Supporting Information

Crystal structure analysis of helix-turn-helix type motifs in $\alpha, \gamma-$ hybrid peptides

\author{
Sachin A. Nalawade, Mothukuri Ganesh Kumar, DRGKoppalu R. Puneeth Kumar, Manjeet Singh, Sanjit Dey, and Hosahudya N. Gopi*
 [^0]}

Table of Contents

1 Sequences of Peptides P1-P3 S2
2 ORTEP Diagrams of Peptides P1-P3 S3
3 Crystallographic Information of Peptides P1-P3 S6
4 Backbone torsional angles and H-bond Parameters of Peptides P1- S8 P3
5 Materials, Methods, and General Experimental Details S12
6 Procedures for Building Blocks Synthesis and its Characterization S12
7 General procedure for the solid phase synthesis of peptides P1-P3 S20
8 2D NMR (TOCSY \& ROESY) analysis and NOE correlations with S21 solid state structure of peptides P1-P3
9 HPLC Trace of Peptides P1-P3 S41
10 CD Spectroscopy of peptides P1-P3 S42
11 Superimposed structures of Peptide ' $\mathbf{P} 3$ ' and '434 repressor DNA- S43 binding domain' protein
12 1H NMR, and Mass Spectra of Peptides P1-P3 and monomers S44
13 References S54

1) Sequences of Peptides P1-P3

P1

P2

P3

Scheme S1: Sequences of Peptides P1, P2 and P3.

2) ORTEP Diagrams of Peptides P1, P2 and P3:

Fig S1: ORTEP diagram of P1 [Ac-Aib- γ Phe-Ala- (E) d γ Val-Aib- γ Phe-Aib-CONH ${ }_{2}$], with labelled heteroatoms. H-bonding is represented by dotted lines in light green colour. The side-chain and backbone H -atoms are not shown for clarity (except $\mathrm{N}-\mathrm{H}$). Ellipsoids are drawn at 50% probability. $\left[(E) \mathrm{d} \gamma \mathrm{Val}=(E)-\alpha, \beta\right.$-unsaturated γ-Valine $\left.{ }^{1}\right]($ CCDC no : 2226520)

Fig S2: ORTEP diagram of P2 [Ac-Aib- γ Val-Aib- γ Leu-Ala- $(E) \mathrm{d} \gamma$ Val-Leu- γ Leu-Aib- γ Val-Aib- CONH_{2}], with labelled heteroatoms. H-bonding is represented by dotted lines in light green colour. The side-chain and backbone H -atoms are not shown for clarity (except $\mathrm{N}-\mathrm{H}$). Ellipsoids are drawn at 50% probability. $\left[(E) \mathrm{d} \gamma \mathrm{Val}=(E)-\alpha, \beta\right.$-unsaturated γ-Valine $\left.{ }^{1}\right]($ CCDC no: 2226522)

Fig S3: ORTEP diagram of $\mathbf{P 3}$ [Ac-Aib- γ Leu-Aib-(E, E)-dd ε Phe-Aib-Adb-Aib- CONH_{2}], with labelled heteroatoms. H-bonding is represented by dotted lines in light green colour. The sidechain and backbone H -atoms are not shown for clarity (except $\mathrm{N}-\mathrm{H}$). Ellipsoids are drawn at 50% probability. $\left[(E, E) \mathrm{dd} \varepsilon\right.$ Phe $=(E, E)-\alpha \beta, \gamma \delta$-unsaturated ε-Phenylalanine ${ }^{2} ;$ Adb $=4$-amino-3,3-dimethyl-butanoic acid 3] (CCDC no : 2226523)

3) Crystallographic Information of Peptides P1-P3:

Crystal structure analysis of Ac-Aib- γ Phe-Ala-(E)d γ Val-Aib- γ Phe-Aib-CONH2 (P1): Colourless rod shape Crystals of P1 were grown by slow evaporation from an aqueous solution of methanol. A good quality single crystal $(0.13 \times 0.08 \times 0.05 \mathrm{~mm})$ was mounted on the head of a goniometer using a loop with a small amount of paraffin oil. The X-ray diffraction data of a single crystal were collected at 100 K temperature on a Bruker APEX(II) DUO CCD
diffractometer using Mo K α radiation $(\lambda=0.71073 \AA$), ω-scans $(2 \theta=39.992)$, for a total of 17071 independent reflections. Space group $C 2, a=33.21(5), b=10.160(13), \mathrm{c}=16.17(2), \beta$ $=112.22(3), \mathrm{V}=5051(11) \AA^{3}$, Monoclinic, $\mathrm{Z}=4$ for chemical formula $\mathrm{C}_{46} \mathrm{H}_{68} \mathrm{~N}_{8} \mathrm{O}_{8}$ with one molecule in asymmetric unit; ρ calcd $=1.132 \mathrm{gcm}^{-3}, \mu=0.078 \mathrm{~mm}^{-1}, \mathrm{~F}(000)=1856.0$, Rint $=$ 0.2784. The structure was obtained by direct methods using SHELXL- $97 .{ }^{4}$ The final R value was $0.1038(\mathrm{wR} 2=0.2341) 4549$ observed reflections $(F 0 \geq 4 \sigma(|\mathrm{~F} 0|))$ and 571 variables, $\mathrm{S}=$ 0.857. The largest difference peak and hole were 0.327 and $-0.253 \mathrm{e}^{3}$, respectively.

The diffracted single crystal was a small-sized and the quality of diffraction was poor. Several datasets were collected on single crystals from different groups and one of the highest quality is reported herein.

There is some partially occupied solvent molecule also present in the asymmetric unit. A significant amount of time was invested in identifying and refining the disordered molecule. Option SQUEEZE of program PLATON ${ }^{5}$ was used to correct the diffraction data for diffuse scattering effects and to remove the contributions of the disordered solvent molecules from the structure factors. PLATON calculated the upper limit of volume that can be occupied by the solvent to be $461 \AA^{3}$ of the unit cell volume. The program calculated 148 electrons in the unit cell for the diffuse species. No data are given for the diffusely scattering species. Outputs of the SQUEEZE report are appended in CIF file P1.

Crystal structure analysis of Ac-Aib- γ Val-Aib- γ Leu-Ala-($\boldsymbol{E})$ d γ Val-Leu- γ Leu-Aib- γ Val$\mathbf{A i b}_{\mathbf{C O N H}}^{2} \mathbf{(P 2)}$: Colourless plate shape Crystals of $\mathbf{P} 2$ were grown by slow evaporation from the aqueous solution of methanol. A good quality single crystal $(0.25 \times 0.12 \times 0.1 \mathrm{~mm})$ was mounted on the head of a goniometer using a loop with a small amount of paraffin oil. The Xray diffraction data of a single crystal were collected at 100 K temperature on a Bruker APEX(II) DUO CCD diffractometer using Mo K α radiation ($\lambda=0.71073 \AA ́$), ω-scans ($2 \theta=$ 56.65), for a total of 43572 independent reflections. Space group $\mathrm{P} 21, \mathrm{a}=14.637(8), \mathrm{b}=$ 19.378(9), $\mathrm{c}=16.197(7), \beta=104.947(16), \mathrm{V}=4439(4) \AA^{3}$, Monoclinic, $\mathrm{Z}=2$ for chemical formula $\mathrm{C}_{64} \mathrm{H}_{116} \mathrm{~N}_{12} \mathrm{O}_{12}, \mathrm{C} \mathrm{H}_{4} \mathrm{O}$ with one methanol molecule in asymmetric unit; ρ calcd $=$ $0.956 \mathrm{gcm}^{-3}, \mu=0.067 \mathrm{~mm}^{-1}, \mathrm{~F}(000)=1396$, Rint $=0.0384$. The crystal structure was solved by direct methods using SHELXL-97. ${ }^{4}$ The final R value was $0.0531(w R 2=0.1158) 21737$ observed reflections $(F 0 \geq 4 \sigma(|\mathrm{~F} 0|))$ and 837 variables, $\mathrm{S}=1.053$. The largest difference peak and hole were 0.442 and -0.275 e \AA^{3}, respectively.

There is some partially occupied solvent molecule also present in the asymmetric unit. A significant amount of time was invested in identifying and refining the disordered molecule. The solvent masks option in program Olex2-1.2 ${ }^{6}$ serves as an alternative to SQUEEZE which is implemented in PLATON ${ }^{5}$. The solvent masks option in program Olex $2-1.2^{6}$ was used to correct the diffraction data for diffuse scattering effects and to remove the contributions of the disordered solvent molecules from the structure factors. The Olex2-solvent mask calculated the upper limit of volume that can be occupied by the solvent to be $1193 \AA^{3}$, or 26.9% of the unit cell volume. The program calculated 159 electrons in the unit cell for the diffuse species. No data are given for the diffusely scattering species. Outputs of the Olex2-solvent mask (SQUEEZE) report are appended in CIF file P2.

Crystal structure analysis of Ac-Aib- γ Leu-Aib- (E, E) dd γ Phe-Aib-Adb-Aib-CONH 2 (P3): Colourless needle shape Crystals of $\mathbf{P 3}$ were grown by slow evaporation from the aqueous solution of methanol. A good quality single crystal $(0.12 \times 0.09 \times 0.07 \mathrm{~mm})$ was mounted on the head of a goniometer using a loop with a small amount of paraffin oil. The X-ray diffraction data of a single crystal were collected at 100K temperature on a Bruker APEX(II) DUO CCD diffractometer using Mo K α radiation ($\lambda=0.71073 \AA$ Á), ω-scans $(2 \theta=56.666)$, for a total of 66655 independent reflections. Space group $P 21, a=17.73(10), b=10.52(6), \mathrm{c}=28.85(16)$, $\beta=99.42(8), \mathrm{V}=5309(50) \AA^{3}$, Monoclinic, $\mathrm{Z}=4$ for chemical formula $\mathrm{C}_{45} \mathrm{H}_{72} \mathrm{~N}_{8} \mathrm{O}_{8}$ with two molecule in asymmetric unit; ρ calcd $=1.067 \mathrm{gcm}^{-3}, \mu=0.074 \mathrm{~mm}^{-1}, \mathrm{~F}(000)=1848$, Rint= 0.1393 . The structure was obtained by direct methods using SHELXL- $97 .{ }^{4}$ The final R value was $0.1070(\mathrm{wR} 2=0.2415) 22799$ observed reflections $(F 0 \geq 4 \sigma(|\mathrm{~F} 0|))$ and 1109 variables, S $=1.028$. The largest difference peak and hole were 0.949 and -0.386 e \AA^{3}, respectively.

The diffracted single crystal was a small-sized and the quality of diffraction was poor. Several datasets were collected on single crystals from different groups and one of the highest quality is reported herein.

There is some partially occupied solvent molecule also present in the asymmetric unit. A significant amount of time was invested in identifying and refining the disordered molecule. Option SQUEEZE of program PLATON ${ }^{5}$ was used to correct the diffraction data for diffuse scattering effects and to remove the contributions of the disordered solvent molecules from the structure factors. PLATON calculated the upper limit of volume that can be occupied by the solvent to be $732 \AA^{3}$ of the unit cell volume. The program calculated 203 electrons in
the unit cell for the diffuse species. No data are given for the diffusely scattering species. Outputs of the SQUEEZE report are appended in CIF file P3.

4) Backbone Torsional Angles and H-bond Parameters of Peptides P1-P3:

Table S1: Backbone Torsional angle variables (in deg) for peptide P1

Torsion points	Torsion angle [${ }^{\circ}$]	Angle of Amino acid	Amino Acids
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(3)$	$-179(2)$	-	

$\mathrm{C}(42)-\mathrm{N}(7)-\mathrm{C}(43)-\mathrm{C}(46)$	$-55(3)$	Φ	Aib (7)
$\mathrm{N}(7)-\mathrm{C}(43)-\mathrm{C}(46)-\mathrm{N}(8)$	$-43(3)$	Ψ	

Table S2: Hydrogen bonding Parameters of Peptide P1

Intra-molecular H-bonds of				
D-H....... ${ }^{\text {A }}$	d(D-H)	$\mathbf{d}(\mathbf{H} \mathbf{A})$ (A)	$\mathbf{d}(\mathbf{D} A)$ (A)	<(N-H......O) $\left({ }^{\circ}\right)$
$\mathrm{N}(3)-\mathrm{H}(3 \mathrm{~A}) \mathrm{O}(1)$	0.88	2.04	2.91(3)	169
$\mathrm{N}(4)-\mathrm{H}(4) \mathrm{O}(2)$	0.88	1.85	2.70(3)	163
$\mathrm{N}(7)-\mathrm{H}(7) \mathrm{O}(5)$	0.88	1.98	2.85(3)	170
N(8)-H(8B).......O(6)	0.88	2.11	2.97(3)	166
Intermolecular H-bonds of peptide P1				
N(1)-H(1).......O(8)\#	0.88	2.01	2.85(3)	160
$\mathrm{N}(8)-\mathrm{H}(8 \mathrm{~A}) \mathrm{O}(6)^{*}$	0.88	2.12	2.87(3)	142

[$\mathrm{D}=$ Donor, $\mathrm{A}=$ Acceptor, $\mathrm{H}=$ Hydrogen, $\mathrm{d}=$ distance in $\mathrm{A},<=\operatorname{angle}$ in $\left({ }^{\circ}\right)$]
Symmetry operations used to generate equivalent atoms:
\#-x+1/2,y+1/2,-z+1 *-x+1,y,-z+1

Table S3: Backbone Torsional angle variables (in deg) for peptide P2

Torsion points	Torsion angle [${ }^{\circ}$]	Angle of Amino acid	Amino Acids
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(4)$	$-175.4(3)$	-	
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(6)$	$-59.4(4)$	Φ	Aib1
$\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(6)-\mathrm{N}(2)$	$-38.9(3)$	Ψ	
$\mathrm{C}(4)-\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{C}(10)$	$-174.6(3)$	ω	
$\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{C}(10)-\mathrm{C}(11)$	$-123.9(3)$	Φ	
$\mathrm{N}(2)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$48.0(3)$	θ_{1}	
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$65.2(3)$	θ_{2}	

$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{N}(3)$	-117.6(3)	Ψ	$\gamma \mathrm{Val}$ (2)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{N}(3)-\mathrm{C}(14)$	-174.4(3)	ω	
$\mathrm{C}(13)-\mathrm{N}(3)-\mathrm{C}(14)-\mathrm{C}(17)$	-57.9(4)	ϕ	Aib (3)
$\mathrm{N}(3)-\mathrm{C}(14)-\mathrm{C}(17)-\mathrm{N}(4)$	-45.1(3)	Ψ	
$\mathrm{C}(14)-\mathrm{C}(17)-\mathrm{N}(4)-\mathrm{C}(18)$	-172.9(2)	ω	
$\mathrm{C}(17)-\mathrm{N}(4)-\mathrm{C}(18)-\mathrm{C}(23)$	-119.1(3)	ϕ	γ Leu (4)
$\mathrm{N}(4)-\mathrm{C}(18)-\mathrm{C}(23)-\mathrm{C}(24)$	49.2(3)	θ_{1}	
$\mathrm{C}(18)-\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	61.5(4)	θ_{2}	
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{N}(5)$	-129.0(3)	Ψ	
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{N}(5)-\mathrm{C}(26)$	-164.4(2)	ω	
C(25)-N(5)-C(26)-C(28)	-68.8(3)	¢	Ala (5)
$\mathrm{N}(5)-\mathrm{C}(26)-\mathrm{C}(28)-\mathrm{N}(6)$	-30.0(4)	Ψ	
$\mathrm{C}(26)-\mathrm{C}(28)-\mathrm{N}(6)-\mathrm{C}(29)$	-170.1(2)	ω	
$\mathrm{C}(28)-\mathrm{N}(6)-\mathrm{C}(29)-\mathrm{C}(33)$	-110.1(3)	ϕ	$\mathrm{d} \gamma \operatorname{Val}(6)$
N(6)-C(29)-C(33)-C(34)	5.3(4)	θ_{1}	
$\mathrm{C}(29)-\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)$	-177.4(3)	θ_{2}	
$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{N}(7)$	179.0(3)	Ψ	
$\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{N}(7)-\mathrm{C}(36)$	-171.2(3)	ω	
$\mathrm{C}(35)-\mathrm{N}(7)-\mathrm{C}(36)-\mathrm{C}(41)$	-70.7(4)	ϕ	Leu (7)
$\mathrm{N}(7)-\mathrm{C}(36)-\mathrm{C}(41)-\mathrm{N}(8)$	-29.9(4)	Ψ	
$\mathrm{C}(36)-\mathrm{C}(41)-\mathrm{N}(8)-\mathrm{C}(42)$	-178.8(3)	ω	
$\mathrm{C}(41)-\mathrm{N}(8)-\mathrm{C}(42)-\mathrm{C}(47)$	-125.9(3)	ϕ	γ Leu (8)
$\mathrm{N}(8)-\mathrm{C}(42)-\mathrm{C}(47)-\mathrm{C}(48)$	49.5(4)	θ_{1}	
$\mathrm{C}(42)-\mathrm{C}(47)-\mathrm{C}(48)-\mathrm{C}(49)$	60.0(4)	θ_{2}	
$\mathrm{C}(47)-\mathrm{C}(48)-\mathrm{C}(49)-\mathrm{N}(9)$	-114.4(4)	Ψ	
$\mathrm{C}(48)-\mathrm{C}(49)-\mathrm{N}(9)-\mathrm{C}(50)$	-173.9(3)	ω	
$\mathrm{C}(49)-\mathrm{N}(9)-\mathrm{C}(50)-\mathrm{C}(53)$	-54.9(4)	ϕ	Aib (9)
$\mathrm{N}(9)-\mathrm{C}(50)-\mathrm{C}(53)-\mathrm{N}(10)$	-41.4(4)	Ψ	
$\mathrm{C}(50)-\mathrm{C}(53)-\mathrm{N}(10)-\mathrm{C}(54)$	-171.5(3)	ω	
$\mathrm{C}(53)-\mathrm{N}(10)-\mathrm{C}(54)-\mathrm{C}(58)$	-127.8(3)	¢	
$\mathrm{N}(10)-\mathrm{C}(54)-\mathrm{C}(58)-\mathrm{C}(59)$	52.8(3)	θ_{1}	
C(54)-C(58)-C(59)-C(60)	61.0(3)	θ_{2}	

$\mathrm{C}(58)-\mathrm{C}(59)-\mathrm{C}(60)-\mathrm{N}(11)$	$-120.3(3)$	Ψ	γ Val (10)
$\mathrm{C}(59)-\mathrm{C}(60)-\mathrm{N}(11)-\mathrm{C}(62)$	$-172.2(3)$	ω	
$\mathrm{C}(60)-\mathrm{N}(11)-\mathrm{C}(62)-\mathrm{C}(64)$	$-57.1(4)$	Φ	Aib (11)
$\mathrm{N}(11)-\mathrm{C}(62)-\mathrm{C}(64)-\mathrm{N}(12)$	$-42.0(4)$	Ψ	

Table S4: Hydrogen bonding Parameters of Peptide P2

Intra-molecular H-bonds of peptide P2				
D-H....... ${ }^{\text {A }}$	d(D-H)	$\mathbf{d}(\mathbf{H} \mathbf{A})$ (A)	$\mathbf{d}(\mathbf{D} \mathbf{A})$ (A)	<(N-H......O) $\left({ }^{\circ}\right)$
$\mathrm{N}(3)-\mathrm{H}(3) \mathrm{O}(1)$	0.88	2.05	2.911(3)	165
$\mathrm{N}(4)-\mathrm{H}(4) \mathrm{O}(2)$	0.88	2.04	2.902(3)	167
$\mathrm{N}(5)-\mathrm{H}(5) \mathrm{O}(3)$	0.88	1.93	2.807(3)	175
$\mathrm{N}(6)-\mathrm{H}(6) \mathrm{O}(4)$	0.88	2.03	2.872(3)	160
$\mathrm{N}(9)-\mathrm{H}(9) \mathrm{O}(7)$	0.88	2.01	2.881(3)	168
$\mathrm{N}(10)-\mathrm{H}(10 \mathrm{~A}) \mathrm{O}(8)$	0.88	2.05	2.875(3)	156
$\mathrm{N}(11)-\mathrm{H}(11) \mathrm{O}(9)$	0.88	2.04	2.918(3)	172
$\mathrm{N}(12)-\mathrm{H}(12 \mathrm{D}) \mathrm{O}(10)$	0.88	1.99	2.850(3)	166
Intermolecular H-bonds of peptide $\mathbf{P 2}$				
$\mathrm{N}(1)-\mathrm{H}(1) \mathrm{O}(6) \#$	0.88	2.01	2.875(3)	169
$\mathrm{N}(2)-\mathrm{H}(2) \mathrm{O}(12)^{*}$	0.88	2.07	2.870(3)	151
N(12)-H(12C).......O(6)\$	0.88	2.12	2.993(3)	171

Symmetry operations used to generate equivalent atoms: \# x+1,y,z $\quad * \mathrm{x}+1, \mathrm{y}, \mathrm{z}-1 \quad \$ \mathrm{x}, \mathrm{y}, \mathrm{z}+1$

Table S5: Backbone Torsional angle variables (in deg) for peptide P3

Backbone Torsional angle of Peptide P3 (Molecule 1)			
Torsion points (Molecule 1)	Torsion angle [] (Molecule 1)	Angle of Amino acid	Amino Acids (Molecule 1)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(2)$	$52.3(9)$	Ψ	
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{C}(5)$	$48.6(10)$	Φ	
$\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{C}(5)-\mathrm{C}(6)$	$175.4(6)$	ω	

$\mathrm{N}(2)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	105.3(8)	Ψ	Adb (6)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(10)$	-56.4(10)	θ_{2}	
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(10)-\mathrm{N}(3)$	-54.2(9)	θ_{1}	
$\mathrm{C}(7)-\mathrm{C}(10)-\mathrm{N}(3)-\mathrm{C}(11)$	129.7(8)	ϕ	
$\mathrm{C}(10)-\mathrm{N}(3)-\mathrm{C}(11)-\mathrm{C}(12)$	175.7(7)	ω	Aib (5)
$\mathrm{N}(3)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{N}(4)$	33.9(10)	Ψ	
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{N}(4)-\mathrm{C}(15)$	61.6(11)	¢	
$\mathrm{C}(12)-\mathrm{N}(4)-\mathrm{C}(15)-\mathrm{C}(16)$	168.3(7)	ω	(E, E) $\mathrm{dd} \varepsilon$ Phe (4)
$\mathrm{N}(4)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	179.3(8)	Ψ	
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	178.5(8)	θ_{4}	
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	-179.8(8)	θ_{3}	
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	178.8(8)	θ_{2}	
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{N}(5)$	3.3(12)	θ_{1}	
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{N}(5)-\mathrm{C}(28)$	-101.7(8)	Φ	
$\mathrm{C}(20)-\mathrm{N}(5)-\mathrm{C}(28)-\mathrm{C}(29)$	-172.1(6)	ω	Aib (3)
$\mathrm{N}(5)-\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{N}(6)$	-42.5(10)	Ψ	
$\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{N}(6)-\mathrm{C}(32)$	-55.0(9)	¢	
$\mathrm{C}(29)-\mathrm{N}(6)-\mathrm{C}(32)-\mathrm{C}(33)$	-173.0(6)	ω	$\gamma \mathrm{Leu}(2)$
$\mathrm{N}(6)-\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(34)$	-116.6(7)	Ψ	
$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)$	63.3(9)	θ_{2}	
$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{N}(7)$	46.5(9)	θ_{1}	
$\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{N}(7)-\mathrm{C}(40)$	-123.8(7)	ϕ	
$\mathrm{C}(35)-\mathrm{N}(7)-\mathrm{C}(40)-\mathrm{C}(41)$	-171.5(6)	ω	Aib(1)
$\mathrm{N}(7)-\mathrm{C}(40)-\mathrm{C}(41)-\mathrm{N}(8)$	-37.9(8)	Ψ	
$\mathrm{C}(40)-\mathrm{C}(41)-\mathrm{N}(8)-\mathrm{C}(44)$	-56.7(9)	¢	
$\mathrm{C}(41)-\mathrm{N}(8)-\mathrm{C}(44)-\mathrm{C}(45)$	173.9(7)	-	$\mathrm{NH}-\mathrm{COCH}_{3}$
Backbone Torsional angle of Peptide P3 (Molecule 2)			
Torsion points (Molecule 2)	Torsion angle [${ }^{\circ}$] (Molecule 2)	Angle of Amino acid	Amino Acids (Molecule 2)
$\mathrm{N}(9)-\mathrm{C}(46)-\mathrm{C}(47)-\mathrm{N}(10)$	-51.0(9)	Ψ	Aib7
$\mathrm{C}(46)-\mathrm{C}(47)-\mathrm{N}(10)-\mathrm{C}(50)$	-49.6(10)	ϕ	

$\mathrm{C}(47)-\mathrm{N}(10)-\mathrm{C}(50)-\mathrm{C}(51)$	-176.0(6)	ω	Adb (6)
$\mathrm{N}(10)-\mathrm{C}(50)-\mathrm{C}(51)-\mathrm{C}(52)$	-108.6(8)	Ψ	
$\mathrm{C}(50)-\mathrm{C}(51)-\mathrm{C}(52)-\mathrm{C}(55)$	58.8(9)	θ_{2}	
$\mathrm{C}(51)-\mathrm{C}(52)-\mathrm{C}(55)-\mathrm{N}(11)$	56.9(8)	θ_{1}	
$\mathrm{C}(52)-\mathrm{C}(55)-\mathrm{N}(11)-\mathrm{C}(56)$	-129.9(8)	ϕ	
$\mathrm{C}(55)-\mathrm{N}(11)-\mathrm{C}(56)-\mathrm{C}(57)$	-176.7(7)	ω	Aib (5)
$\mathrm{N}(11)-\mathrm{C}(56)-\mathrm{C}(57)-\mathrm{N}(12)$	-35.4(9)	Ψ	
$\mathrm{C}(56)-\mathrm{C}(57)-\mathrm{N}(12)-\mathrm{C}(60)$	-57.2(11)	ϕ	
$\mathrm{C}(57)-\mathrm{N}(12)-\mathrm{C}(60)-\mathrm{C}(61)$	-177.9(7)	ω	(E, E) $\mathrm{dd} \varepsilon$ Phe (4)
$\mathrm{N}(12)-\mathrm{C}(60)-\mathrm{C}(61)-\mathrm{C}(62)$	-160.4(9)	Ψ	
$\mathrm{C}(60)-\mathrm{C}(61)-\mathrm{C}(62)-\mathrm{C}(63)$	-178.3(9)	θ_{4}	
$\mathrm{C}(61)-\mathrm{C}(62)-\mathrm{C}(63)-\mathrm{C}(64)$	-174.9(10)	θ_{3}	
$\mathrm{C}(62)-\mathrm{C}(63)-\mathrm{C}(64)-\mathrm{C}(65)$	-176.1(8)	θ_{2}	
$\mathrm{C}(63)-\mathrm{C}(64)-\mathrm{C}(65)-\mathrm{N}(13)$	28.6(11)	θ_{1}	
$\mathrm{C}(64)-\mathrm{C}(65)-\mathrm{N}(13)-\mathrm{C}(73)$	-115.2(8)	ϕ	
$\mathrm{C}(65)-\mathrm{N}(13)-\mathrm{C}(73)-\mathrm{C}(74)$	-166.9(7)	ω	Aib (3)
$\mathrm{N}(13)-\mathrm{C}(73)-\mathrm{C}(74)-\mathrm{N}(14)$	-46.5(10)	Ψ	
$\mathrm{C}(73)-\mathrm{C}(74)-\mathrm{N}(14)-\mathrm{C}(77)$	-52.0(11)	Φ	
$\mathrm{C}(74)-\mathrm{N}(14)-\mathrm{C}(77)-\mathrm{C}(78)$	-175.0(7)	${ }^{\omega}$	$\gamma \mathrm{Leu}(2)$
$\mathrm{N}(14)-\mathrm{C}(77)-\mathrm{C}(78)-\mathrm{C}(79)$	-120.6(9)	Ψ	
$\mathrm{C}(77)-\mathrm{C}(78)-\mathrm{C}(79)-\mathrm{C}(80)$	67.8(12)	θ_{2}	
$\mathrm{C}(78)-\mathrm{C}(79)-\mathrm{C}(80)-\mathrm{N}(15)$	43.0(12)	θ_{1}	
$\mathrm{C}(79)-\mathrm{C}(80)-\mathrm{N}(15)-\mathrm{C}(85)$	-119.8(9)	ϕ	
$\mathrm{C}(80)-\mathrm{N}(15)-\mathrm{C}(85)-\mathrm{C}(86)$	-172.9(7)	ω	Aib(1)
$\mathrm{N}(15)-\mathrm{C}(85)-\mathrm{C}(86)-\mathrm{N}(16)$	-38.6(10)	Ψ	
$\mathrm{C}(85)-\mathrm{C}(86)-\mathrm{N}(16)-\mathrm{C}(89)$	-55.2(11)	ϕ	
$\mathrm{C}(86)-\mathrm{N}(16)-\mathrm{C}(89)-\mathrm{C}(90)$	-177.3(8)	-	$\mathrm{NH}-\mathrm{COCH}_{3}$
$[(E, E) \mathrm{dd} \varepsilon$ Phe $=(E, E)-\alpha \beta, \quad \gamma \delta$-unsaturated dimethylbutanoic acid ${ }^{3}$]		ε-Phenylalanine	$=4 \text {-amino- } 3,$

Table S6: Hydrogen bonding Parameters of Peptide P3

Intra-molecular H-bonds of peptide P3 (Molecule 1)				
D-H.......A	d(D-H)	$\mathbf{d}(\mathbf{H} \mathbf{A})$ (i̊)	$\mathbf{d}(\mathbf{D} \mathbf{A})$ (Aㅇ)	<(N-H......O) $\left({ }^{\circ}\right)$
$\mathrm{N}(6)-\mathrm{H}(6) \mathrm{O}(8)$	0.88	2.00	2.876(15)	172
N(5)-H(5).......O(7)	0.88	2.12	2.962(18)	161
$\mathrm{N}(2)-\mathrm{H}(2) \mathrm{O}(4)$	0.88	2.03	2.885(16)	162
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~B}) \mathrm{O}(3)$	0.88	2.16	3.024(17)	168
Intermolecular H-bonds of peptide P3 (Molecule 1)				
$\mathrm{N}(8)-\mathrm{H}(8) \mathrm{O}(5) \$$	0.88	2.17	3.006(17)	158
$\mathrm{N}(4)-\mathrm{H}(4) \mathrm{O}(10)^{*}$	0.88	2.04	2.918(14)	177
N(1)-H(1A).......O(9)\#	0.88	2.16	3.012(14)	162
$\mathrm{N}(12)-\mathrm{H}(12) \mathrm{O}(2)$	0.88	2.05	2.928(14)	175
N(9)-H(9A).......O(1)@	0.88	2.10	2.959(14)	166

Symmetry operations used to generate equivalent atoms: \#-x,y+1/2,-z+2 * x+1,y,z
\$x,y-1,z @ -x,y-1/2,-z+2

Intra-molecular H-bonds of peptide P3 (Molecule 2)				
$\mathrm{N}(14)-\mathrm{H}(14) \mathrm{O}(16) \#$	0.88	1.99	$2.867(16)$	172
$\mathrm{~N}(13)-\mathrm{H}(13) . \ldots . . . \mathrm{O}(15)^{*}$	0.88	2.08	$2.903(17)$	156
$\mathrm{~N}(10)-\mathrm{H}(10) \mathrm{O}(12) \$$	0.88	1.99	$2.854(16)$	166
$\mathrm{~N}(9)-\mathrm{H}(9 \mathrm{~B}) \ldots . . . \mathrm{O}(11) \$$	0.88	2.15	$3.024(17)$	172
Intermolecular H-bonds of peptide P3 (Molecule 2)				
$\mathrm{N}(16)-\mathrm{H}(16) \mathrm{O}(13) \$$	0.88	2.01	$2.873(17)$	167
$\mathrm{~N}(12)-\mathrm{H}(12) . \ldots . . . \mathrm{O}(2)$	0.88	2.05	$2.928(14)$	175
$\mathrm{~N}(9)-\mathrm{H}(9 \mathrm{~A}) \mathrm{O}(1) @$	0.88	2.10	$2.959(14)$	166
$\mathrm{~N}(4)-\mathrm{H}(4) \mathrm{O}(10)^{*}$	0.88	2.04	$2.918(14)$	177
$\mathrm{~N}(1)-\mathrm{H}(1 \mathrm{~A}) \mathrm{O}(9) \#$	0.88	2.16	$3.012(14)$	162

Symmetry operations used to generate equivalent atoms: \#-x,y+1/2,-z+2 * x+1,y,z
\$x,y-1,z @ -x,y-1/2,-z+2

5) Materials, Methods, and General Experimental Details:

All amino acids, Di-tert-butyl dicarbonate, N,O-Dimethylhydroxylamine hydrochloride, DCC, HOBt, DIPEA, $\mathrm{LiAlH}_{4}, \mathrm{PPh}_{3}$, Ethyl bromoacetate, Pd/C (Palladium on carbon), Sodium hydroxide (NaOH), FMOC-Succinimide (FMOC-OSu), DIBAL-H, $\mathrm{BF}_{3} \mathrm{OEt}_{2}$, 2-iodoxybenzoic acid (IBX), Acetic anhydride, Knorr-Amide resin, MeOH, THF, DCM, and Ethyl acetate, were purchased from the commercial sources. THF was dried over sodium metal and distilled before use. DCM was also dried using CaH_{2} and distilled under an inert atmosphere before use. MeOH , Pet-ether, and Ethyl acetate were distilled before use. Column chromatography was performed on silica gel (230-400 mesh). Final peptides were purified on reverse phase HPLC (C-18 column, $\mathrm{MeOH} / \mathrm{H} 2 \mathrm{O} 70: 30-95: 5$ as gradient with flow rate $2.00 \mathrm{~mL} / \mathrm{min}$). ${ }^{1} \mathrm{H}$ NMR (1D and 2D NMR) spectra were recorded on $600 \mathrm{MHz}, 500 \mathrm{MHz}$, and 400 MHz (or ${ }^{13} \mathrm{C}$ on 100 $\mathrm{MHz})$ using residual solvents as internal standards $\left(\mathrm{CD}_{3} \mathrm{OH} \delta H 3.31 \mathrm{ppm}, \delta C 49.0 \mathrm{ppm}, \mathrm{CDCl}_{3}\right.$ $\delta H 7.26 \mathrm{ppm}, \delta C 77.3 \mathrm{ppm}$). The chemical shifts (δ) and coupling constants were reported in ppm and Hz respectively. The mass of all pure peptides was confirmed by Matrix Assisted LASER Desorption Ionization mass spectrometer (MALDI-TOF/TOF). Single crystal XRD data for peptide structure determination were collected from an X-ray diffractometer using Mo$\mathrm{K} \alpha(\lambda=0.71073 \AA)$ graphite monochromated radiation.

6) Procedures for Building Blocks Synthesis and its Characterization

A) Synthesis of Fmoc-NH-(E)- $\boldsymbol{\alpha}, \boldsymbol{\beta}$-Unsaturated γ-amino acids (4):

Fmoc-NH-(E)- α, β-Unsaturated γ-amino acids were synthesized by following three steps (I - III) :
I) Synthesis of Boc-NH-(E)- $\boldsymbol{\alpha}, \boldsymbol{\beta}$-Unsaturated $\boldsymbol{\gamma}$-amino ethyl esters (2): Boc-NH-(E)- $\alpha, \beta-$ Unsaturated γ-amino ethyl esters (2) were synthesized using our reported protocol. ${ }^{1}$ briefly; boc-amino aldehyde (1) (10 mmol) was dissolved in dry THF (180 ml) under N_{2} atmosphere. Then Wittig ylide $\left(\mathrm{PPh}_{3}=\mathrm{CHCO}_{2} \mathrm{Et}\right)$ (36 mmol) was added to the above solution. The reaction mixture was stirred for 6 h at room temperature. The progress of the reaction was monitored by using TLC. Upon completion of the reaction, THF was evaporated from the reaction mixture, and the product Boc-NH-(E)- α, β-unsaturated γ-amino ethyl ester (2) was purified by column chromatography using ethyl acetate in pet ether (5\%) solvent system.

1a) $\mathrm{Boc}-\mathrm{Leu}-\mathrm{CHO}=\mathrm{R}=i-\mathrm{Bu}$
2a) Boc-(E)-d γ-Leu-OEt $=\mathrm{R}=\boldsymbol{i}-\mathrm{Bu}$
1b) $\mathrm{Boc}-\mathrm{Val}-\mathrm{CHO}=\mathrm{R}=i-\mathrm{Pr}$
2b) Boc-(E)-d γ-Val-OEt $=\mathrm{R}=i-\mathrm{Pr}$
1c) Boc-Phe-CHO = R = Phenyl
2c) Boc-(E)-d γ-Phe-OEt $=$ R = Phenyl

Scheme S2: Synthesis of Boc-NH-(E)- α, β-Unsaturated γ-amino ethyl esters (2). ${ }^{1}$

ethyl (S, E)-4-((tert-butoxycarbonyl)amino)-6-methylhept-2-enoate (2a):

${ }^{1}$ H NMR (400 MHz , Chloroform- d) $\delta 6.81$ (dd, $J=15.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}, \beta \mathrm{CH}$), $5.90(\mathrm{~d}, J=15.5$ $\mathrm{Hz}, 1 \mathrm{H}, \alpha \mathrm{C} H), 4.48(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N} H), 4.36-4.28(\mathrm{~m}, 1 \mathrm{H}, \gamma \mathrm{CH}), 4.18(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $\left.2 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\right), 1.71-1.64\left(\mathrm{~m}, 1 \mathrm{H},-\varepsilon \mathrm{CH}-\left(\mathrm{CH}_{3}\right)_{2}\right), 1.43(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Boc}), 1.37(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H},-$ $\left.\delta \mathrm{CH}_{2}-\mathrm{CH}-\left(\mathrm{CH}_{3}\right)_{2}\right), 1.27\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 0.92\left(\mathrm{~d}, 6 \mathrm{H},-\mathrm{CH}-\left(\zeta \mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathbf{C}$ NMR (101 MHz , CHLOROFORM-D) $\delta 166.56,155.22,149.04,120.53,79.81,77.47,77.15,76.83$, 60.55, 49.92, 43.95, 28.47, 24.83, 22.83, 14.34. HRMS (ESI-QTOF) m/z calculated value for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{NO}_{4}$ is [M+Na] 308.1837 and observed 308.1845.
ethyl (S,E)-4-((tert-butoxycarbonyl)amino)-5-methylhex-2-enoate (2b):

2b

${ }^{1}$ H NMR (400 MHz, Chloroform- d) $\delta 6.85(\mathrm{dd}, J=15.6,5.5 \mathrm{~Hz}, 1 \mathrm{H}, \beta \mathrm{CH}), 5.91(\mathrm{dd}, J=15.7$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}, \alpha \mathrm{CH}), 4.56(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 4.24-4.12\left(\mathrm{~m}, 3 \mathrm{H}, \gamma \mathrm{CH} \&-\mathrm{O}-\mathrm{CH}_{2}-\right), 1.91-$ $1.81\left(\mathrm{~m}, 1 \mathrm{H},-\delta \mathrm{CH}-\left(\mathrm{CH}_{3}\right)_{2}\right), 1.44(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Boc}), 1.28\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{O}_{-} \mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 0.94(\mathrm{~d}$, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{CH}-\left(\varepsilon \mathrm{CH}_{3}\right)_{2}, 0.91\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{CH}-\left(\varepsilon \mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathbf{C} \mathbf{~ N M R}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 166.43,155.51,147.51,121.64,79.85,77.48,77.16,76.84,60.58,56.82,32.40$,
28.50, 19.00, 18.13, 14.38. HRMS (ESI-QTOF) m / z calculated value for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{NO}_{4}$ is [M+Na] 294.1681 and observed 294.1663.

ethyl (S,E)-4-((tert-butoxycarbonyl)amino)-5-phenylpent-2-enoate (2c):

${ }^{1}$ H NMR (400 MHz , Chloroform- d) $\delta 7.31-7.27$ (m, 2H, Aromatic ortho), $7.25-7.15$ (m, 3 H , Aromatic meta \& para), $6.90(\mathrm{dd}, J=15.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \beta \mathrm{CH}), 5.85(\mathrm{dd}, J=15.7,1.6 \mathrm{~Hz}$, $1 \mathrm{H}, \alpha \mathrm{CH}), 4.61(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N} H), 4.55(\mathrm{~s}, 1 \mathrm{H}, \gamma \mathrm{CH}), 4.17\left(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 2.93-$ 2.84 (m, 2H, Benzylic), 1.39 (s, 9H, Boc), 1.27 (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{O}_{\left.-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \text { NMR }{ }^{\text {N }} \text { (}}$ ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.17,154.96,147.59,136.40,129.40,128.57,126.86,121.10,79.86$, 77.36, 77.04, 76.73, 60.46, 52.28, 40.88, 28.30, 14.22. HRMS (ESI-QTOF) m/z calculated value for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{4}$ is [M+Na] 342.1681 and observed 342.1688.
II) Ethyl ester hydrolysis reaction: Purified Boc-NH-(E)- α, β-Unsaturated γ-amino ethyl ester (2) (8 mmol) was dissolved in 10 mL of EtOH and then 10 ml of 1 N aq. NaOH solution was added to the reaction mixture. The reaction mixture was stirred at that temperature for 3 h . The progress of the reaction was monitored by TLC. After completion of the ethyl ester hydrolysis reaction, EtOH was removed under a vacuum. The residue was acidified with 5 \% aq. HCl solution (25 ml). The hydrolyzed acid product (3) was extracted with ethyl acetate (40 x 3). The extracted ethyl acetate solution was washed with brine (150 ml) solution. The organic layer was then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the product was concentrated under reduced pressure.

2a) Boc-(E)-dg-Leu-OEt $=\mathrm{R}=\boldsymbol{i}-\mathrm{Bu}$
2b) Boc-(E)-dg-Val-OEt $=\mathrm{R}=\boldsymbol{i}-\mathrm{Pr}$
2c) Boc-(E)-d γ-Phe-OEt $=$ R = Phenyl
3a) Boc-(E)-dg-Leu-OH = R=i-Bu
3b) Boc-(E)-dg-Val-OH $=\mathrm{R}=i-\mathrm{Pr}$
3c) Boc-(E)-d γ-Phe-OH $=$ R $=$ Phenyl

Scheme S3: Synthesis of Boc-NH-(E)- α, β-Unsaturated γ-amino acids (3). ${ }^{1}$
III) Boc deprotection and Fmoc protection reaction: The Boc-NH-(E)- α, β-Unsaturated γ amino acid (3) (8 mmol) was dissolved in 5 mL of DCM and then 12 mL of TFA was added to the reaction mixture at $0^{\circ} \mathrm{C}$. After $1 \mathrm{~h}, \mathrm{TFA}$ was removed under a vacuum. The residue was dissolved in 22 mL of $10 \% \mathrm{NaHCO}_{3}$ (adjusts pH to ~ 8). The solution of Fmoc-OSu (8 mmol) in 30 mL of THF was added slowly to the reaction mixture and stirred overnight at room temperature. After completion of the reaction, the reaction mixture was acidified with 5% aq. HCl solution and extracted with ethyl acetate (40×3). The extracted ethyl acetate solution was washed with brine $(150 \mathrm{ml})$ solution. The organic layer was then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the product was concentrated under reduced pressure to give the white solid product of Fmoc-(E)- α, β - Unsaturated γ-amino acids (4) in 78-80\% yields, which were directly used for solid-phase peptide synthesis without further purifications.

(3)

Fmoc-OSu

(4)
3b) $\mathrm{Boc}-\mathrm{Val}-\mathrm{CHO}=\mathrm{R}=i-\mathrm{Pr}$
4b) $\mathrm{Fmoc}-(\mathrm{E})-\mathrm{dg}-\mathrm{Val}-\mathrm{OEt}=\mathrm{R}=\boldsymbol{i}-\mathrm{Pr}(\mathbf{8 0 \%})$

Scheme S4: Synthesis of Fmoc-NH-(E)- α, β-Unsaturated γ-amino acids (4).

B) Synthesis of $\operatorname{Fmoc}-\mathrm{NH}-(E, E)-\alpha \beta, \gamma \delta$-unsaturated ε-Phenylalanine ${ }^{2}(9)$:

Fmoc-NH-($E, E)-\alpha \beta, \gamma \delta$-unsaturated ε-Phenylalanine amino acid (9) were synthesized using our reported protocol ${ }^{2}$. Briefly, synthesis is shown in following five steps ($I-V$), starting from the above synthesized Boc-(E)-d γ-Phe-OEt (2c).
I) Procedure for the Synthesis of Boc-Amino-Phenylalanine-Allylic Alcohol ${ }^{2}$ (5): Boc-NH(E)- α, β-Unsaturated γ-phenylalanine ethyl ester (2 c) (10 mmol) was dissolved in dry DCM (50 ml) under N_{2} atmosphere, cooled to $-78{ }^{\circ} \mathrm{C}$ then $\mathrm{BF}_{3} . \mathrm{OEt}_{2}(11.5 \mathrm{mmol})$ was added to the solution. The reaction mixture was stirred at that temperature for 30 min . Then, DIBAL-H of 1 M Toluene solution (35 mmol) was added to the reaction mixture and the resultant reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h . The progress of the reaction was monitored by TLC. After completion, the reaction mixture was quenched with 5% aqueous HCl solution (80 ml). The resultant reaction mixture was allowed to warm up to room temperature. Then DCM was evaporated and the product was extracted with ethyl acetate (70 ml x 3). The extracted ethyl acetate solution was washed with $10 \% \mathrm{Na}_{2} \mathrm{CO}_{3}(100 \mathrm{ml})$ followed by brine $(100 \mathrm{ml})$ solution.

The organic layer was then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the product was concentrated under reduced pressure. The pure product Boc-amino-phenylalanine-allylic alcohol (5) was isolated after the column chromatography using EtOAc / pet ether (1:3) solvent system.

Scheme S5: Synthesis of Boc -Amino Phenylalanine Allylic Alcohol (5).

II) Procedure for the Synthesis of Boc-Amino-Phenylalanine-vinylogous Aldehyde ${ }^{2}$ (6):

 The oxidation of Boc-amino phenylalanine allylic alcohol (5) using o-Iodoxybenzoic acid (IBX) resulted in the formation of Boc-amino phenylalanine vinylogous aldehyde (6). In the event, to a solution of Boc-amino phenylalanine allylic alcohol (5) (8 mmol) in dist. Ethyl acetate (80 ml) was added o-Iodoxybenzoic acid (IBX) $(9.5 \mathrm{mmol})$. The reaction mixture was stirred for 4 h at $80^{\circ} \mathrm{C}$ using a reflux condenser. The progress of the reaction was monitored using TLC in 30\% (ethyl acetate in pet ether) solvent system. After completion, the reaction mixture was filtered using a sintered funnel, the filtrate is our product (6) which was concentrated under reduced pressure. The IBX and IBX-derived by-products are insoluble in ethyl acetate at room temperature i.e. no further purification is required beyond simple filtration. The IBX permits clean oxidation of phenylalanine allylic alcohol (5) to Phenylalanine-vinylogous Aldehyde (6) in ethyl acetate solvent. Due to the less stability of α, β-unsaturated aldehyde, we further immediately used it for the next Wittig reaction.

Scheme S6: Synthesis of Boc-Amino-Phenylalanine-vinylogous Aldehyde (6).
III) Procedure for the Synthesis of Boc-NH-($E, E)-\alpha \beta, \gamma \delta$-unsaturated ε-Phenylalanine Ester ${ }^{2}$ (7): Boc-amino phenylalanine vinylogous aldehyde (6) (6 mmol) was dissolved in dry THF (80 ml) under N_{2} atmosphere. Then Wittig ylide $\left(\mathrm{PPh}_{3}=\mathrm{CHCO}_{2} \mathrm{Et}\right)(7.2 \mathrm{mmol})$ was added
to the above solution. The reaction mixture was stirred for 6 h at room temperature. The progress of the reaction was monitored by using TLC. Upon completion of the reaction, THF was evaporated from the reaction mixture, and the product ' $\operatorname{Boc}-\mathrm{NH}-(E, E)-\alpha \beta, \gamma \delta$-unsaturated ε-phenylalanine ester (7)' was purified by column chromatography using ethyl acetate in pet ether (6\%) solvent system.

Scheme S7: Synthesis of Boc-NH-($E, E)-\alpha \beta, \gamma \delta$-unsaturated ε-Phenylalanine Ester (7).

(S, 2E, 4E)-ethyl 6-((tert-butoxycarbonyl)amino)-7-phenylhepta-2,4-dienoate (7):

White solid, yield: $4.49 \mathrm{~g}(93 \%)$, mp: $81{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{25}=-12.48\left(\mathrm{c}=1 \mathrm{CHCl}_{3}\right) .{ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.32-7.29$ (m, 2H, aromatic), $7.26-7.23$ (m, 1H, aromatic), $7.23-$ $7.19(\mathrm{~m}, 1 \mathrm{H}$, aromatic), $7.17-7.14(\mathrm{~m}, 2 \mathrm{H}$, aromatic $1 \mathrm{H} \& \beta \mathrm{CH}$ merged), $6.20(\mathrm{dd}, J=15.3$, $10.9 \mathrm{~Hz}, 1 \mathrm{H}, \gamma \mathrm{C} H), 6.03(\mathrm{dd}, J=15.4,5.1 \mathrm{~Hz}, 1 \mathrm{H}, \delta \mathrm{C} H), 5.82(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}, \alpha \mathrm{C} H), 4.54$ (s, 2H, NH \& $\varepsilon \mathrm{CH}$ merged), 4.19 (q, J=7.1 Hz, 2H, $\left.-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 2.87(\mathrm{t}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}$,
 CDCl_{3}) $\delta 166.95,155.04,143.63,142.14,136.72,129.47,128.51,128.00,126.75,121.48$, 79.78, 77.36, 77.04, 76.72, 60.36, 52.90, 41.36, 28.33, 14.29. HRMS (ESI-QTOF) m/z calculated value for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NO}_{4}$ is [M+Na] 368.1837 and observed 368.1830.
IV) Ethyl ester hydrolysis reaction ${ }^{2}$: Purified $\operatorname{Boc-NH}-(E, E)-\alpha \beta$, $\gamma \delta$-unsaturated ε Phenylalanine Ester (7) (5 mmol) was dissolved in 10 mL of EtOH and then 10 ml of 1 N aq. NaOH solution was added to the reaction mixture. The reaction mixture was stirred at that temperature for 3 h . The progress of the reaction was monitored by TLC. After completion of
the ethyl ester hydrolysis reaction, EtOH was removed under a vacuum. The residue was acidified with 5% aq. HCl solution (25 ml). The hydrolyzed acid product (8) was extracted with ethyl acetate (40×3). The extracted ethyl acetate solution was washed with brine (100 $\mathrm{ml})$ solution. The organic layer was then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the product was concentrated under reduced pressure.

Scheme S8: Synthesis of Boc-NH-($E, E)-\alpha \beta, \gamma \delta$-unsaturated ε-Phenylalanine Acid (8).
V) Boc deprotection and Fmoc protection reaction: The Boc-NH-($E, E)-\alpha \beta$, $\gamma \delta$-unsaturated ε-Phenylalanine acid (8) (5 mmol) was dissolved in 4 mL of DCM and then 10 mL of TFA was added to the reaction mixture at $0^{\circ} \mathrm{C}$. After 1 h , TFA was removed under a vacuum. The residue was dissolved in 15 mL of $10 \% \mathrm{NaHCO}_{3}$ (adjusts pH to ~ 8). The solution of $\mathrm{Fmoc}-\mathrm{OSu}$ (5 mmol) in 22 mL of THF was added slowly to the reaction mixture and stirred overnight at room temperature. After completion of the reaction, the reaction mixture was acidified with 5\% aq. HCl solution and extracted with ethyl acetate (30 x 3). The extracted ethyl acetate solution was washed with brine $(100 \mathrm{ml})$ solution. The organic layer was then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the product was concentrated under reduced pressure to give the white solid product of Fmoc-NH-($E, E)-\alpha \beta, \gamma \delta$-unsaturated ε-Phenylalanine acid (9) in 79% yields, which were directly used for solid-phase peptide synthesis without further purifications.

Scheme S9: Synthesis of Fmoc-NH-($E, E)-\alpha \beta, \gamma \delta$-unsaturated ε-Phenylalanine Acid (9).
C) Synthesis of Fmoc-NH-3,3-Dimethyl-Butanoic Acid (Fmoc-Adb) ${ }^{\mathbf{3}}$ (11):

Boc-NH-3,3-Dimethyl-Butanoic Acid (Boc-Adb) (10) was synthesized using our reported protocol. ${ }^{3}$ Briefly, Ethyl 3,3-dimethyl acrylate (10 mmol) was dissolved in neat nitromethane (50 mmol) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) base (15 mmol) were added. The reaction mixture was heated at $60^{\circ} \mathrm{C}$ overnight. After completion of the reaction, nitromethane was evaporated under reduced pressure. The residue is acidified with 20% aq. HCl solution. The acidic aqueous layer was extracted with ethyl acetate (40×3). The extracted ethyl acetate solution was washed with brine (100 ml) solution, and then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the product was concentrated under reduced pressure.

The product, 3,3-dimethyl-4-nitro-butyric acid ethyl ester ($1.5 \mathrm{~g}, 8 \mathrm{mmol}$) and activated Pd / C (20% by weight) in $\mathrm{MeOH}(18 \mathrm{~mL})$ and acetic acid (3 mL) was stirred at room temperature in the presence of hydrogen. After completion of the reaction (24 h), Pd / C was filtered through the pad of celite and the filtrate was concentrated under reduced pressure to get 4,4-dimethyl-2-pyrrolidinone as oil. The amide NH group of 4,4-dimethyl-2-pyrrolidinone was further protected with the Boc group and then hydrolyzed using NaOH in MeOH to get the final product Boc-NH-3,3-Dimethyl-Butanoic Acid (Boc-Adb) (10) (1.38 g, 75\%).

Scheme S10: Synthesis of Boc-NH-3,3-Dimethyl-Butanoic Acid (Boc-Adb) (10) ${ }^{3}$.

4-((tert-butoxycarbonyl)amino)-3,3-dimethylbutanoic acid (10):

${ }^{1}$ H NMR (400 MHz , Chloroform-d) $\delta 4.99(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 3.06(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H},-$ $\mathrm{NH}-\gamma \mathrm{CH}_{2}-$), 2.23 ($\mathrm{s}, 2 \mathrm{H},-\alpha \mathrm{CH}_{2}-\mathrm{COOH}$), 1.44 (s, $\left.9 \mathrm{H}, \mathrm{Boc}\right), 1.00\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 175.91,157.13,80.04,77.35,77.04,76.72,49.71,44.05,34.99,28.34$, 25.61. HRMS (ESI-QTOF) m/z calculated value for $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{NO}_{4}$ is [M+Na] 254.1368 and observed 254.1359.

Boc deprotection and Fmoc protection reaction: Boc-NH-3,3-Dimethyl-Butanoic Acid (Boc-Adb) (10) (5 mmol) was dissolved in 4 mL of DCM and then 10 mL of TFA was added to the reaction mixture at $0^{\circ} \mathrm{C}$. After $1 \mathrm{~h}, \mathrm{TFA}$ was removed under a vacuum. The residue was dissolved in 15 mL of $10 \% \mathrm{NaHCO}_{3}$ (adjusts pH to ~ 8). The solution of Fmoc-OSu (5 mmol) in 22 mL of THF was added slowly to the reaction mixture and stirred overnight at room temperature. After completion of the reaction, the reaction mixture was acidified with 5% aq. HCl solution and extracted with ethyl acetate (30×3). The extracted ethyl acetate solution was washed with brine (100 ml) solution. The organic layer was then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the white solid product, Fmoc-NH-3,3-Dimethyl-Butanoic Acid (Fmoc-Adb) (11). which were directly used for solid-phase peptide synthesis without further purifications.

(10)

1) $D C M, T F A$

Scheme S11: Synthesis of Fmoc-NH-3,3-Dimethyl-Butanoic Acid (Fmoc-Adb) (11).

7) General procedure for the solid phase synthesis of peptides P1-P3:

Peptides were synthesized at 0.2 mmol scales on Knorr-Amide resin using standard Fmocchemistry. HBTU/HOBT was used as a standard coupling reagent. To avoid Michael addition of HOBT, we carried out-coupling reactions of E-vinylogous γ-amino acids only with HBTU. ${ }^{7}$ Reaction time for Fmoc-deprotections and couplings of amino acids were 45 min and 1.5 h , respectively. The final Fmoc-deprotected amine was acylated using Acetic anhydride and pyridine base ($\mathrm{Ac}_{2} \mathrm{O} / \mathrm{Py}$). After completion of the synthesis, peptides were
cleaved from the resin using 20 mL of TFA/TIPS/Phenol/ $/ \mathrm{H}_{2} \mathrm{O}$ (88:2:5:5). After peptide cleavage, the resin was filtered out using the sintered funnel. The filtrate (which contains peptide) was evaporated under reduced pressure to give the crude peptide products. Peptides were further precipitated out using cold diethyl ether and purified through reverse phase HPLC on the $\mathrm{C}-18$ column using $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ gradient. The purity of peptides was further confirmed using an analytical $\mathrm{C}-18$ column in the same $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ gradient system. The mass of peptides was confirmed by MALDI TOF/TOF.

8) 2D-NMR (TOCSY \& ROESY) analysis and NOE correlations with solid state structure of peptides P1-P3.

(The 2D-NMR analysis of Peptides P1 and P2 was conducted in both $\mathrm{CD}_{3} \mathrm{OH}$ and CDCl_{3}. However, due to insolubility of peptide P 3 in CDCl_{3}, it was analysed only in $\mathrm{CD}_{3} \mathrm{OH}$. The NMR analysis of Peptides $\mathrm{P} 1, \mathrm{P} 2$ and P 3 in $\mathrm{CD}_{3} \mathrm{OH}$ are provided first, followed by the NMR data acquired in CDCl_{3}.)

8.1) Peptide P1 2D-NMR (TOCSY \& ROESY) analysis in $\mathrm{CD}_{3} \mathrm{OH}$:

Figure $\mathbf{S 4}:{ }^{1} \mathrm{H}$ NMR spectrum of peptide $\mathbf{P} 1$ in $\mathbf{C D}_{\mathbf{3}} \mathbf{O H}$.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D}_{3} \mathbf{O H}$) $\delta 8.56(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~s}$, $1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.21-7.09\left(\mathrm{~m}, 10 \mathrm{H}_{\text {Aromatic }}\right), 6.93(\mathrm{dd}, J=15.3,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 6.13(\mathrm{dd}, J=15.3$,
$1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{~m}, 1 \mathrm{H}), 4.10(\mathrm{~m}, 1 \mathrm{H}), 4.07(\mathrm{~m}, 1 \mathrm{H}), 2.79(\mathrm{dd}, J=13.7,5.2$ Hz, 2H), 2.64 (dd, $J=13.7,9.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.61 (dd, $J=13.7,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.45$ (ddd, $J=14.3$, $11.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{dt}, J=14.3,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{~m}, 1 \mathrm{H})$, $2.00(\mathrm{~m}, 1 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{~m}, 1 \mathrm{H}), 1.62(\mathrm{~m}, 1 \mathrm{H}), 1.55(\mathrm{~m}, 1 \mathrm{H}), 1.38(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$, $1.35(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.7$ $\mathrm{Hz}, 3 \mathrm{H}), 0.93\left(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}\right.$). MALDI (TOF/TOF) m / z calculated value for $\mathrm{C}_{46} \mathrm{H}_{68} \mathrm{~N}_{8} \mathrm{O}_{8}$ $\left[\mathrm{M}+\mathrm{Na}^{+}\right]$is 883.5052 and observed at 883.5010 .

Table S7. ${ }^{1} \mathrm{H}$ NMR Chemical Shifts (ppm) of $\mathbf{P 1}$ in $\mathbf{C D}_{\mathbf{3}} \mathbf{O H}$ at 298 K .

Residues	NH	${ }_{\alpha} \mathrm{CH}$	${ }_{\beta} \mathrm{CH}$	${ }_{\gamma} \mathrm{CH}$	${ }_{\delta} \mathrm{CH}$	${ }_{\varepsilon} \mathrm{CH}$	$\mathrm{CH}_{\text {term }}$
$\begin{aligned} & \text { (N-Terminus)- } \\ & \mathrm{COCH}_{3} \end{aligned}$	-	-	-	-	-	-	1.93
Aib(1)	8.15	-	$\begin{aligned} & 1.17(3 \mathrm{H}) \\ & 1.14(3 \mathrm{H}) \end{aligned}$	-	-	-	-
γ Phe(2)	7.38	$\begin{aligned} & 2.45(1 \mathrm{H}) \\ & 2.20(1 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 2.08(1 \mathrm{H}) \\ & 1.62(1 \mathrm{H}) \end{aligned}$	4.07	Benzylic $\begin{aligned} & 2.79(1 \mathrm{H}) \\ & 2.64(1 \mathrm{H}) \end{aligned}$	Aromatic 7.21-7.09 $(5 \mathrm{H})$	-
Ala(3)	8.00	4.16	1.38 (3H)	-	-	-	-
	8.56	6.13	6.93	4.21	1.88	$\begin{aligned} & 0.97(3 \mathrm{H}) \\ & 0.93(3 \mathrm{H}) \end{aligned}$	
Aib(5)	8.24	-	$\begin{aligned} & 1.26(3 \mathrm{H}) \\ & 1.15(3 \mathrm{H}) \end{aligned}$	-	-	-	-
γ Phe(6)	7.59	$\begin{aligned} & 2.33(1 \mathrm{H}) \\ & 2.03(1 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 2.00(1 \mathrm{H}) \\ & 1.55(1 \mathrm{H}) \end{aligned}$	4.10	Benzylic $\begin{aligned} & 2.79(1 \mathrm{H}) \\ & 2.61(1 \mathrm{H}) \end{aligned}$	Aromatic 7.21-7.09 $(5 \mathrm{H})$	-
$\operatorname{Aib}(7)$	8.05	-	$\begin{aligned} & 1.35(3 \mathrm{H}) \\ & 1.34(3 \mathrm{H}) \end{aligned}$	-	-	-	-
$-\mathrm{NH}_{2}$ (C-Terminus)	$\begin{aligned} & 8.06^{[a]} \\ & 6.73^{[b]} \end{aligned}$	-	-	-	-	-	-

[a] CONH_{2} Proton involved in Hydrogen bonding. ${ }^{[b]} \mathrm{CONH}_{2}$ Proton is not involved in Hydrogen bonding. Aromatic protons are shown in ${ }_{\varepsilon} \mathrm{CH}$ column. Chemical shift assigned by using TOCSY and ROESY spectra.

Assignment of chemical shifts using TOCSY and ROESY spectra

The amino acid residues and their positions in the peptide sequence were identified using TOCSY and ROESY spectra, respectively.

The TOCSY spectrum was used to identify amino acids in the sequence of the peptides.

A) Partial TOCSY spectrum analysis of peptide $\mathbf{P 1}$ in $\mathrm{CD}_{3} \mathrm{OH}$

Below partial TOCSY spectrum showing the amino acid residues in peptide P1

Figure S5: (A) Partial TOCSY spectrum (NH vs α, β, γ, Backbone \& Side Chain protons) of peptide $\mathbf{P 1}$ showing correlation between intra residue protons.
B) Partial ROESY spectrum analysis of Peptide P 1 in $\mathrm{CD}_{3} \mathrm{OH}$.

Below ROESY spectrums (B1) and (B2) depicting the $\mathbf{N H} \leftrightarrow \mathbf{N H}, \mathbf{N H} \leftrightarrow \mathbf{c h i r a l} \mathbf{C o n}_{\boldsymbol{a}} \mathbf{H}, \mathbf{C}_{\gamma} \mathbf{H}$ interactions respectively. The inter and intra-residue NOEs are marked with green and black labels respectively.

Peptide P1

Figure S6: (B1) NH vs NH region of peptide P1 ROESY spectrum in $\mathbf{C D}_{\mathbf{3}} \mathbf{O H}$. (B2) NH vs Chiral α, and γ protons region in ROESY spectrum of peptide $\mathbf{P 1}$ in $\mathbf{C D}_{\mathbf{3}} \mathbf{O H}$. (B3) Crystal structure of peptide P1 depicting the distance between inter residue NOE corresponding protons in the ROESY spectrum (B1) and (B2). (inter-residue NOEs marked with green labels in the ROESY spectrum (B1) and (B2)).

Table S8: NOEs Observed in $\mathbf{N H} \leftrightarrow \mathbf{N H}$ and $\mathbf{N H} \leftrightarrow \mathbf{C}_{\boldsymbol{a}} \mathbf{H} / \mathbf{C}_{\boldsymbol{\beta}} \mathbf{H} / \mathbf{C}_{\gamma} \mathbf{H}$ Region of Peptide $\mathbf{P 1}$ in $\mathrm{CD}_{3} \mathbf{O H}$ and the distance observed between respective protons in its crystal structure.
C) List of Inter-residue NOEs (marked with green labels) in partial ROESY spectrum
(B1) and (B2) of peptide $\mathbf{P 1}$ in $\mathrm{CD}_{3} \mathrm{OH}$.

Residue	H-atom	Residu e	H-atom	NOE observed	Type of NOE	Protons Region	Distance in crystal structure (A)
Aib (1)	NH	γ Phe (2)	NH	Strong	NH/NH (1/2)		2.88
γ Phe (2)	NH	Ala (3)	NH	Very Weak	NH/NH (2/3)		4.07
Ala (3)	NH	(E)- $\mathrm{d} \gamma \mathrm{Val}$ (4)	NH	Strong	NH/NH (3/4)		2.66
Aib (5)	NH	γ Phe (6)	NH	Strong	NH/NH (5/6)		2.9
γ Phe (6)	NH	Aib (7)	NH	Weak	NH/NH (6/7)		3.83
Aib (7)	NH	CONH_{2} (8)	$\begin{gathered} \mathrm{NH} \\ \text { (Intra H- } \\ \text { Bonded) } \end{gathered}$	Strong (at Diagonal)	NH/NH (7/8)		2.76
Aib (7)	NH	CONH_{2} (9)	NH	Medium (Merged in Tocsy Signal)	NH/NH (7/9)	(Inter-	4.09
$(E)-\mathrm{d} \gamma \mathrm{Val}$ (4)	$\alpha \mathrm{CH}$ (Backbone)	Aib (5)	NH	Very Strong	$\alpha \mathrm{CH} / \mathrm{NH}(4 / 5)$	Residue NOE)	2.34
$(E)-\mathrm{d} \gamma \mathrm{Val}$ (4)	$\alpha \mathrm{CH}$ (Backbone)	Aib (6)	NH	Very Weak	$\alpha \mathrm{CH} / \mathrm{NH}(4 / 6)$	NH vs NH	4.35
γ Phe (2)	Phenyl (o \& m) CH (side-chain)	(E)- $\mathrm{d} \gamma \mathrm{Val}$ (4)	$\beta \mathrm{CH}$ (Backbone)	Strong	$\begin{aligned} & \mathrm{Ph}(\mathrm{o} \& \\ & \mathrm{m}) / \beta \mathrm{CH}(2 / 4) \end{aligned}$	region (Fig. S5: B1)	2.64 (ortho) 3.18 (meta)
$(E)-\mathrm{d} \gamma \mathrm{Val}$ (4)	$\beta \mathrm{CH}$ (Backbone)	Aib (5)	NH	Medium	$\beta \mathrm{CH} / \mathrm{NH}(4 / 5)$		4.27
$(E)-\mathrm{d} \gamma \mathrm{Val}$ (4)	β CH (Backbone)	Aib (7)	NH	Medium	$\beta \mathrm{CH} / \mathrm{NH}(4 / 7)$		3.7
γ Phe (6)	Phenyl (ortho) CH	CONH_{2} (8)	$\begin{gathered} \text { NH (intra H- } \\ \text { Bonded) } \end{gathered}$	Medium	$\begin{aligned} & \mathrm{Ph}(\mathrm{o}) / \mathrm{NH} \\ & (6 / 8) \end{aligned}$		3.29 (ortho)

	(side-chain)						
γ Phe (6)	Phenyl (ortho) CH (side-chain)	CONH_{2} (9)	NH	Medium	$\begin{aligned} & \mathrm{Ph}(\mathrm{o}) / \mathrm{NH} \\ & (6 / 9) \end{aligned}$		3.71 (ortho)
Aib (5)	NH	γ Phe (6)	Phenyl (ortho) CH (side-chain)	Very Weak	$\begin{aligned} & \mathrm{NH} / \mathrm{Ph}(\mathrm{o}) \\ & (5 / 6) \end{aligned}$		6.42
$\mathrm{CONH}_{2}(9)$	NH	γ Phe (6)	$\gamma \mathrm{CH}$ (Backbone)	Medium	$\mathrm{NH} / \gamma \mathrm{CH}(9 / 6)$	(Inter- Residue	3.25
$\mathrm{CONH}_{2}(8)$	NH (intra H-Bonded)	γ Phe (6)	$\gamma \mathrm{CH}$ (Backbone)	Very Strong	NH $/ \gamma \mathrm{CH}(8 / 6)$	$\begin{gathered} \text { NOE) } \\ \text { NH vs } \gamma \end{gathered}$	2.36
$\overline{(E)-\mathrm{d} \gamma \mathrm{Val}}$ (4)	NH	Ala (3)	$\begin{gathered} \alpha \mathrm{CH} \\ \text { (Backbone) } \end{gathered}$	Strong	$\mathrm{NH} / \alpha \mathrm{CH}$ (4/3)	\& α CH region	3.34
$(E)-\mathrm{d} \gamma \mathrm{Val}$ (4)	NH	γ Phe (2)	$\gamma \mathrm{CH}$ (Backbone)	Strong	NH $/ \gamma \mathrm{CH}(4 / 2)$	(Fig. S5: B2)	2.77

D) Intra-residue NOEs (marked with black labels) in partial ROESY spectrum (B1) and (B2) of peptide $\mathbf{P 1}$ in $\mathrm{CD}_{3} \mathrm{OH}$.

Residue	H-atom	Residue	H-atom	NOE observed	Protons Region	Distance in crystal structure (\AA)
(E)-d $\gamma \mathrm{Val}$ (4)	$\alpha \mathrm{CH}$ (Backbone)	(E)-d $\gamma \mathrm{Val}$ (4)	NH	Strong	(Intra- Residue NOE) NH vs NH region (Fig. S5: B1)	4.43
(E)-d $\gamma \mathrm{Val}$ (4)	$\beta \mathrm{CH}$ (Backbone)	(E)-d $\gamma \mathrm{Val}$ (4)	NH	Strong		2.97
(E)-d $\gamma \operatorname{Val}(4)$	$\alpha \mathrm{CH}$ (Backbone)	(E)-d $\gamma \operatorname{Val}$ (4)	$\beta \mathrm{CH}$ (Backbone)	Very Strong		2.69
γ Phe (2)	NH	γ Phe (2)	Phenyl (ortho) CH (side-chain)	Strong		$\begin{gathered} 3.03 \& 4.77 \\ \text { (ortho) } \end{gathered}$
γ Phe (6)	NH	γ Phe (6)	Phenyl (ortho) CH	Medium		$\begin{gathered} 3.83 \& 4.19 \\ \text { (ortho) } \end{gathered}$
$\mathrm{CONH}_{2}(8)$	NH (Intra H- Bonded)	CONH_{2} (9)	NH	Strong		1.48
(E)-d $\gamma \operatorname{Val}(4)$	$\alpha \mathrm{CH}$	(E)-d $\gamma \operatorname{Val}(4)$	$\gamma \mathrm{CH}$ (Backbone)	Strong		2.31
(E)-d $\gamma \operatorname{Val}(4)$	$\beta \mathrm{CH}$ (Backbone)	(E)-d $\gamma \operatorname{Val}(4)$	$\gamma \mathrm{CH}$ (Backbone)	Strong		2.84

| γ Phe (2) | Phenyl
 (o \& m) CH
 (side-chain) | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

8.2) Peptide P2 2D-NMR (TOCSY \& ROESY) analysis in $\mathrm{CD}_{3} \mathrm{OH}$:

Figure S7: ${ }^{1} \mathrm{H}$ NMR spectrum of peptide $\mathbf{P} \mathbf{2}$ in $\mathbf{C D}_{\mathbf{3}} \mathbf{O H}$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D}_{\mathbf{3}} \mathbf{O H}$) $\delta 8.75(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{~s}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=6.3 \mathrm{~Hz}$, $1 \mathrm{H}), 8.17$ (d, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~s}, 1 \mathrm{H}), 8.14(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=$ $9.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{dd}, J=15.2$, $4.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 6.15(\mathrm{dd}, J=15.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~m}, 1 \mathrm{H}), 4.25(\mathrm{~m}, 1 \mathrm{H}), 4.15(\mathrm{~m}$, $1 \mathrm{H}), 3.94(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{~m}, 1 \mathrm{H}), 3.54(\mathrm{~m}, 1 \mathrm{H}), 2.61(\mathrm{ddd}, J=14.3,12.3,4.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.42(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{dt}, J=12.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{~m}, 1 \mathrm{H})$, $2.09(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{~s}, 1 \mathrm{H}), 1.98(\mathrm{~m}$, $1 \mathrm{H}), 1.96(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{~m}, 1 \mathrm{H}), 1.65(\mathrm{~m}, 2 \mathrm{H}), 1.61$ (m, 1H), $1.56(\mathrm{~m}, 2 \mathrm{H}), 1.51(\mathrm{~m}, 1 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.466(\mathrm{~s}, 6 \mathrm{H}), 1.46(\mathrm{br}, 1 \mathrm{H})$, $1.45(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 6 \mathrm{H}), 1.41(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~m}, 1 \mathrm{H}), 1.11(\mathrm{~m}, 1 \mathrm{H})$, 1.04 (d, $J=4.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $3 \mathrm{H}), 0.91$ (d, $J=4.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.91$ (d, $J=4.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~d}, J=5 \mathrm{~Hz}, 3 \mathrm{H}), 0.89$ (d, $J=6.5$ $\mathrm{Hz}, 3 \mathrm{H}), 0.87(\mathrm{~d}, J=5 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.74(\mathrm{~d}, J=$ $6.4 \mathrm{~Hz}, 3 \mathrm{H}$). MALDI (TOF/TOF) m / z calculated value for $\mathrm{C}_{64} \mathrm{H}_{116} \mathrm{~N}_{12} \mathrm{O}_{12}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$is 1267.87 and observed at 1267.94.

Table S9. ${ }^{1} \mathrm{H}$ NMR Chemical Shifts (ppm) of $\mathbf{P 2}$ in $\mathbf{C D} \mathbf{D}_{\mathbf{3}} \mathbf{O H}$ at 298 K .

Residues	NH	${ }_{\alpha} \mathrm{CH}$	${ }_{\beta} \mathrm{CH}$	${ }_{\gamma} \mathrm{CH}$	${ }_{\delta} \mathrm{CH}$	${ }_{\varepsilon} \mathrm{CH}$	$\zeta \mathrm{CH}$	$\mathrm{CH}_{\text {term }}$	
$-\mathrm{COCH}_{3}$	-	-	-	-	-	-	-	2.00	
Aib(1)	8.31	-	1.466(6H)	-	-	-	-	-	
$\gamma \mathrm{Val}(2)$	7.46	2.32 (1H)	2.07 (1H)	3.54	1.51	0.90 (3H)	-	-	
		2.11 (1H)	1.61 (1H)			0.87 (3H)			
Aib (3)	8.14	-	1.38 (3H)	-	-	-	-	-	
			$1.28(3 \mathrm{H})$						
$\gamma \operatorname{Leu}(4)$	8.17	2.61 (1H)	2.05 (1H)	3.87	1.56 (1H)	1.11 (1H)	$0.85(3 \mathrm{H})$	-	
		$2.15(1 \mathrm{H})$	1.67 (1H)				$0.74(3 \mathrm{H})$		
Ala(5)	8.16	4.15 (1H)	1.45 (3H)	-	-	-	-	-	
$\mathrm{d} \gamma \operatorname{Val}(6)$	8.75	6.15 (1H)	6.98 (1H)	4.28	2.03 (1H)	1.04 (3H)	-	-	
						$1.02(3 \mathrm{H})$			
Leu(7)	8.29	4.25 (1H)	1.65 (2H)	1.79	0.99 (3H)	-	-	-	
					0.93 (3H)				
$\gamma \operatorname{Leu}(8)$	7.49	2.22 (1H)	1.98 (1H)	3.94	1.41 (2H)	1.23 (1H)	$0.89(3 \mathrm{H})$	-	
		2.09 (1H)	1.46 (1H)				$0.84(3 \mathrm{H})$		
Aib(9)	8.11	-	1.48 (3H)	-	-	-	-	-	
			1.47 (3H)						
$\gamma \operatorname{Val}(10)$	8.00	1.99 (1H)	1.96 (1H)	3.67	1.69 (1H)	0.91 (3H)	-	-	
		1.99 (1H)	1.71 (1H)			0.91 (3H)			
Aib(11)	7.97	-	1.44 (6H)	-	-	-	-	-	
$-\mathrm{NH}_{2}$	$8.15{ }^{[a]}$$6.71{ }^{[b]}$		-	-	-	-	-	-	

$\overline{[a]} \mathrm{CONH}_{2}$ Proton involved in Hydrogen bonding. ${ }^{[b]} \mathrm{CONH}_{2}$ Proton is not involved in Hydrogen bonding. Chemical shift assigned by using TOCSY and ROESY spectra.

Assignment of chemical shifts using TOCSY and ROESY spectra

The amino acid residues and their positions in the peptide sequence were identified using TOCSY and ROESY spectra, respectively.

The TOCSY spectrum was used to identify amino acids in the sequence of the peptides.

A) Partial TOCSY spectrum analysis of peptide P 2 in $\mathrm{CD}_{3} \mathrm{OH}$.

Below partial TOCSY spectrum showing the amino acid residues in peptide $\mathbf{P 2}$.

Figure S8: (A1) Partial TOCSY spectrum (NH vs $\alpha, \beta, \gamma \&$ Backbone protons) of peptide P2 showing correlation between intra residue protons.

B) Partial ROESY spectrum analysis of Peptide $\mathbf{P 2}$ in $\mathrm{CD}_{3} \mathrm{OH}$.

Below ROESY spectrums (B1) and (B2) depicting the $\mathbf{N H} \leftrightarrow \mathbf{N H}$, $\mathbf{N H} \leftrightarrow \mathbf{c h i r a l} \mathbf{C o}_{\boldsymbol{a}} \mathbf{H}, \mathbf{C}_{\gamma} \mathbf{H}$ interactions respectively. The inter and intra-residue NOEs are marked with green and black labels respectively.

Peptide P2

Figure S9: (B1) NH vs NH region of peptide $\mathbf{P 2}$ ROESY spectrum in $\mathbf{C D}_{\mathbf{3}} \mathbf{O H}$. (B2) NH vs Chiral α, and γ protons region in ROESY spectrum of peptide $\mathbf{P 2}$ in $\mathbf{C D}_{3} \mathbf{O H}$. (B3) Crystal structure of peptide P2 depicting the distance between inter residue NOE corresponding protons in the ROESY spectrum (B1) and (B2). (inter-residue NOEs marked with green labels in the ROESY spectrum (B1) and (B2)).

Table S10: NOEs Observed in $\mathbf{N H} \leftrightarrow \mathbf{N H}$ and $\mathbf{N H} \leftrightarrow \mathbf{C}_{\boldsymbol{a}} \mathbf{H} / \mathbf{C}_{\boldsymbol{\beta}} \mathbf{H} / \mathbf{C}_{\boldsymbol{\gamma}} \mathbf{H}$ Region of Peptide $\mathbf{P 2}$ in $\mathbf{C D}_{\mathbf{3}} \mathbf{O H}$ and the distance observed between respective protons in its crystal structure.
C) List of Inter-residue NOEs (marked with green labels) in partial ROESY spectrum (B1) and (B2) of peptide $\mathbf{P 2}$ in $\mathrm{CD}_{3} \mathrm{OH}$.

Residue	H-atom	Residue	H-atom	NOE observed	Type of NOE	Protons	Distance Region in crystal structure (\AA)
Aib (1)	NH	$\gamma \operatorname{Val}(2)$	NH	Strong	$\mathrm{NH} / \mathrm{NH}(1 / 2)$		2.69
$\gamma \mathrm{Val}(2)$	NH	$\mathrm{Aib}(3)$	NH	Weak	$\mathrm{NH} / \mathrm{NH}(2 / 3)$	3.62	
$\operatorname{Aib}(3)$	NH	$\gamma \mathrm{Leu}(4)$	NH	Strong	$\mathrm{NH} / \mathrm{NH}(3 / 4)$		2.79

$\left.\begin{array}{|c|c|c|c|c|l|l|l|}\hline & & & & \text { (at } \\ \text { (aiagonal) }\end{array}\right)$

(12)	H- Bonded)		(Backbone)	Strong	(12/10)	
Aib (3)	NH	$\gamma \mathrm{Val}$ (2)	$\gamma \mathrm{CH}$ (Backbone)	Medium	NH/ $\gamma \mathrm{CH}(3 / 2)$	3.38
Aib (9)	NH	γ Leu (8)	$\gamma \mathrm{CH}$ (Backbone)	Medium	NH/ $\gamma \mathrm{CH}(9 / 8)$	3.37
Aib (9)	NH	Leu (7)	$\begin{gathered} \alpha \mathrm{CH} \\ \text { (Backbone) } \end{gathered}$	Medium	$\begin{aligned} & \mathrm{NH} / \alpha \mathrm{CH} \\ & (9 / 7) \end{aligned}$	3.43
$\gamma \mathrm{Val}$ (10)	NH	γ Leu (8)	$\gamma \mathrm{CH}$ (Backbone)	Strong	$\begin{aligned} & \mathrm{NH} / \gamma \mathrm{CH} \\ & (10 / 8) \end{aligned}$	2.526
$\gamma \operatorname{Val}$ (10)	NH	Leu (7)	$\begin{gathered} \alpha \mathrm{CH} \\ \text { (Backbone) } \end{gathered}$	Weak	$\begin{aligned} & \mathrm{NH} / \alpha \mathrm{CH} \\ & (10 / 7) \end{aligned}$	4.06
Aib (11)	NH	$\gamma \mathrm{Val}$ (10)	$\gamma \mathrm{CH}$ (Backbone)	Medium	$\mathrm{NH} / \gamma \mathrm{CH}$ (11/10)	3.38
γ Leu (8)	NH	Leu (7)	$\begin{gathered} \alpha \mathrm{CH} \\ \text { (Backbone) } \end{gathered}$	Strong	$\begin{aligned} & \mathrm{NH} / \alpha \mathrm{CH} \\ & (8 / 7) \end{aligned}$	3.38
$(E)-\mathrm{d} \gamma \mathrm{Val}$ (6)	β CH (Backbon e)	γ Leu (4)	$\gamma \mathrm{CH}$ (Backbone)	Weak	$\begin{aligned} & \beta \mathrm{CH} / \gamma \mathrm{CH} \\ & (6 / 4) \end{aligned}$	4.94
CONH_{2} (13)	NH	$\gamma \mathrm{Val}$ (10)	$\gamma \mathrm{CH}$ (Backbone)	Medium	$\mathrm{NH} / \mu \mathrm{CH}$ (13/10)	3.61
$(E)-\mathrm{d} \gamma \mathrm{Val}$ (6)	$\alpha \mathrm{CH}$ (Backbon e)	γ Leu (4)	$\gamma \mathrm{CH}$ (Backbone)	Strong	$\alpha \mathrm{CH} / \gamma \mathrm{CH}$ (6/4)	2.91
$(E)-\mathrm{d} \gamma \mathrm{Val}$ (6)	$\alpha \mathrm{CH}$ (Backbon e)	Ala (5)	$\alpha \mathrm{CH}$ (Backbone)	Weak	$\alpha \mathrm{CH} / \alpha \mathrm{CH}$ (6/5)	4.456

D) Intra-residue NOEs (marked with black labels) in partial ROESY spectrum (B1) and (B2) of peptide $\mathbf{P 2}$ in $\mathrm{CD}_{3} \mathrm{OH}$.

Residue	H-atom	Residue	H-atom	NOE observed	Protons Region	$\begin{gathered} \text { Distance in } \\ \text { crystal } \\ \text { structure (} \AA \text {) } \end{gathered}$
(E)-d $\gamma \mathrm{Val}$ (6)	NH	(E)-d $\gamma \operatorname{Val}$ (6)	$\alpha \mathrm{CH}$ (Backbone)	Strong	(Intra- Residue	2.57
(E)-d $\gamma \mathrm{Val}$ (6)	NH	(E)-d $\gamma \mathrm{Val}$ (6)	$\beta \mathrm{CH}$ (Backbone)	Medium	$\begin{gathered} \text { NOE) } \\ \text { NH vs NH } \end{gathered}$	3.64
$\mathrm{CONH}_{2}(12)$	NH	CONH_{2} (13)	NH	Very Strong	region	1.52

	(Intra H- Bonded)				(Fig. S7: B1)	
(E)-d $\gamma \mathrm{Val}$ (6)	$\alpha \mathrm{CH}$ (Backbone)	(E)-d $\gamma \mathrm{Val}$ (6)	$\beta \mathrm{CH}$ (Backbone)	Very Strong		2.76
(E)-d $\gamma \operatorname{Val}(6)$	NH	(E)-d $\gamma \operatorname{Val}$ (6)	$\gamma \mathrm{CH}$ (Backbone)	Strong	(Intra- Residue NOE) NH vs chiral $\gamma \& \alpha$ CH region (Fig. S7: B2)	2.78
Leu (7)	NH	Leu (7)	$\alpha \mathrm{CH}$ (Backbone)	Strong		2.70
γ Leu (4)	NH	γ Leu (4)	$\gamma \mathrm{CH}$ (Backbone)	Very Strong		2.80
Ala (5)	NH	Ala (5)	$\begin{gathered} \alpha \mathrm{CH} \\ \text { (Backbone) } \end{gathered}$	Strong		2.68
$\gamma \operatorname{Val}$ (10)	NH	$\gamma \operatorname{Val}$ (10)	$\gamma \mathrm{CH}$ (Backbone)	$\begin{gathered} \hline \text { Very } \\ \text { Strong } \end{gathered}$		2.79
$\gamma \mathrm{Val}$ (2)	NH	$\gamma \operatorname{Val}$ (2)	$\gamma \mathrm{CH}$ (Backbone)	Strong		2.78
γ Leu (8)	NH	γ Leu (8)	$\gamma \mathrm{CH}$ (Backbone)	Very Strong		2.77
(E)-d $\gamma \mathrm{Val}$ (6)	β CH (Backbone)	(E)-d $\gamma \mathrm{Val}$ (6)	$\gamma \mathrm{CH}$ (Backbone)	Very Strong		2.44
(E)-d $\gamma \operatorname{Val}(6)$	$\alpha \mathrm{CH}$ (Backbone)	(E)-d $\gamma \operatorname{Val}$ (6)	$\gamma \mathrm{CH}$ (Backbone)	Medium		3.29

8.3) Peptide P3 2D-NMR (TOCSY \& ROESY) analysis in $\mathrm{CD}_{3} \mathrm{OH}$:

P3

Figure S10: ${ }^{1} \mathrm{H}$ NMR spectrum of peptide $\mathbf{P 3}$ in $\mathbf{C D}_{\mathbf{3}} \mathbf{O H}$.
1H NMR ($600 \mathrm{MHz}, \mathbf{C D}_{\mathbf{3}} \mathbf{O H}$) $\delta 8.50(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.39(\mathrm{~s}, 1 \mathrm{H}), 8.32(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{~s}$, $1 \mathrm{H}), 7.83(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=$ $11.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{dt}, J=7.9,3.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.15(\mathrm{~m}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 6.59(\mathrm{~m}, 1 \mathrm{H}), 6.14(\mathrm{~m}$, $1 \mathrm{H}), 6.10(\mathrm{~m}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 1 \mathrm{H}), 3.91(\mathrm{~m}, 1 \mathrm{H}), 3.13(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.99-2.96(\mathrm{~m}, 1 \mathrm{H}), 2.95-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.46-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{~s}, 2 \mathrm{H}), 2.04(\mathrm{br}, 1 \mathrm{H}), 1.99$ $(\mathrm{s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 6 \mathrm{H}), 1.43-1.42(\mathrm{~m}, 4 \mathrm{H})$, $1.37(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{~m}, 3 \mathrm{H}), 0.81(\mathrm{~m}, 3 \mathrm{H})$. MALDI (TOF/TOF) m / z calculated value for $\mathrm{C}_{45} \mathrm{H}_{72} \mathrm{~N}_{8} \mathrm{O}_{8}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$is 875.60 and observed at 875.68 .

Table S11. ${ }^{1}$ H NMR Chemical Shifts (ppm) of P3 in $\mathbf{C D} \mathbf{3} \mathbf{O H}$ at 298 K .

Residues	NH	${ }_{\alpha} \mathrm{CH}$	${ }_{\beta} \mathrm{CH}$	${ }_{\gamma} \mathrm{CH}$	${ }_{\delta} \mathrm{CH}$	${ }_{\varepsilon} \mathrm{CH}$	$\mathrm{CH}_{\text {term }}$
$-\mathrm{COCH}_{3}$	-	-	-	-	-	-	$1.99(3 \mathrm{H})$
$\mathrm{Aib}(1)$	8.39	-	$1.53(3 \mathrm{H})$	-	-	-	-
			$1.51(3 \mathrm{H})$				

$\gamma \operatorname{Leu}(2)$	7.37	$2.43(1 \mathrm{H})$	$1.42(2 \mathrm{H})$	$3.91(1 \mathrm{H})$	$1.42(1 \mathrm{H})$	$1.42(1 \mathrm{H})$	Sidechain
		$2.04(1 \mathrm{H})$			$1.11(1 \mathrm{H})$		$0.84(3 \mathrm{H})$
							$0.81(3 \mathrm{H})$
Aib(3)	7.78	-	1.37 (3H)	-	-	-	-
			$1.02(3 \mathrm{H})$				
ddePhe(4)	8.50	$6.10(1 \mathrm{H})$	$7.15(1 \mathrm{H})$	$6.59(1 \mathrm{H})$	$6.14(1 \mathrm{H})$	$4.62(1 \mathrm{H})$	Benzylic
							2.98(1H)
							$2.94(1 \mathrm{H})$
							Aromatic
							7.42 (O)
							7.23(M,P)
Aib(5)	8.32	-	$1.50(3 \mathrm{H})$	-	-	-	-
			1.48 (3H)				
$\gamma \operatorname{Adp}(6)$	7.83	$2.08(2 \mathrm{H})$	Sidechain	$3.13(1 \mathrm{H})$	-	-	-
			0.97 (3H)	$3.07(1 \mathrm{H})$			
			0.96 (3H)				
Aib(7)	8.23	-	1.47 (6H)	-	-	-	-
$-\mathrm{NH}_{2}$	$7.60{ }^{\text {[a] }}$	-	-	-	-	-	-
	$6.75{ }^{\text {[b] }}$						

$\overline{[a]} \mathrm{CONH}_{2}$ Proton involved in Hydrogen bonding. ${ }^{[\mathrm{b}]} \mathrm{CONH}_{2}$ Proton is not involved in Hydrogen bonding. Aromatic protons are shown in $\mathrm{CH}_{\text {term }}$ column. Chemical shift assigned by using TOCSY and ROESY spectra.

Assignment of chemical shifts using TOCSY and ROESY spectra

The amino acid residues and their positions in the peptide sequence were identified using TOCSY and ROESY spectra, respectively.

The TOCSY spectrum was used to identify amino acids in the sequence of the peptides.

A) Partial TOCSY spectrum analysis of peptide P 3 in $\mathrm{CD}_{3} \mathrm{OH}$.

Below partial TOCSY spectrum showing the amino acid residues in peptide $\mathbf{P 3}$.

P3

Figure S11: (A) Partial TOCSY spectrum (NH vs α, β, γ, Backbone \& Side Chain protons) of peptide $\mathbf{P 3}$ showing correlation between intra residue protons.

B) Partial ROESY spectrum analysis of Peptide P 3 in $\mathrm{CD}_{3} \mathrm{OH}$.

Below partial ROESY spectrum (B1) depicting the $\mathbf{N H} \leftrightarrow \mathbf{N H}, \mathbf{N H} \leftrightarrow \mathbf{C}_{\boldsymbol{\alpha}} \mathbf{H} / \mathbf{C}_{\boldsymbol{\beta}} \mathbf{H} /$ chiral $\mathbf{C}_{\gamma} \mathbf{H}$ interactions respectively. The inter and intra-residue NOEs are marked with green and black labels respectively.

P3

S43

Figure S12: (B1) is the partial ROESY spectrum of peptide $\mathbf{P 3}$ in $\mathbf{C D}_{3} \mathbf{O H}$ showing sequential NOEs of $\mathrm{NH} \leftrightarrow \mathrm{NH}$ and $\mathrm{NH} \leftrightarrow \mathrm{C}_{\alpha} \mathrm{H} / \mathrm{C}_{\beta} \mathrm{H} /$ chiral $\mathrm{C}_{\gamma} \mathrm{H}$. (B2) Crystal structure of peptide P3 depicting the distance between inter residue NOE corresponding protons in the ROESY spectrum (B1). (inter-residue NOEs marked with green labels in the ROESY spectrum (B1)).

Table S12: NOEs Observed in $\mathbf{N H} \leftrightarrow \mathbf{N H}$ and $\mathbf{N H} \leftrightarrow \mathbf{C}_{\boldsymbol{\sigma}} \mathbf{H} / \mathbf{C}_{\boldsymbol{\beta}} \mathbf{H} /$ chiral $\mathbf{C}_{\gamma} \mathbf{H}$ region of Peptide $\mathbf{P 3}$ and the distance observed between respective protons in its crystal structure.

C) List of Inter-residue NOEs (marked with green labels) in partial ROESY spectrum (B1) of peptide $\mathbf{P 3}$ in $\mathrm{CD}_{3} \mathrm{OH}$.							
Residue	$\begin{gathered} \mathrm{H}- \\ \text { atom } \end{gathered}$	Residue	$\begin{gathered} \mathrm{H}- \\ \text { atom } \end{gathered}$	$\begin{gathered} \text { NOE } \\ \text { observed } \end{gathered}$	Type of NOE	Protons Region	Distance in crystal structure (A)
Aib (1)	NH	γ Leu (2)	NH	Weak	$\mathrm{NH} i \leftrightarrow \mathrm{NH} i+1$	(Inter-	2.75
γ Leu (2)	$\gamma \mathrm{CH}$	Aib (3)	NH	Weak	$\gamma \mathrm{CH} i \leftrightarrow \mathrm{NH} i+1$	Residue	3.67
γ Leu (2)	$\gamma \mathrm{CH}$	$\begin{gathered} (E, E)- \\ \operatorname{dd} \varepsilon \operatorname{Phe}(4) \end{gathered}$	NH	Strong	$\gamma \mathrm{CH} i \leftrightarrow \mathrm{NH} i+2$	NOE) NH vs	2.84
γ Leu (2)	$\gamma \mathrm{CH}$	$\overline{(E, E)-}$ $\mathrm{dd} \varepsilon$ Phe (4)	$\gamma \mathrm{CH}$	Strong	$\gamma \mathrm{CHi} ¢ \gamma \mathrm{CH} i+2$	$\mathrm{NH} / \mathrm{C}_{a} \mathrm{H} /$ $\mathrm{C}_{\beta} \mathrm{H}$ /chiral	2.90
γ Leu (2)	$\gamma \mathrm{CH}$	$\begin{gathered} (E, E)- \\ \operatorname{dd} \varepsilon \text { Phe (4) } \end{gathered}$	$\alpha \mathrm{CH}$	Weak	$\gamma \mathrm{CH} i \leftrightarrow \alpha \mathrm{CH} i+2$	$\mathrm{C}_{\mathrm{\gamma}} \mathrm{H}$ region (Fig. S9:	3.82
Aib (3)	NH	$(E, E)-$ dd ε Phe (4)	NH	Medium	$\mathrm{NH} i \leftrightarrow \mathrm{NH} i+1$	B1)	2.73
(E, E)- dd ε Phe (4)	$\alpha \mathrm{CH}$	Aib (5)	NH	Strong	$\alpha \mathrm{CH} i \leftrightarrow \mathrm{NH} i+1$		2.32
Aib (5)	NH	Adb (6)	NH	Weak	$\mathrm{NH} i \leftrightarrow \mathrm{NH} i+1$		2.73
Adb (6)	$\gamma \mathrm{CH}$	Aib (7)	NH	Medium	$\gamma \mathrm{CH} i \leftrightarrow \mathrm{NH} i+1$		3.17
Adb (6)	$\gamma \mathrm{CH}$	$\begin{gathered} \mathrm{CONH}_{2} \\ (\mathrm{NH} 8) \end{gathered}$	NH	Weak	$\gamma \mathrm{CH} i \leftrightarrow \mathrm{NH} i+2$		2.6

D) Intra-residue NOEs (marked with black labels) in partial ROESY spectrum (B1) of peptide $\mathbf{P 3}$ in $\mathrm{CD}_{3} \mathrm{OH}$.

Residue	H-atom	Residue	H-atom	NOE observed	Protons Region	Distance in crystal structure (\AA)
$\gamma \mathrm{Leu}(2)$	$\gamma \mathrm{CH}$	$\gamma \mathrm{Leu}(2)$	NH	Strong	(Intra- Residue NOE	2.77
(E, E)-dd ε Phe (4)	Benzyl CH2	$(E, E)-\mathrm{dd} \varepsilon$ Phe (4)	NH	Strong	2.66	

(E, E)-dd ε Phe (4)	Benzyl CH2	(E, E)-dd ε Phe (4)	Phenyl (o) H	Very Strong	NH vs $\mathrm{NH} / \mathrm{CaH} /$	2.30
(E, E)- $\mathrm{dd} \varepsilon$ Phe (4)	Benzyl CH2	$(E, E)-\mathrm{dd} \varepsilon \mathrm{Phe}$ (4)	Phenyl(m\&p) H	Weak	$\mathrm{C} \boldsymbol{\mathrm { HH }}$ /chiral $\mathrm{C} \gamma \mathrm{H}$ region	$\begin{aligned} & \hline 4.51(\mathrm{~m}) \\ & 5.57(\mathrm{p}) \end{aligned}$
(E, E)- $\mathrm{dd} \varepsilon$ Phe (4)	Benzyl CH2	$(E, E)-\mathrm{dd} \varepsilon \text { Phe }$ (4)	$\gamma \mathrm{CH}$	Weak	(Fig. S9: B1)	2.31
(E, E)- $\mathrm{dd} \varepsilon$ Phe (4)	Benzyl CH2	$(E, E)-\mathrm{dd} \varepsilon \mathrm{Phe}$ (4)	$\delta \mathrm{CH}$	Very		2.55
(E, E)-dd ε Phe (4)	$\varepsilon \mathrm{CH}$	$(E, E) \text {-dd } \varepsilon \text { Phe }$ (4)	NH	Medium		2.75
(E, E)- $\mathrm{dd} \varepsilon$ Phe (4)	$\varepsilon \mathrm{CH}$	$(E, E)-\mathrm{dd} \varepsilon \text { Phe }$ (4)	Phenyl (o) H	Strong		2.46
(E, E)- $\mathrm{dd} \varepsilon$ Phe (4)	$\varepsilon \mathrm{CH}$	(E, E)-dd ε Phe (4)	Phenyl(m\&p) H	Weak		$\begin{gathered} \hline 5.58(\mathrm{~m}) \\ 5.94(\mathrm{p}) \end{gathered}$
(E, E)- $\mathrm{dd}_{\varepsilon}$ Phe (4)	$\varepsilon \mathrm{CH}$	(E, E)-dd ε Phe (4)	$\gamma \mathrm{CH}$	Medium		2.98
(E, E)-dd ε Phe (4)	$\varepsilon \mathrm{CH}$	(E, E)-dd ε Phe (4)	$\delta \mathrm{CH}$	Very Strong		2.58
(E, E)-dd ε Phe (4)	Phenyl(o) H	$(E, E) \text {-dd } \varepsilon \text { Phe }$ (4)	NH	Medium		3.60
$(E, E) \text {-dd } \varepsilon \text { Phe }$ (4)	$\gamma \mathrm{CH}$	(E, E)-dd ε Phe (4)	NH	Medium		2.75
$(E, E)-\mathrm{dd} \varepsilon \mathrm{Phe}$ (4)	$\delta \mathrm{CH}$	$(E, E)-\mathrm{dd} \varepsilon \mathrm{Phe}$ (4)	NH	Weak		3.50
(E, E)-dd ε Phe (4)	$\beta \mathrm{CH}$	$(E, E)-\mathrm{dd} \varepsilon \text { Phe }$ (4)	$\delta \mathrm{CH}$	Very Strong		2.50
Adb (6)	$\gamma \mathrm{CH}$	Adb (6)	NH	Very Strong		2.75
$\mathrm{CONH}_{2}(\mathrm{NH} 8)$	NH	$\begin{gathered} \mathrm{CONH}_{2} \\ (\mathrm{NH} 9) \end{gathered}$	NH	Very Strong		1.49

8.4) Peptide P1 2D-NMR (TOCSY \& ROESY) analysis in CDCl_{3} :

Figure S13: ${ }^{1} \mathrm{H}$ NMR spectrum of peptide $\mathbf{P 1}$ in $\mathbf{C D C l}_{3}$.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 8.51(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=$ $6 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H}), 7.20\left(\mathrm{~m}, 2 \mathrm{H}_{\text {Aromatic }}\right)$, $7.15\left(\mathrm{~m}, 4 \mathrm{H}_{\text {Aromatic }}\right), 7.11(\mathrm{~d}, J=7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.07\left(\mathrm{~m}, 4 \mathrm{H}_{\text {Aromatic }}\right), 6.96(\mathrm{~d}, J=7 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=15 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~d}, J=15$ $\mathrm{Hz}, 1 \mathrm{H}), 5.31(\mathrm{~s}, 1 \mathrm{H}), 4.23(\mathrm{~m}, 1 \mathrm{H}), 4.12-4.07(\mathrm{~m}, 3 \mathrm{H}), 2.75(\mathrm{t}, 1 \mathrm{H}), 2.70(\mathrm{t}, 1 \mathrm{H}), 2.65(\mathrm{t}$, $1 \mathrm{H}), 2.57(\mathrm{t}, 1 \mathrm{H}), 2.43(\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{br}, 1 \mathrm{H}), 2.17(\mathrm{br}, 1 \mathrm{H}), 2.11$ (br, 1H), 2.08 (br, 1H), 2.05 (br, 1H), $1.95(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{br}, 1 \mathrm{H}), 1.54(\mathrm{~s}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.33$ $(\mathrm{s}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~d}, 3 \mathrm{H}), 0.97(\mathrm{~d}, 3 \mathrm{H})$. MALDI (TOF/TOF) m / z calculated value for $\mathrm{C}_{46} \mathrm{H}_{68} \mathrm{~N}_{8} \mathrm{O}_{8}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$is 883.5052 and observed at 883.5010 .

Table S13. ${ }^{1} \mathrm{H}$ NMR Chemical Shifts (ppm) of $\mathbf{P 1}$ in $\mathbf{C D C l}_{3}$ at 298 K .

Residues	NH	${ }_{\mathrm{CH}}$	${ }_{\beta} \mathrm{CH}$	${ }_{\gamma} \mathrm{CH}$	${ }_{\delta} \mathrm{CH}$	${ }_{\varepsilon} \mathrm{CH}$	$\mathrm{CH}_{\text {term }}$
$-\mathrm{COCH}_{3}$	-	-	-	-	-	-	1.95
(N-Terminus)							
$\mathrm{Aib}(1)$	7.65	-	$1.33(3 \mathrm{H})$	-	-	-	-
			$1.19(3 \mathrm{H})$				

γ Phe(2)	7.11	2.43 (1H)	$2.08(1 \mathrm{H})$	4.07	Benzylic	Aromatic	-
		2.17 (1H)	1.69 (1H)		$2.7(1 \mathrm{H})$	7.2 (P)	
					2.65 (1H)	7.15 (O)	
						7.07 (M)	
Ala(3)	7.86	4.11	1.45 (3H)	-	-	-	-
$\mathrm{d} \gamma \operatorname{Val}(4)$	8.51	6.23	6.92	4.23	1.86	1.04 (3H)	
						0.97 (3H)	
Aib(5)	7.41	-	1.45 (3H)	-	-	-	-
			1.15 (3H)				
γ Phe(6)	6.96	2.22 (1H)	2.05 (1H)	4.12	Benzylic	Aromatic	-
		2.11 (1H)	1.54 (1H)		2.75 (1H)	7.2 (P)	
					2.57 (1H)	7.15 (O)	
						7.07 (M)	
Aib(7)	7.93	-	$1.51(3 \mathrm{H})$	-	-	-	-
			1.45 (3H)				
$-\mathrm{NH}_{2}$	$8.36{ }^{[a]}$	-	-	-	-	-	-
(C-Terminus)	$5.31{ }^{\text {[b] }}$						

${ }^{[a]}$ Proton involved in Hydrogen bonding. ${ }^{[b]}$ Proton is not involved in Hydrogen bonding. Aromatic proton indicated by (O) ortho, (P) para, and (M) Meta in $\varepsilon_{\varepsilon} \mathrm{CH}$ column.

Assignment of chemical shifts using TOCSY and ROESY spectra

The amino acid residues and their positions in the peptide sequence were identified using TOCSY and ROESY spectra, respectively.

The TOCSY spectrum was used to identify amino acids in the sequence of the peptides.

A) Partial TOCSY spectrum analysis of peptide P 1 in CDCl_{3}.

Below partial TOCSY spectrum showing the amino acid residues in peptide $\mathbf{P 1}$.

Figure S14: (A) Partial TOCSY spectrum (NH vs α, β, γ, Backbone \& Side Chain protons) of peptide $\mathbf{P 1}$ showing correlation between intra residue protons.

B) Partial ROESY spectrum analysis of Peptide $\mathbf{P 1}$ in CDCl_{3}.

Below ROESY spectrum (B1) depicting the $\mathbf{N H} \leftrightarrow \mathbf{N H}, \mathbf{N H} \leftrightarrow c h i r a l \mathbf{C}_{\boldsymbol{\sigma}} \mathbf{H}, \mathbf{C}_{\gamma} \mathbf{H}$ interactions respectively. The inter and intra-residue NOEs are marked with green and black labels respectively.

Peptide P1

Figure S15: (B1) NH vs NH, NH vs Chiral α, and γ protons region in ROESY spectrum of peptide $\mathbf{P 1}$ in $\mathbf{C D C l}_{3}$. ($\mathbf{B 2}$) Crystal structure of peptide $\mathbf{P 1}$ depicting the distance between inter residue NOE corresponding protons in the ROESY spectrum (B1). (inter-residue NOEs marked with green labels in the ROESY spectrum (B1)).

Table S14: NOEs Observed in $\mathbf{N H} \leftrightarrow \mathbf{N H}$ and $\mathbf{N H} \leftrightarrow \mathbf{C o}_{\boldsymbol{a}} \mathbf{H} / \mathbf{C}_{\boldsymbol{\beta}} \mathbf{H} / \mathbf{C}_{\gamma} \mathbf{H}$ Region of Peptide $\mathbf{P 1}$ in $\mathbf{C D C l}_{3}$ and the distance observed between respective protons in its crystal structure.

\left.| C) List of Inter-residue NOEs (marked with green labels) in partial ROESY spectrum | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (B1) of peptide P1 in CDCl. | | | | | | | |$\right]$

$(E)-\mathrm{d} \gamma \operatorname{Val}(4)$	$\gamma \mathrm{CH}$	$(E)-\mathrm{d} \gamma \operatorname{Val}(4)$	NH	Strong
$(E)-\mathrm{d} \gamma \operatorname{Val}(4)$	$\alpha \mathrm{CH}$	$(E)-\mathrm{d} \gamma \operatorname{Val}(4)$	$\beta \mathrm{CH}$	Strong
$(E)-\mathrm{d} \gamma \operatorname{Val}(4)$	$\alpha \mathrm{CH}$	$(E)-\mathrm{d} \gamma \operatorname{Val}(4)$	$\gamma \mathrm{CH}$	Strong
$(E)-\mathrm{d} \gamma \operatorname{Val}(4)$	$\beta \mathrm{CH}$	$(E)-\mathrm{d} \gamma \operatorname{Val}(4)$	$\gamma \mathrm{CH}$	Very Strong
$\gamma \operatorname{Phe}(6)$	$\gamma \mathrm{CH}$	$\gamma \operatorname{Phe}(6)$	NH	Medium

8.5) Peptide P2 2D-NMR (TOCSY \& ROESY) analysis in CDCl_{3} :

Figure S16: ${ }^{1} \mathrm{H}$ NMR spectrum of peptide $\mathbf{P} 2$ in $\mathbf{C D C l} 3$.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 8.80(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 8.76(\mathrm{~s}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $8.09(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H})$, , $6.96(\mathrm{dd}, J=15,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.33$
(d, $J=15 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 4.29(\mathrm{~m}, 1 \mathrm{H}), 4.19(\mathrm{~m}, 1 \mathrm{H}), 4.09(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{~m}, 1 \mathrm{H}), 3.93$ $(\mathrm{m}, 1 \mathrm{H}), 3.68(\mathrm{~m}, 1 \mathrm{H}), 3.54(\mathrm{~m}, 1 \mathrm{H}), 2.65(\mathrm{br}, 1 \mathrm{H}), 2.41(\mathrm{br}, 1 \mathrm{H}), 2.26(\mathrm{br}, 4 \mathrm{H}), 2.17(\mathrm{br}, 1 \mathrm{H})$, $2.08(\mathrm{~m}, 4 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~m}, 3 \mathrm{H}), 1.79(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{~m}, 6 \mathrm{H}), 1.57(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{~m}$, $22 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{br}, 3 \mathrm{H}), 1.21(\mathrm{br}, 2 \mathrm{H}), 1.11(\mathrm{br}, 1 \mathrm{H}), 1.07(\mathrm{~m}, 6 \mathrm{H}), 0.99(\mathrm{~d}, J=6 \mathrm{~Hz}$, $3 \mathrm{H}), 0.93(\mathrm{~d}, J=6 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~m}, 21 \mathrm{H}), 0.75(\mathrm{~d}, J=6 \mathrm{~Hz}, 3 \mathrm{H})$. MALDI (TOF/TOF) m / z calculated value for $\mathrm{C}_{64} \mathrm{H}_{116} \mathrm{~N}_{12} \mathrm{O}_{12}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$is 1267.87 and observed at 1267.94 .

Table S15. ${ }^{1} \mathrm{H}$ NMR Chemical Shifts (ppm) of $\mathbf{P 2}$ in $\mathbf{C D C l}_{3}$ at 298 K .

Residues	NH	${ }_{\alpha} \mathrm{CH}$	${ }_{\beta} \mathrm{CH}$	${ }_{\gamma} \mathrm{CH}$	${ }_{\delta} \mathrm{CH}$	${ }_{\varepsilon} \mathrm{CH}$	$\zeta \mathrm{CH}$	$\mathrm{CH}_{\text {term }}$
$-\mathrm{COCH}_{3}$	-	-	-	-	-	-	-	2.05
Aib(1)	7.841	-	1.492(6H)	-	-	-	-	-
$\gamma \mathrm{Val}(2)$	7.14	2.26 (1H)	1.64 (1H)	3.54	2.10	0.86 (6H)	-	-
		2.17 (1H)	1.5 (1H)					
Aib (3)	8.09	-	2.27 (3H)	-	-	-	-	-
			1.42 (3H)					
$\gamma \operatorname{Leu}(4)$	8.17	2.65 (1H)	1.65 (2H)	3.95	1.56 (1H)	2.00 (1H)	$0.83(3 \mathrm{H})$	-
		$2.07(1 \mathrm{H})$			1.08 (1H)		$0.74(3 \mathrm{H})$	
Ala(5)	7.92	4.09 (1H)	1.50 (3H)	-	-	-	-	-
$\mathrm{d} \gamma \operatorname{Val}(6)$	8.80	6.33 (1H)	6.96 (1H)	4.29	$2.02(1 \mathrm{H})$	1.06 (6H)	-	-
Leu(7)	7.08	4.19 (1H)	1.67 (1H)	1.78	0.98 (3H)	-	-	-
			1.56 (1H)		0.92 (3H)			
$\gamma \operatorname{Leu}(8)$	6.78	2.07 (2H)	1.36 (2H)	3.93	1.20 (2H)	1.40 (1H)	0.83(6H)	-
Aib(9)	7.75	-	1.51 (6H)	-	-	-	-	-
$\gamma \operatorname{Val}(10)$	8.04	2.41 (1H)	1.68 (2H)	3.68	1.80 (1H)	0.88 (6H)	-	-
		1.99 (1H)						
Aib(11)	8.06	-	1.49 (6H)	-	-	-	-	-
$-\mathrm{NH}_{2}$	$\begin{aligned} & 8.76^{[\mathrm{aa}]} \\ & 5.10^{[\mathrm{b}]} \end{aligned}$	-	-	-	-	-	-	-

${ }^{[a]}$ Proton involved in Hydrogen bonding. ${ }^{[b]}$ Proton is not involved in Hydrogen bonding.

Assignment of chemical shifts using TOCSY and ROESY spectra

The amino acid residues and their positions in the peptide sequence were identified using TOCSY and ROESY spectra, respectively.

The TOCSY spectrum was used to identify amino acids in the sequence of the peptides.

A) Partial TOCSY spectrum analysis of peptide $\mathbf{P 2}$ in CDCl_{3}.

Below partial TOCSY spectrum showing the amino acid residues in peptide $\mathbf{P} 2$.

Figure S17: (A) Partial TOCSY spectrum (NH vs chiral $\alpha, \& \gamma$ protons) of peptide $\mathbf{P 2}$ showing correlation between intra residue protons.

B) Partial ROESY spectrum analysis of Peptide $\mathbf{P} 2$ in CDCl_{3}.

Below ROESY spectrums (B1) depicting the $\mathbf{N H} \leftrightarrow \mathbf{N H}, \mathbf{N H} \leftrightarrow \mathbf{c h i r a l} \mathbf{C u}_{\boldsymbol{u}} \mathbf{H}, \mathbf{C}_{\gamma} \mathbf{H}$ interactions respectively. The inter and intra-residue NOEs are marked with green and black labels respectively.

Figure S18: (B1) NH vs NH, NH vs Chiral α, and γ protons region in ROESY spectrum of peptide $\mathbf{P 2}$ in $\mathbf{C D C l} 3$. (B2) Crystal structure of peptide $\mathbf{P 2}$ depicting the distance between inter
residue NOE corresponding protons in the ROESY spectrum (B1). (inter-residue NOEs marked with green labels in the ROESY spectrum (B1)).

Table S16: NOEs Observed in $\mathbf{N H} \leftrightarrow \mathbf{N H}$ and $\mathbf{N H} \leftrightarrow \mathbf{C}_{\boldsymbol{\alpha}} \mathbf{H} / \mathbf{C}_{\boldsymbol{\beta}} \mathbf{H} / \mathbf{C}_{\boldsymbol{\gamma}} \mathbf{H}$ Region of Peptide $\mathbf{P 2}$ in $\mathbf{C D C l}_{3}$ and the distance observed between respective protons in its crystal structure.

C) List of Inter-residue NOEs (marked with green labels) in partial ROESY spectrum (B1) of peptide $\mathbf{P 2}$ in $\mathbf{C D C l}_{3}$.						
Residue	$\begin{aligned} & \mathrm{H}- \\ & \text { atom } \end{aligned}$	Residue	$\begin{gathered} \mathrm{H}- \\ \text { atom } \end{gathered}$	NOE observed	Distance in crystal structure (A)	Type of NOE
Aib (1)	NH	$\gamma \mathrm{Val}$ (2)	NH	Medium	2.69	$\mathrm{NH} i \leftrightarrow \mathrm{NH} i+1$
$\gamma \mathrm{Val}$ (2)	NH	Aib (3)	NH	Weak	3.62	$\mathrm{NH} i \leftrightarrow \mathrm{NH} i+1$
$\gamma \mathrm{Val}$ (2)	$\gamma \mathrm{CH}$	γ Leu (4)	NH	Strong	2.65	$\gamma \mathrm{CH} i \leftrightarrow \mathrm{NH} i+2$
$\gamma \mathrm{Val}$ (2)	$\gamma \mathrm{CH}$	Ala (5)	NH	Medium	4.02	$\gamma \mathrm{CH} i \leftrightarrow \mathrm{NH} i+3$
Aib (3)	NH	γ Leu (4)	NH	Medium	2.79	$\mathrm{NH} i \leftrightarrow \mathrm{NH} i+1$
γ Leu (4)	NH	$(E)-\mathrm{d} \gamma \mathrm{Val}$ (6)	NH	Weak	4.63	$\mathrm{NH} i \leftrightarrow \mathrm{NH} i+2$
γ Leu (4)	$\gamma \mathrm{CH}$	$(E)-\mathrm{d} \gamma \mathrm{Val}$ (6)	NH	Strong	3.17	$\gamma \mathrm{CH} i \leftrightarrow \mathrm{NH} i+2$
γ Leu (4)	$\gamma \mathrm{CH}$	$(E)-\mathrm{d} \gamma \mathrm{Val}$ (6)	$\alpha \mathrm{CH}$	Very Strong	2.9	$\gamma \mathrm{CH} i \leftrightarrow \alpha \mathrm{CH} i+2$
γ Leu (4)	$\gamma \mathrm{CH}$	Leu (7)	NH	Strong	3.5	$\gamma \mathrm{CH} i \leftrightarrow \mathrm{NH} i+3$
Ala (5)	NH	$(E)-\mathrm{d} \gamma \mathrm{Val}$ (6)	NH	Medium	2.69	$\mathrm{NH} i \leftrightarrow \mathrm{NH} i+1$
Ala (5)	$\alpha \mathrm{CH}$	$(E)-\mathrm{d} \gamma \mathrm{Val}$ (6)	NH	Medium	3.3	$\alpha \mathrm{CH} i \leftrightarrow \mathrm{NH} i+1$
Ala (5)	$\alpha \mathrm{CH}$	$(E)-\mathrm{d} \gamma \mathrm{Val}$ (6)	$\alpha \mathrm{CH}$	Weak	4.45	$\alpha \mathrm{CH} i \leftrightarrow \alpha \mathrm{CH} i+1$
$(E)-\mathrm{d} \gamma \mathrm{Val}$ (6)	NH	Leu (7)	NH	Weak	4.8	$\mathrm{NH} i \leftrightarrow \mathrm{NH} i+1$
(E)-d $\gamma \mathrm{Val}$	$\beta \mathrm{CH}$	Aib (9)	NH	Medium	3.76	$\beta \mathrm{CH} i \leftrightarrow \mathrm{NHH} i+3$

(6)						
$(E)-\mathrm{d} \gamma \mathrm{Val}$ (6)	$\alpha \mathrm{CH}$	Leu (7)	NH	Very	2.38	$\alpha \mathrm{CH} i \leftrightarrow \mathrm{NH} i+1$
Leu (7)	NH	γ Leu (8)	NH	Medium	2.64	$\mathrm{NH} i \leftrightarrow \mathrm{NH} i+1$
Leu (7)	$\alpha \mathrm{CH}$	γ Leu (8)	NH	Medium	3.38	$\alpha \mathrm{CH} i \leftrightarrow \mathrm{NH} i+1$
Leu (7)	$\alpha \mathrm{CH}$	Aib (9)	NH	Strong	3.4	$\alpha \mathrm{CH} i \leftrightarrow \mathrm{NH} i+2$
Leu (7)	$\alpha \mathrm{CH}$	$\gamma \mathrm{Val}$ (10)	NH	Strong	4.0	$\alpha \mathrm{CH} i \leftrightarrow \mathrm{NH} i+3$
$\gamma \operatorname{Val}$ (10)	NH	Aib (11)	NH	Strong	3.63	$\mathrm{NH} i \leftrightarrow \mathrm{NH} i+1$
$\gamma \mathrm{Val}$ (10)	$\gamma \mathrm{CH}$	Aib (11)	NH	Strong	3.37	$\gamma \mathrm{CH} i \leftrightarrow \mathrm{NH} i+1$
$\gamma \operatorname{Val}$ (10)	$\gamma \mathrm{CH}$	$\begin{aligned} & \hline \mathrm{CONH}_{2} \\ & (\mathrm{NH} 12) \end{aligned}$	NH	Strong	2.66	$\gamma \mathrm{CH} i \leftrightarrow \mathrm{NH} i+2$
$\gamma \operatorname{Val}$ (10)	$\gamma \mathrm{CH}$	$\begin{aligned} & \hline \mathrm{CONH}_{2} \\ & (\mathrm{NH} 13) \end{aligned}$	NH	Medium	3.6	$\gamma \mathrm{CH} i \leftrightarrow \mathrm{NH} i+3$
Aib (11)	NH	$\begin{aligned} & \mathrm{CONH}_{2} \\ & \text { (NH12) } \end{aligned}$	NH	Weak	2.8	$\mathrm{NH} i \leftrightarrow \mathrm{NH} i+1$

D) Intra-residue NOEs (marked with black labels) in partial ROESY spectrum (B1) of peptide $\mathbf{P 2}$ in $\mathbf{C D C l}_{3}$.

Residue	H-atom	Residue	H-atom	NOE observed
$\gamma \mathrm{Val}(2)$	$\gamma \mathrm{CH}$	$\gamma \mathrm{Val}(2)$	NH	Strong
$\gamma \mathrm{Leu}(4)$	$\gamma \mathrm{CH}$	$\gamma \mathrm{Leu}(4)$	NH	Strong
Ala (5)	$\alpha \mathrm{CH}$	$\mathrm{Ala}(5)$	NH	Very Strong
$(E)-\mathrm{d} \gamma \mathrm{Val}(6)$	$\gamma \mathrm{CH}$	$(E)-\mathrm{d} \gamma \mathrm{Val}(6)$	NH	Strong
$(E)-\mathrm{d} \gamma \mathrm{Val}(6)$	$\gamma \mathrm{CH}$	$(E)-\mathrm{d} \gamma \mathrm{Val}(6)$	$\beta \mathrm{CH}$	Very Strong
$(E)-\mathrm{d} \gamma \mathrm{Val}(6)$	$\gamma \mathrm{CH}$	$(E)-\mathrm{d} \gamma \mathrm{Val}(6)$	$\alpha \mathrm{CH}$	Strong
$(E)-\mathrm{d} \gamma \mathrm{Val}(6)$	$\beta \mathrm{CH}$	$(E)-\mathrm{d} \gamma \mathrm{Val}(6)$	NH	Medium
$(E)-\mathrm{d} \gamma \mathrm{Val}(6)$	$\alpha \mathrm{CH}$	$(E)-\mathrm{d} \gamma \mathrm{Val}(6)$	NH	Strong
$(E)-\mathrm{d} \gamma \mathrm{Val}(6)$	$\alpha \mathrm{CH}$	$(E)-\mathrm{d} \gamma \mathrm{Val}(6)$	$\beta \mathrm{CH}$	Strong
$\mathrm{Leu}(7)$	$\alpha \mathrm{CH}$	$\mathrm{Leu}(7)$	NH	Strong
$\gamma \mathrm{Leu}(8)$	$\gamma \mathrm{CH}$	$\gamma \mathrm{Leu}(8)$	NH	Strong
$\gamma \mathrm{Val}(10)$	$\gamma \mathrm{CH}$	$\gamma \mathrm{Val}(10)$	NH	Strong

9) HPLC Trace of Peptides P1-P3:

Figure S19: Reverse-phase-HPLC profiles of peptides P1, P2 and P3 on a C-18 column using methanol/water gradients at a flow rate of $2.0 \mathrm{~mL} / \mathrm{min}$. Eluted compounds were detected by the UV absorbance at 220 nm .

10) CD Spectroscopy of peptides P1-P3

10.1) CD Spectroscopy of Peptide P1-P3 in Methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$:

Fig S20: CD Spectroscopy of peptides $\mathbf{P 1}, \mathbf{P 2}$ and $\mathbf{P 3}$ in Methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ at a concentration of $1 \mathrm{mg} / \mathrm{mL}$.

10.2) CD Spectroscopy of Peptide $\mathbf{P} 1$ and $\mathbf{P} 2$ in Chloroform $\left(\mathrm{CHCl}_{3}\right)$:

Fig S21: CD Spectroscopy of peptides $\mathbf{P 1}$ and $\mathbf{P 2}$ in Chloroform $\left(\mathrm{CHCl}_{3}\right)$ at a concentration of $1 \mathrm{mg} / \mathrm{mL}$. (Peptide P 3 is insoluble in CHCl_{3})

11) Superimposed structures of Peptide ' $\mathbf{P 3}$ ' and ' 434 repressor DNA-

 binding domain' protein

Figure S22: Superimposed crystal structure of peptide P3 (shown in ball and stick model) with the solution NMR structure of '434 repressor DNA-binding domain' (shown in line ribbon) protein in the region of Helix-Turn-Helix motif along residues 8 to 21 (PDB DOI: https://doi.org/10.2210/pdb2r63/pdb)
12) 1H NMR, and Mass Spectra of Peptides P1-P3 and monomers:

12.1) Peptide $\mathrm{P}^{1}{ }^{1} \mathrm{HNMR}$ in $\mathrm{CD}_{3} \mathrm{OH}$:

Peptide $\mathrm{P1}^{1}{ }^{1} \mathrm{HNMR}$ in CDCl_{3} :

Peptide $\mathbf{P 2}^{\mathbf{1}}{ }^{\mathbf{H}} \mathrm{HNMR}$ in $\mathrm{CD}_{3} \mathrm{OH}$:

Peptide $\mathbf{P} 2{ }^{1} \mathbf{H N M R}$ in CDCl_{3} :

Spectrum Report

Peptide $\mathrm{P}^{\mathbf{1}}{ }^{\mathbf{H}} \mathrm{HNMR}$ in $\mathrm{CD}_{3} \mathrm{OH}$:

Final - Shots 400 - IISER-96-2; Run \#438; Label A8

All Building Blocks ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR and HRMS spectra's:

13) SI References:

(1) Mali, S. M.; Bandyopadhyay, A.; Jadhav, S. V.; Ganesh Kumar, M.; Gopi, H. N. Synthesis of α, β-unsaturated γ-amino esters with unprecedented high (E)-stereoselecctivity and their conformational analysis in peptides. Org.Biomol.Chem. 2011, 9, 6566-6566.
(2) Nalawade, S. A.; Singh, M.; Puneeth Kumar, Drgk. R.; Dey, S.; Gopi, H. N. Stereoselective Synthesis of Backbone Extended π-Conjugated Amino Esters. Org. Biomol. Chem. 2023. https://doi.org/10.1039/d3ob00090g.
(3) Misra, R.; George, G.; Saseendran, A.; Raghothama, S.; Gopi, H. N. Ambidextrous α, γ-Hybrid Peptide Foldamers. Chem. Asian J. 2019, 14, 4408-4414.
(4) (a) Sheldrick, G. M. Phase annealing in SHELX-90: direct methods for larger structures. Acta Crystallogr. 1990, A46, 467-473. (b) Sheldrick, G. M. SHELXL-97, Program for Crystal Structure Solution and Refinement, Universität Göttingen (Germany) 1997.
(5) Spek, A. L. Acta Crystallogr. PLATON, an integrated tool for the analysis of the results of a single crystal structure determination. 1990, A46, C34.
(6) The solvent mask (void determination) in OLEX is based on: Jiang, J.- S.; Brünger, A. T. Protein hydration observed by X-ray diffraction. Solvation properties of penicillopepsin and neuraminidase crystal structures. J. Mol. Biol. 1994, 243, 100-115.
(7) Mali, S. M.; Ganesh Kumar, M.; Katariya, M. M.; Gopi, H. N. HBTU mediated 1hydroxybenzotriazole (HOBt) conjugate addition: synthesis and stereochemical analysis of β-benzotriazole N-oxide substituted γ-amino acids and hybrid peptides. Org. Biomol. Chem. 2014, 2, 8462-8472.

[^0]: Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune-411 008, India; E-mail: hn.gopi@iiserpune.ac.in

