2, PH=13 and 80% humidity, 

respectively.

Figure S2 shows the XRD of CuO@UiO-67 after placing it at PH=2, PH=13 and 

humidity of 80% for 24 h. From the figure, it can be noticed that the structure of 

CuO@UiO-67 has collapsed at PH=2, but it still maintains a good crystallinity at 

PH=13 and humidity of 80%. It indicates that CuO@UiO-67 has better alkali and water 

stability.



Fig. S3. Cyclic adsorption performance graph of CuO@UiO-67.

Figure S3 shows that after five cycles of adsorption, the adsorbed amount of 

CuO@UiO-67 only decreased by about 5%, which has a good cyclic stability.



Table S1. BET and CO2 Adsorption Properties of CuO@UiO-67 and Selected MOFs 
Reported in the Published Literature at Room Temperature (298 K) and P = 1 bar

MOF BET

Surface areas (m2 g−1)

CO2 adsorption

(mmol g -1)

at 298 K and 1 bar

ref

CuO@UiO-67 626 1.39 this work

UiO-67 1913 0.56 this work

MUT-1 28.17 0.97 1

ZIF-8 1567 0.70 2

(DMOF-1)

((Zn2(BDC)2(DABCO))
1161 1.60 3

Azo-DMOF-1 579.8 1.40 3

MOF-177 4508 0.80 4

PCN-68 5109 1.40 5

ZIF-70 1730 1.12 6

MOF-205 4460 0.75 7

CYCU-1 224 1.37 8

CYCU-2 297 1.17 8

SNU-9 259 1.25 9

MOF-5 (microwave synthesis) 2304 1.12 10

ZIF-8 1135 1.02 11

ZIF-100 600 0.96 12

UMCM-1 4034 0.91 10

MOF-5/IRMOF-1 1892 0.83 10

MOF-2 345 0.57 4

CALF-20 528 4.07 13

UTSA-120a 638 5.0 14

ZU-301 2.44 15

Table S2 Selectivities of CO2/N2 and CO2/CH4 in some selected MOFs at 298k and a 
total pressure of 1 bar.

MOF SCO2/N2

(CO2:N2)

SCO2/CH4

(CO2:CH4)

ref

CuO@UiO-67 55.6(15:85) 9.2(5:95) this work

UiO-67 10.1(15:85) 0.4(5:95) this work

UiO-67 11.8(16:84) 7.6(50:50) 17

Zr-BTDC 20.5(16:84) 17.2(50:50) 17

Zr-BFDC 58(16:84) 30.5(50:50) 17

BUT-10 22.9(15:85) 5.2(10:90) 18

BUT-11 43.1(15:85) 9.2(10:90) 18

Zn-MOF-74 87.8(15:85) 19

Mg-MOF-74 180(15:85) 19

Zn-paddlewheel MOF 36.7(15:85) 6.2(50:50) 20

Cu-BTC 20(15.6:84.4) 6.4(50:50) 21



ZIF-68 13(15:85) 3.5(50:50) 22

ZIF-69 24(15:85) 7(50:50) 22

UTSA-120a 600(15:85) 14

ZU-301 846(15:85) 111(50:50) 15

ZU-36-Ni 4200(15:85) 930(50:50) 16
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