Supporting Information

Crystal structure analysis of helix-turn-helix type motifs in α , γ -hybrid peptides

Sachin A. Nalawade, Mothukuri Ganesh Kumar, DRGKoppalu R. Puneeth Kumar, Manjeet Singh, Sanjit Dey, and Hosahudya N. Gopi*

Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune-411 008, India; E-mail: <u>hn.gopi@iiserpune.ac.in</u>

Table of Contents

1	Sequences of Peptides P1-P3	S2
2	ORTEP Diagrams of Peptides P1-P3	S 3
3	Crystallographic Information of Peptides P1-P3	S6
4	Backbone torsional angles and H-bond Parameters of Peptides P1- P3	S8
5	Materials, Methods, and General Experimental Details	S12
6	Procedures for Building Blocks Synthesis and its Characterization	S12
7	General procedure for the solid phase synthesis of peptides P1-P3	S20
8	2D NMR (TOCSY & ROESY) analysis and NOE correlations with solid state structure of peptides P1-P3	S21
9	HPLC Trace of Peptides P1-P3	S41
10	CD Spectroscopy of peptides P1-P3	S42
11	Superimposed structures of Peptide 'P3' and '434 repressor DNA- binding domain' protein	S43
12	1H NMR, and Mass Spectra of Peptides P1-P3 and monomers	S44
13	References	S54

1) Sequences of Peptides P1-P3

Scheme S1: Sequences of Peptides P1, P2 and P3.

2) ORTEP Diagrams of Peptides P1, P2 and P3:

Fig S1: ORTEP diagram of **P1** [Ac-Aib- γ Phe-Ala-(*E*)d γ Val-Aib- γ Phe-Aib-CONH₂], with labelled heteroatoms. H-bonding is represented by dotted lines in light green colour. The side-chain and backbone H-atoms are not shown for clarity (except N-H). Ellipsoids are drawn at 50% probability. [(*E*)d γ Val = (*E*)- α , β -unsaturated γ -Valine¹] (**CCDC no : 2226520**)

Fig S2: ORTEP diagram of **P2** [Ac-Aib-γVal-Aib-γLeu-Ala-(*E*)dγVal-Leu-γLeu-Aib-γVal-Aib-CONH₂], with labelled heteroatoms. H-bonding is represented by dotted lines in light green colour. The side-chain and backbone H-atoms are not shown for clarity (except N-H). Ellipsoids are drawn at 50% probability. [(*E*)dγVal = (*E*)-α, β-unsaturated γ-Valine¹] (**CCDC no : 2226522**)

Fig S3: ORTEP diagram of **P3** [Ac-Aib- γ Leu-Aib-(E,E)-dd ε Phe-Aib-Adb-Aib-CONH₂], with labelled heteroatoms. H-bonding is represented by dotted lines in light green colour. The side-chain and backbone H-atoms are not shown for clarity (except N-H). Ellipsoids are drawn at 50% probability. [(E,E)dd ε Phe = (E,E)- $\alpha\beta$, $\gamma\delta$ -unsaturated ε -Phenylalanine²; Adb = 4-amino-3,3-dimethyl-butanoic acid³] (**CCDC no : 2226523**)

3) Crystallographic Information of Peptides P1–P3:

Crystal structure analysis of Ac-Aib- γ Phe-Ala-(*E*)d γ Val-Aib- γ Phe-Aib-CONH₂ (P1): Colourless rod shape Crystals of P1 were grown by slow evaporation from an aqueous solution of methanol. A good quality single crystal (0.13 × 0.08 × 0.05mm) was mounted on the head of a goniometer using a loop with a small amount of paraffin oil. The X-ray diffraction data of a single crystal were collected at 100K temperature on a Bruker APEX(II) DUO CCD diffractometer using Mo K α radiation ($\lambda = 0.71073$ Å), ω -scans ($2\theta = 39.992$), for a total of 17071 independent reflections. Space group C 2, a = 33.21(5), b = 10.160(13), c = 16.17(2), β = 112.22(3), V = 5051(11) Å³, Monoclinic, Z = 4 for chemical formula C₄₆ H₆₈ N₈ O₈ with one molecule in asymmetric unit; ρ calcd = 1.132 gcm⁻³, μ = 0.078 mm⁻¹, F (000) = 1856.0, Rint= 0.2784. The structure was obtained by direct methods using SHELXL-97.⁴ The final R value was 0.1038 (wR2 = 0.2341) 4549 observed reflections ($F\theta \ge 4\sigma$ (|F0|)) and 571 variables, S = 0.857. The largest difference peak and hole were 0.327 and -0.253 eÅ³, respectively.

The diffracted single crystal was a small-sized and the quality of diffraction was poor. Several datasets were collected on single crystals from different groups and one of the highest quality is reported herein.

There is some partially occupied solvent molecule also present in the asymmetric unit. A significant amount of time was invested in identifying and refining the disordered molecule. Option SQUEEZE of program PLATON⁵ was used to correct the diffraction data for diffuse scattering effects and to remove the contributions of the disordered solvent molecules from the structure factors. PLATON calculated the upper limit of volume that can be occupied by the solvent to be 461 Å³ of the unit cell volume. The program calculated 148 electrons in the unit cell for the diffuse species. No data are given for the diffusely scattering species. Outputs of the SQUEEZE report are appended in CIF file **P1**.

Crystal structure analysis of Ac-Aib-γVal-Aib-γLeu-Ala-(*E***)dγVal-Leu-γLeu-Aib-γVal-Aib-CONH₂ (P2): Colourless plate shape Crystals of P2 were grown by slow evaporation from the aqueous solution of methanol. A good quality single crystal (0.25 × 0.12 × 0.1 mm) was mounted on the head of a goniometer using a loop with a small amount of paraffin oil. The X-ray diffraction data of a single crystal were collected at 100K temperature on a Bruker APEX(II) DUO CCD diffractometer using Mo Kα radiation (\lambda = 0.71073 Å), ω-scans (2\theta = 56.65), for a total of 43572 independent reflections. Space group P 21, a = 14.637(8), b = 19.378(9), c = 16.197(7), \beta = 104.947(16), V = 4439(4) Å³, Monoclinic, Z = 2 for chemical formula C₆₄ H₁₁₆ N₁₂ O₁₂, C H₄ O with one methanol molecule in asymmetric unit; \rho calcd = 0.956 gcm⁻³, \mu = 0.067mm⁻¹, F (000) = 1396, Rint= 0.0384. The crystal structure was solved by direct methods using SHELXL-97.⁴ The final R value was 0.0531 (wR2 = 0.1158) 21737 observed reflections (F\theta \ge 4\sigma (|F0|)) and 837 variables, S = 1.053. The largest difference peak and hole were 0.442 and -0.275 eÅ³, respectively.**

There is some partially occupied solvent molecule also present in the asymmetric unit. A significant amount of time was invested in identifying and refining the disordered molecule. The solvent masks option in program Olex2-1.2⁶ serves as an alternative to SQUEEZE which is implemented in PLATON⁵. The solvent masks option in program Olex2-1.2⁶ was used to correct the diffraction data for diffuse scattering effects and to remove the contributions of the disordered solvent molecules from the structure factors. The Olex2-solvent mask calculated the upper limit of volume that can be occupied by the solvent to be 1193 Å³, or 26.9% of the unit cell volume. The program calculated 159 electrons in the unit cell for the diffuse species. No data are given for the diffusely scattering species. Outputs of the Olex2-solvent mask (SQUEEZE) report are appended in CIF file **P2**.

Crystal structure analysis of Ac-Aib-γ**Leu-Aib**-(*E*, *E*)ddγ**Phe-Aib-Adb-Aib**-**CONH**₂ (**P3**): Colourless needle shape Crystals of **P3** were grown by slow evaporation from the aqueous solution of methanol. A good quality single crystal (0.12 × 0.09 × 0.07 mm) was mounted on the head of a goniometer using a loop with a small amount of paraffin oil. The X-ray diffraction data of a single crystal were collected at 100K temperature on a Bruker APEX(II) DUO CCD diffractometer using Mo Kα radiation ($\lambda = 0.71073$ Å), ω -scans (2 θ = 56.666), for a total of 66655 independent reflections. Space group P 21, a = 17.73(10), b = 10.52(6), c = 28.85(16), β = 99.42(8), V = 5309(50) Å³, Monoclinic, Z = 4 for chemical formula C₄₅ H₇₂ N₈ O₈ with two molecule in asymmetric unit; ρ calcd = 1.067 gcm⁻³, μ = 0.074 mm⁻¹, F (000) = 1848, Rint= 0.1393. The structure was obtained by direct methods using SHELXL-97.⁴ The final R value was 0.1070 (wR2 = 0.2415) 22799 observed reflections ($F\theta \ge 4\sigma$ (|F0|)) and 1109 variables, S = 1.028. The largest difference peak and hole were 0.949 and -0.386 eÅ³, respectively.

The diffracted single crystal was a small-sized and the quality of diffraction was poor. Several datasets were collected on single crystals from different groups and one of the highest quality is reported herein.

There is some partially occupied solvent molecule also present in the asymmetric unit. A significant amount of time was invested in identifying and refining the disordered molecule. Option SQUEEZE of program PLATON⁵ was used to correct the diffraction data for diffuse scattering effects and to remove the contributions of the disordered solvent molecules from the structure factors. PLATON calculated the upper limit of volume that can be occupied by the solvent to be 732 Å³ of the unit cell volume. The program calculated 203 electrons in

the unit cell for the diffuse species. No data are given for the diffusely scattering species. Outputs of the SQUEEZE report are appended in CIF file **P3**.

4) Backbone Torsional Angles and H-bond Parameters of Peptides P1-P3:

Torsion points	Torsion angle [°]	Angle of Amino	Amino Acids
		acid	
C(1)-C(2)-N(1)-C(3)	-179(2)	-	NH-COCH ₃
C(2)-N(1)-C(3)-C(6)	-54(3)	ф	
N(1)-C(3)-C(6)-N(2)	-53(3)	Ψ	Aib1
C(3)-C(6)-N(2)-C(7)	178(2)	ω	
C(6)-N(2)-C(7)-C(15)	-119(3)	φ	
N(2)-C(7)-C(15)-C(16)	58(3)	θ_1	
C(7)-C(15)-C(16)-C(17)	61(3)	θ_2	γ Phe (2)
C(15)-C(16)-C(17)-N(3)	-128(3)	Ψ	
C(16)-C(17)-N(3)-C(18)	-171(3)	ω	
C(17)-N(3)-C(18)-C(20)	-70(3)	ф	
N(3)-C(18)-C(20)-N(4)	-34(3)	Ψ	Ala (3)
C(18)-C(20)-N(4)-C(21)	-172(2)	ω	
C(20)-N(4)-C(21)-C(25)	-81(3)	φ	
N(4)-C(21)-C(25)-C(26)	122(3)	θ_1	
C(21)-C(25)-C(26)-C(27)	-176(2)	θ_2	dγVal (4)
C(25)-C(26)-C(27)-N(5)	-169(3)	Ψ	
C(26)-C(27)-N(5)-C(28)	-178(2)	ω	
C(27)-N(5)-C(28)-C(31)	-53(3)	φ	
N(5)-C(28)-C(31)-N(6)	-49(3)	Ψ	Aib (5)
C(28)-C(31)-N(6)-C(32)	-178(2)	ω	
C(31)-N(6)-C(32)-C(40)	-125(2)	φ	
N(6)-C(32)-C(40)-C(41)	56(3)	θ_1	
C(32)-C(40)-C(41)-C(42)	66(3)	θ_2	γ Phe (6)
C(40)-C(41)-C(42)-N(7)	-111(3)	Ψ	
C(41)-C(42)-N(7)-C(43)	-179(2)	ω	

 Table S1: Backbone Torsional angle variables (in deg) for peptide P1

C(42)-N(7)-C(43)-C(46)	-55(3)	ф	Aib (7)
N(7)-C(43)-C(46)-N(8)	-43(3)	Ψ	

Table S2: Hydrogen bonding Parameters of Peptide P1

D-HA	d(D-H)	d(HA)	d(DA)	<(N-H0)
		(Å)	(Å)	(°)
N(3)-H(3A)O(1)	0.88	2.04	2.91(3)	169
N(4)-H(4)O(2)	0.88	1.85	2.70(3)	163
N(7)-H(7)O(5)	0.88	1.98	2.85(3)	170
N(8)-H(8B)O(6)	0.88	2.11	2.97(3)	166
Intermolecular H-bonds of pepti	de P1			
N(1)-H(1)O(8)#	0.88	2.01	2.85(3)	160
N(8)-H(8A)O(6)*	0.88	2.12	2.87(3)	142

[D = Donor, A = Acceptor, H = Hydrogen, d = distance in Å, <= angle in (°)]

Symmetry operations used to generate equivalent atoms:

-x+1/2,y+1/2,-z+1 * -x+1,y,-z+1

 Table S3: Backbone Torsional angle variables (in deg) for peptide P2

Torsion points	Torsion angle [°]	Angle of Amino	Amino Acids
		acid	
C(1)-C(2)-N(1)-C(4)	-175.4(3)	-	NH-COCH ₃
C(2)-N(1)-C(4)-C(6)	-59.4(4)	φ	
N(1)-C(4)-C(6)-N(2)	-38.9(3)	Ψ	Aib1
C(4)-C(6)-N(2)-C(10)	-174.6(3)	ω	
C(6)-N(2)-C(10)-C(11)	-123.9(3)	φ	
N(2)-C(10)-C(11)-C(12)	48.0(3)	θ_1	
C(10)-C(11)-C(12)-C(13)	65.2(3)	θ_2	

C(11)-C(12)-C(13)-N(3)	-117.6(3)	Ψ	γVal (2)
C(12)-C(13)-N(3)-C(14)	-174.4(3)	ω	_
C(13)-N(3)-C(14)-C(17)	-57.9(4)	ф	
N(3)-C(14)-C(17)-N(4)	-45.1(3)	Ψ	Aib (3)
C(14)-C(17)-N(4)-C(18)	-172.9(2)	ω	-
C(17)-N(4)-C(18)-C(23)	-119.1(3)	ф	
N(4)-C(18)-C(23)-C(24)	49.2(3)	θ_1	_
C(18)-C(23)-C(24)-C(25)	61.5(4)	θ_2	γLeu (4)
C(23)-C(24)-C(25)-N(5)	-129.0(3)	Ψ	_
C(24)-C(25)-N(5)-C(26)	-164.4(2)	ω	_
C(25)-N(5)-C(26)-C(28)	-68.8(3)	ф	
N(5)-C(26)-C(28)-N(6)	-30.0(4)	Ψ	Ala (5)
C(26)-C(28)-N(6)-C(29)	-170.1(2)	ω	_
C(28)-N(6)-C(29)-C(33)	-110.1(3)	ф	
N(6)-C(29)-C(33)-C(34)	5.3(4)	θ_1	-
C(29)-C(33)-C(34)-C(35)	-177.4(3)	θ_2	dγVal(6)
C(33)-C(34)-C(35)-N(7)	179.0(3)	Ψ	-
C(34)-C(35)-N(7)-C(36)	-171.2(3)	ω	_
C(35)-N(7)-C(36)-C(41)	-70.7(4)	ф	
N(7)-C(36)-C(41)-N(8)	-29.9(4)	Ψ	Leu (7)
C(36)-C(41)-N(8)- C(42)	-178.8(3)	ω	_
C(41)-N(8)-C(42)-C(47)	-125.9(3)	ф	
N(8)-C(42)-C(47)-C(48)	49.5(4)	θ_1	_
C(42)-C(47)-C(48)-C(49)	60.0(4)	θ_2	γLeu (8)
C(47)-C(48)-C(49)-N(9)	-114.4(4)	Ψ	_
C(48)-C(49)-N(9)-C(50)	-173.9(3)	ω	_
C(49)-N(9)-C(50)-C(53)	-54.9(4)	ф	
N(9)-C(50)-C(53)-N(10)	-41.4(4)	Ψ	Aib (9)
C(50)-C(53)-N(10)-C(54)	-171.5(3)	ω	
C(53)-N(10)-C(54)-C(58)	-127.8(3)	ф	
N(10)-C(54)-C(58)-C(59)	52.8(3)	θ_1	
C(54)-C(58)-C(59)-C(60)	61.0(3)	θ_2	

C(58)-C(59)-C(60)-N(11)	-120.3(3)	Ψ	γVal (10)
C(59)-C(60)-N(11)-C(62)	-172.2(3)	ω	
C(60)-N(11)-C(62)-C(64)	-57.1(4)	ф	Aib (11)
N(11)-C(62)-C(64)-N(12)	-42.0(4)	Ψ	

Table S4: Hydrogen bonding Parameters of Peptide P2

Intra-molecular H-bonds of pepti D-HA	1			
D-п А	d(D-H)	d(HA)	d(DA)	<(N-H0)
		(Å)	(Å)	(°)
N(3)-H(3)O(1)	0.88	2.05	2.911(3)	165
N(4)-H(4)O(2)	0.88	2.04	2.902(3)	167
N(5)-H(5)O(3)	0.88	1.93	2.807(3)	175
N(6)-H(6)O(4)	0.88	2.03	2.872(3)	160
N(9)-H(9)O(7)	0.88	2.01	2.881(3)	168
N(10)-H(10A)O(8)	0.88	2.05	2.875(3)	156
N(11)-H(11)O(9)	0.88	2.04	2.918(3)	172
N(12)-H(12D)O(10)	0.88	1.99	2.850(3)	166
Intermolecular H-bonds of peptic	le P2			
N(1)-H(1)O(6)#	0.88	2.01	2.875(3)	169
N(2)-H(2)O(12)*	0.88	2.07	2.870(3)	151
N(12)-H(12C)O(6)\$	0.88	2.12	2.993(3)	171

Symmetry operations used to generate equivalent atoms: # x+1,y,z = *x+1,y,z-1 = \$x,y,z+1

Table S5: Backbone Torsional angle variables (in deg) for peptide P3

Backbone Torsional angle of Peptide P3 (Molecule 1)					
Torsion points Torsion angle [°] Angle of Amino Amino Acids					
(Molecule 1)	(Molecule 1)	acid	(Molecule 1)		
N(1)-C(1)-C(2)-N(2)	52.3(9)	Ψ			
C(1)-C(2)-N(2)-C(5)	48.6(10)	φ	Aib7		
C(2)-N(2)-C(5)-C(6)	175.4(6)	ω			

N(2)-C(5)-C(6)-C(7)	105.3(8)	Ψ		
C(5)-C(6)-C(7)-C(10)	-56.4(10)	θ_2	Adb (6)	
C(6)-C(7)-C(10)-N(3)	-54.2(9)	θ_1		
C(7)-C(10)-N(3)-C(11)	129.7(8)	φ		
C(10)-N(3)-C(11)-C(12)	175.7(7)	ω		
N(3)-C(11)-C(12)-N(4)	33.9(10)	Ψ	Aib (5)	
C(11)-C(12)-N(4)-C(15)	61.6(11)	φ		
C(12)-N(4)-C(15)-C(16)	168.3(7)	ω		
N(4)-C(15)-C(16)-C(17)	179.3(8)	Ψ		
C(15)-C(16)-C(17)-C(18)	178.5(8)	θ4		
C(16)-C(17)-C(18)-C(19)	-179.8(8)	θ_3	(E,E) dd ε Phe (4)	
C(17)-C(18)-C(19)-C(20)	178.8(8)	θ_2		
C(18)-C(19)-C(20)-N(5)	3.3(12)	θ_1		
C(19)-C(20)-N(5)-C(28)	-101.7(8)	φ		
C(20)-N(5)-C(28)-C(29)	-172.1(6)	ω		
N(5)-C(28)-C(29)-N(6)	-42.5(10)	Ψ	Aib (3)	
C(28)-C(29)-N(6)-C(32)	-55.0(9)	φ		
C(29)-N(6)-C(32)-C(33)	-173.0(6)	ω		
N(6)-C(32)-C(33)-C(34)	-116.6(7)	Ψ		
C(32)-C(33)-C(34)-C(35)	63.3(9)	θ_2	γLeu(2)	
C(33)-C(34)-C(35)-N(7)	46.5(9)	θ_1		
C(34)-C(35)-N(7)-C(40)	-123.8(7)	φ		
C(35)-N(7)-C(40)-C(41)	-171.5(6)	ω		
N(7)-C(40)-C(41)-N(8)	-37.9(8)	Ψ	Aib(1)	
C(40)-C(41)-N(8)-C(44)	-56.7(9)	φ		
C(41)-N(8)-C(44)-C(45)	173.9(7)	-	NH-COCH ₃	
Backbone Torsional angle of	Peptide P3 (Molecu	le 2)		
Torsion points	Torsion angle [°]	Angle of Amino	Amino Acids	
(Molecule 2)	(Molecule 2)	acid	(Molecule 2)	
N(9)-C(46)-C(47)-N(10)	-51.0(9)	Ψ		
C(46)-C(47)-N(10)-C(50)	-49.6(10)	φ	Aib7	

C(47)-N(10)-C(50)-C(51)	-176.0(6)	ω	
N(10)-C(50)-C(51)-C(52)	-108.6(8)	Ψ	
C(50)-C(51)-C(52)-C(55)	58.8(9)	θ_2	Adb (6)
C(51)-C(52)-C(55)-N(11)	56.9(8)	θ_1	-
C(52)-C(55)-N(11)-C(56)	-129.9(8)	φ	-
C(55)-N(11)-C(56)-C(57)	-176.7(7)	ω	
N(11)-C(56)-C(57)-N(12)	-35.4(9)	Ψ	Aib (5)
C(56)-C(57)-N(12)-C(60)	-57.2(11)	φ	
C(57)-N(12)-C(60)-C(61)	-177.9(7)	ω	
N(12)-C(60)-C(61)-C(62)	-160.4(9)	Ψ	-
C(60)-C(61)-C(62)-C(63)	-178.3(9)	θ4	-
C(61)-C(62)-C(63)-C(64)	-174.9(10)	θ ₃	(E,E) dd ε Phe (4)
C(62)-C(63)-C(64)-C(65)	-176.1(8)	θ_2	-
C(63)-C(64)-C(65)-N(13)	28.6(11)	θ_1	-
C(64)-C(65)-N(13)-C(73)	-115.2(8)	φ	-
C(65)-N(13)-C(73)-C(74)	-166.9(7)	ω	
N(13)-C(73)-C(74)-N(14)	-46.5(10)	Ψ	Aib (3)
C(73)-C(74)-N(14)-C(77)	-52.0(11)	φ	-
C(74)-N(14)-C(77)-C(78)	-175.0(7)	ω	
N(14)-C(77)-C(78)-C(79)	-120.6(9)	Ψ	-
C(77)-C(78)-C(79)-C(80)	67.8(12)	θ_2	γLeu(2)
C(78)-C(79)-C(80)-N(15)	43.0(12)	θ_1	-
C(79)-C(80)-N(15)-C(85)	-119.8(9)	φ	-
C(80)-N(15)-C(85)-C(86)	-172.9(7)	ω	
N(15)-C(85)-C(86)-N(16)	-38.6(10)	Ψ	Aib(1)
C(85)-C(86)-N(16)-C(89)	-55.2(11)	φ	1
C(86)-N(16)-C(89)-C(90)	-177.3(8)	-	NH-COCH ₃
$[(E,E)dd\varepsilon Phe = (E,E)-\alpha\beta,$	v&-unsaturated	ε-Phenylalanine ² :	Adb = 4-amino-3.3-

 $[(E,E)dd\varepsilon Phe = (E,E)-\alpha\beta, \gamma\delta$ -unsaturated ε -Phenylalanine²; Adb = 4-amino-3,3dimethylbutanoic acid³]

D-HA	d(D-H)	d(HA)	d(DA)	<(N-H0)
		(Å)	(Å)	(°)
N(6)-H(6)O(8)	0.88	2.00	2.876(15)	172
N(5)-H(5)O(7)	0.88	2.12	2.962(18)	161
N(2)-H(2)O(4)	0.88	2.03	2.885(16)	162
N(1)-H(1B)O(3)	0.88	2.16	3.024(17)	168
Intermolecular H-bonds of peptic	le P3 (Molecul	e 1)	1	
N(8)-H(8)O(5)\$	0.88	2.17	3.006(17)	158
N(4)-H(4)O(10)*	0.88	2.04	2.918(14)	177
N(1)-H(1A)O(9)#	0.88	2.16	3.012(14)	162
N(12)-H(12)O(2)	0.88	2.05	2.928(14)	175
N(9)-H(9A)O(1)@	0.88	2.10	2.959(14)	166

Table S6: Hydrogen bonding Parameters of Peptide P3

Symmetry operations used to generate equivalent atoms: # -x,y+1/2,-z+2 * x+1,y,z

x,y-1,z @ -x,y-1/2,-z+2

Intra-molecular H-bonds of peptie	de P3 (Molecul	le 2)		
N(14)-H(14)O(16)#	0.88	1.99	2.867(16)	172
N(13)-H(13)O(15)*	0.88	2.08	2.903(17)	156
N(10)-H(10)O(12)\$	0.88	1.99	2.854(16)	166
N(9)-H(9B)O(11)\$	0.88	2.15	3.024(17)	172
Intermolecular H-bonds of peptid	e P3 (Moleculo	e 2)		
N(16)-H(16)O(13)\$	0.88	2.01	2.873(17)	167
N(12)-H(12)O(2)	0.88	2.05	2.928(14)	175
N(9)-H(9A)O(1)@	0.88	2.10	2.959(14)	166
N(4)-H(4)O(10)*	0.88	2.04	2.918(14)	177
N(1)-H(1A)O(9)#	0.88	2.16	3.012(14)	162

Symmetry operations used to generate equivalent atoms: # -x, y+1/2, -z+2 * x+1, y, z

\$ x,y-1,z @ -x,y-1/2,-z+2

5) Materials, Methods, and General Experimental Details:

All amino acids, Di-tert-butyl dicarbonate, N,O-Dimethylhydroxylamine hydrochloride, DCC, HOBt, DIPEA, LiAlH4, PPh3, Ethyl bromoacetate, Pd/C (Palladium on carbon), Sodium hydroxide (NaOH), FMOC-Succinimide (FMOC-OSu), DIBAL-H, BF3OEt2, 2-iodoxybenzoic acid (IBX), Acetic anhydride, Knorr-Amide resin, MeOH, THF, DCM, and Ethyl acetate, were purchased from the commercial sources. THF was dried over sodium metal and distilled before use. DCM was also dried using CaH₂ and distilled under an inert atmosphere before use. MeOH, Pet-ether, and Ethyl acetate were distilled before use. Column chromatography was performed on silica gel (230-400 mesh). Final peptides were purified on reverse phase HPLC (C-18 column, MeOH/H2O 70:30-95:5 as gradient with flow rate 2.00 mL/min). ¹H NMR (1D and 2D NMR) spectra were recorded on 600 MHz, 500 MHz, and 400 MHz (or ¹³C on 100 MHz) using residual solvents as internal standards (CD₃OH δ H 3.31 ppm, δ C 49.0 ppm, CDCl₃ δH 7.26 ppm, δC 77.3 ppm). The chemical shifts (δ) and coupling constants were reported in ppm and Hz respectively. The mass of all pure peptides was confirmed by Matrix Assisted LASER Desorption Ionization mass spectrometer (MALDI-TOF/TOF). Single crystal XRD data for peptide structure determination were collected from an X-ray diffractometer using Mo-K α ($\lambda = 0.71073$ Å) graphite monochromated radiation.

6) Procedures for Building Blocks Synthesis and its Characterization

A) Synthesis of Fmoc-NH-(E)- α , β -Unsaturated γ -amino acids (4):

Fmoc-NH-(*E*)- α , β -Unsaturated γ -amino acids were synthesized by following three steps (I – III) :

I) Synthesis of Boc-NH-(*E*)- α , β -Unsaturated γ -amino ethyl esters (2): Boc-NH-(*E*)- α , β -Unsaturated γ -amino ethyl esters (2) were synthesized using our reported protocol.¹ briefly; boc-amino aldehyde (1) (10 mmol) was dissolved in dry THF (180 ml) under N₂ atmosphere. Then Wittig ylide (PPh₃=CHCO₂Et) (36 mmol) was added to the above solution. The reaction mixture was stirred for 6 h at room temperature. The progress of the reaction was monitored by using TLC. Upon completion of the reaction, THF was evaporated from the reaction mixture, and the product Boc-NH-(*E*)- α , β -unsaturated γ -amino ethyl ester (2) was purified by column chromatography using ethyl acetate in pet ether (5%) solvent system.

Scheme S2: Synthesis of Boc-NH-(*E*)- α , β -Unsaturated γ -amino ethyl esters (2).¹

ethyl (*S*,*E*)-4-((tert-butoxycarbonyl)amino)-6-methylhept-2-enoate (2a):

¹**H NMR** (400 MHz, Chloroform-*d*) δ 6.81 (dd, J = 15.6, 5.4 Hz, 1H, βC*H*), 5.90 (d, J = 15.5 Hz, 1H, αC*H*), 4.48 (d, J = 8.8 Hz, 1H, N*H*), 4.36 – 4.28 (m, 1H, γC*H*), 4.18 (q, J = 7.1 Hz, 2H, -O-C*H*₂-), 1.71 – 1.64 (m, 1H, -εC*H*-(CH₃)₂), 1.43 (s, 9H, *Boc*), 1.37 (t, J = 7.4 Hz, 2H, - δC*H*₂-CH-(CH₃)₂), 1.27 (t, J = 7.1 Hz, 3H,-O-CH₂-C*H*₃), 0.92 (d, 6H, -CH-(ζC*H*₃)₂). ¹³C **NMR** (101 MHz, CHLOROFORM-*D*) δ 166.56, 155.22, 149.04, 120.53, 79.81, 77.47, 77.15, 76.83, 60.55, 49.92, 43.95, 28.47, 24.83, 22.83, 14.34. **HRMS** (ESI-QTOF) m/z calculated value for C₁₅H₂₇NO₄ is [M+Na] 308.1837 and observed 308.1845.

ethyl (*S*,*E*)-4-((tert-butoxycarbonyl)amino)-5-methylhex-2-enoate (2b):

¹**H NMR** (400 MHz, Chloroform-*d*) δ 6.85 (dd, J = 15.6, 5.5 Hz, 1H, βC*H*), 5.91 (dd, J = 15.7, 1.7 Hz, 1H, αC*H*), 4.56 (d, J = 9.2 Hz, 1H, N*H*), 4.24 – 4.12 (m, 3H, γC*H* & -O-C*H*₂-), 1.91 – 1.81 (m, 1H, -δC*H*-(CH₃)₂), 1.44 (s, 9H, *Boc*), 1.28 (t, J = 7.1 Hz, 3H, -O-CH₂-C*H*₃), 0.94 (d, J = 6.7 Hz, 3H, -CH-(εC*H*₃)₂, 0.91 (d, J = 6.9 Hz, 3H, -CH-(εC*H*₃)₂). ¹³C **NMR** (100 MHz, CDCl₃) δ 166.43, 155.51, 147.51, 121.64, 79.85, 77.48, 77.16, 76.84, 60.58, 56.82, 32.40,

28.50, 19.00, 18.13, 14.38. **HRMS** (ESI-QTOF) m/z calculated value for $C_{14}H_{25}NO_4$ is [M+Na] 294.1681 and observed 294.1663.

ethyl (*S*,*E*)-4-((tert-butoxycarbonyl)amino)-5-phenylpent-2-enoate (2c):

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.31 – 7.27 (m, 2H, Aromatic ortho), 7.25 – 7.15 (m, 3H, Aromatic meta & para), 6.90 (dd, J = 15.7, 4.8 Hz, 1H, βC*H*), 5.85 (dd, J = 15.7, 1.6 Hz, 1H, α*CH*), 4.61 (s, 1H, N*H*), 4.55 (s, 1H, γ*CH*), 4.17 (d, J = 7.1 Hz, 2H, -O-C*H*₂-CH₃), 2.93 – 2.84 (m, 2H, *Benzylic*), 1.39 (s, 9H, *Boc*), 1.27 (t, J = 7.1 Hz, 3H, -O-CH₂-CH₃). ¹³C **NMR** (101 MHz, CDCl₃) δ 166.17, 154.96, 147.59, 136.40, 129.40, 128.57, 126.86, 121.10, 79.86, 77.36, 77.04, 76.73, 60.46, 52.28, 40.88, 28.30, 14.22. **HRMS** (ESI-QTOF) m/z calculated value for C₁₈H₂₅NO₄ is [M+Na] 342.1681 and observed 342.1688.

II) **Ethyl ester hydrolysis reaction:** Purified Boc-NH-(*E*)- α , β -Unsaturated γ -amino ethyl ester (2) (8 mmol) was dissolved in 10 mL of EtOH and then 10 ml of 1N aq. NaOH solution was added to the reaction mixture. The reaction mixture was stirred at that temperature for 3 h. The progress of the reaction was monitored by TLC. After completion of the ethyl ester hydrolysis reaction, EtOH was removed under a *vacuum*. The residue was acidified with 5 % aq. HCl solution (25 ml). The hydrolyzed acid product (3) was extracted with ethyl acetate (40 x 3). The extracted ethyl acetate solution was washed with brine (150 ml) solution. The organic layer was then dried over anhydrous Na₂SO₄ and the product was concentrated under reduced pressure.

Scheme S3: Synthesis of Boc-NH-(*E*)- α , β -Unsaturated γ -amino acids (3).¹ S17 **III)** Boc deprotection and Fmoc protection reaction: The Boc-NH-(*E*)- α , β-Unsaturated γ amino acid (3) (8 mmol) was dissolved in 5 mL of DCM and then 12 mL of TFA was added to the reaction mixture at 0 °C. After 1 h, TFA was removed under a *vacuum*. The residue was dissolved in 22 mL of 10% NaHCO₃ (adjusts pH to ~8). The solution of Fmoc-OSu (8 mmol) in 30 mL of THF was added slowly to the reaction mixture and stirred overnight at room temperature. After completion of the reaction, the reaction mixture was acidified with 5% aq. HCl solution and extracted with ethyl acetate (40 x 3). The extracted ethyl acetate solution was washed with brine (150 ml) solution. The organic layer was then dried over anhydrous Na₂SO₄ and the product was concentrated under reduced pressure to give the white solid product of Fmoc-(*E*)- α , β- Unsaturated γ -amino acids (4) in 78-80% yields, which were directly used for solid-phase peptide synthesis without further purifications.

Scheme S4: Synthesis of Fmoc-NH-(*E*)- α , β -Unsaturated γ -amino acids (4).

B) Synthesis of Fmoc-NH-(*E*,*E*)-αβ, γδ-unsaturated ε-Phenylalanine² (9):

Fmoc-NH-(*E*, *E*)-αβ, γδ-unsaturated ε-Phenylalanine amino acid (9) were synthesized using our reported protocol². Briefly, synthesis is shown in following five steps (I – V), starting from the above synthesized Boc-(*E*)-dγ-Phe-OEt (2c).

I) Procedure for the Synthesis of Boc-Amino-Phenylalanine-Allylic Alcohol² (5): Boc-NH-(*E*)- α , β -Unsaturated γ -phenylalanine ethyl ester (2c) (10 mmol) was dissolved in dry DCM (50 ml) under N₂ atmosphere, cooled to -78 °C then BF₃-OEt₂ (11.5 mmol) was added to the solution. The reaction mixture was stirred at that temperature for 30 min. Then, DIBAL-H of 1 M Toluene solution (35 mmol) was added to the reaction mixture and the resultant reaction mixture was stirred at -78 °C for 1 h. The progress of the reaction was monitored by TLC. After completion, the reaction mixture was quenched with 5 % aqueous HCl solution (80 ml). The resultant reaction mixture was allowed to warm up to room temperature. Then DCM was evaporated and the product was extracted with ethyl acetate (70 ml x 3). The extracted ethyl acetate solution was washed with 10 % Na₂CO₃ (100 ml) followed by brine (100 ml) solution. The organic layer was then dried over anhydrous Na_2SO_4 and the product was concentrated under reduced pressure. The pure product Boc-amino-phenylalanine-allylic alcohol (5) was isolated after the column chromatography using EtOAc / pet ether (1:3) solvent system.

Scheme S5: Synthesis of Boc - Amino Phenylalanine Allylic Alcohol (5).

II) Procedure for the Synthesis of Boc-Amino-Phenylalanine-vinylogous Aldehyde² (6): The oxidation of Boc-amino phenylalanine allylic alcohol (5) using *o*-Iodoxybenzoic acid (IBX) resulted in the formation of Boc-amino phenylalanine vinylogous aldehyde (6). In the event, to a solution of Boc-amino phenylalanine allylic alcohol (5) (8 mmol) in dist. Ethyl acetate (80 ml) was added *o*-Iodoxybenzoic acid (IBX) (9.5 mmol). The reaction mixture was stirred for 4 h at 80 °C using a reflux condenser. The progress of the reaction was monitored using TLC in 30% (ethyl acetate in pet ether) solvent system. After completion, the reaction mixture was filtered using a sintered funnel, the filtrate is our product (6) which was concentrated under reduced pressure. The IBX and IBX-derived by-products are insoluble in ethyl acetate at room temperature i.e. no further purification is required beyond simple filtration. The IBX permits clean oxidation of phenylalanine allylic alcohol (5) to Phenylalanine-vinylogous Aldehyde (6) in ethyl acetate solvent. Due to the less stability of α, β-unsaturated aldehyde, we further immediately used it for the next Wittig reaction.

Scheme S6: Synthesis of Boc-Amino-Phenylalanine-vinylogous Aldehyde (6).

III) Procedure for the Synthesis of Boc-NH-(E, E)- $\alpha\beta$, $\gamma\delta$ -unsaturated ϵ -Phenylalanine Ester² (7): Boc-amino phenylalanine vinylogous aldehyde (6) (6 mmol) was dissolved in dry THF (80 ml) under N₂ atmosphere. Then Wittig ylide (PPh₃=CHCO₂Et) (7.2 mmol) was added

to the above solution. The reaction mixture was stirred for 6 h at room temperature. The progress of the reaction was monitored by using TLC. Upon completion of the reaction, THF was evaporated from the reaction mixture, and the product 'Boc-NH-(E, E)- $\alpha\beta$, $\gamma\delta$ -unsaturated ϵ -phenylalanine ester (7)' was purified by column chromatography using ethyl acetate in pet ether (6%) solvent system.

Scheme S7: Synthesis of Boc-NH-(E, E)- $\alpha\beta$, $\gamma\delta$ -unsaturated ε -Phenylalanine Ester (7).

(S, 2E, 4E)-ethyl 6-((tert-butoxycarbonyl)amino)-7-phenylhepta-2,4-dienoate (7):

White solid, yield: 4.49g (93%), mp: 81 °C, $[\alpha]_D^{25} = -12.48$ (c = 1 CHCl₃). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.32 – 7.29 (m, 2H, aromatic), 7.26 – 7.23 (m, 1H, aromatic), 7.23 – 7.19 (m, 1H, aromatic), 7.17 – 7.14 (m, 2H, aromatic1H & β CH merged), 6.20 (dd, *J* = 15.3, 10.9 Hz, 1H, γ CH), 6.03 (dd, *J* = 15.4, 5.1 Hz, 1H, δ CH), 5.82 (d, *J* = 15.3 Hz, 1H, α CH), 4.54 (s, 2H, NH & ϵ CH merged), 4.19 (q, *J* = 7.1 Hz, 2H, -O-CH₂-CH₃), 2.87 (t, *J* = 5.1 Hz, 2H, *Benzylic*), 1.41 (s, 9H, *Boc*), 1.29 (t, *J* = 7.1 Hz, 3H, -O-CH₂-CH₃). ¹³C NMR (100 MHz, CDCl₃) δ 166.95, 155.04, 143.63, 142.14, 136.72, 129.47, 128.51, 128.00, 126.75, 121.48, 79.78, 77.36, 77.04, 76.72, 60.36, 52.90, 41.36, 28.33, 14.29. HRMS (ESI-QTOF) m/z calculated value for C₂₀H₂₇NO₄ is [M+Na] 368.1837 and observed 368.1830.

IV) Ethyl ester hydrolysis reaction²: Purified Boc-NH-(*E*, *E*)- $\alpha\beta$, $\gamma\delta$ -unsaturated ϵ -Phenylalanine Ester (7) (5 mmol) was dissolved in 10 mL of EtOH and then 10 ml of 1N aq. NaOH solution was added to the reaction mixture. The reaction mixture was stirred at that temperature for 3 h. The progress of the reaction was monitored by TLC. After completion of

the ethyl ester hydrolysis reaction, EtOH was removed under a *vacuum*. The residue was acidified with 5 % aq. HCl solution (25 ml). The hydrolyzed acid product (8) was extracted with ethyl acetate (40 x 3). The extracted ethyl acetate solution was washed with brine (100 ml) solution. The organic layer was then dried over anhydrous Na_2SO_4 and the product was concentrated under reduced pressure.

Scheme S8: Synthesis of Boc-NH-(E, E)- $\alpha\beta$, $\gamma\delta$ -unsaturated ε -Phenylalanine Acid (8).

V) Boc deprotection and Fmoc protection reaction: The Boc-NH-(*E*, *E*)- $\alpha\beta$, γδ-unsaturated ε -Phenylalanine acid (8) (5 mmol) was dissolved in 4 mL of DCM and then 10 mL of TFA was added to the reaction mixture at 0 °C. After 1 h, TFA was removed under a *vacuum*. The residue was dissolved in 15 mL of 10% NaHCO₃ (adjusts pH to ~8). The solution of Fmoc-OSu (5 mmol) in 22 mL of THF was added slowly to the reaction mixture and stirred overnight at room temperature. After completion of the reaction, the reaction mixture was acidified with 5% aq. HCl solution and extracted with ethyl acetate (30 x 3). The extracted ethyl acetate solution was washed with brine (100 ml) solution. The organic layer was then dried over anhydrous Na₂SO₄ and the product was concentrated under reduced pressure to give the white solid product of Fmoc-NH-(*E*, *E*)- $\alpha\beta$, γδ-unsaturated ε -Phenylalanine acid (9) in 79% yields, which were directly used for solid-phase peptide synthesis without further purifications.

Scheme S9: Synthesis of Fmoc-NH-(E, E)- $\alpha\beta$, $\gamma\delta$ -unsaturated ϵ -Phenylalanine Acid (9).

C) Synthesis of Fmoc-NH-3,3-Dimethyl-Butanoic Acid (Fmoc-Adb)³ (11):

Boc-NH-3,3-Dimethyl-Butanoic Acid (Boc-Adb) (10) was synthesized using our reported protocol.³ Briefly, Ethyl 3,3-dimethyl acrylate (10 mmol) was dissolved in neat nitromethane (50 mmol) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) base (15 mmol) were added. The reaction mixture was heated at 60 °C overnight. After completion of the reaction, nitromethane was evaporated under reduced pressure. The residue is acidified with 20 % aq. HCl solution. The acidic aqueous layer was extracted with ethyl acetate (40 x 3). The extracted ethyl acetate solution was washed with brine (100 ml) solution, and then dried over anhydrous Na₂SO₄ and the product was concentrated under reduced pressure.

The product, 3,3-dimethyl-4-nitro-butyric acid ethyl ester (1.5 g, 8 mmol) and activated Pd/C (20% by weight) in MeOH (18 mL) and acetic acid (3 mL) was stirred at room temperature in the presence of hydrogen. After completion of the reaction (24 h), Pd/C was filtered through the pad of celite and the filtrate was concentrated under reduced pressure to get 4,4-dimethyl-2-pyrrolidinone as oil. The amide NH group of 4,4-dimethyl-2-pyrrolidinone was further protected with the Boc group and then hydrolyzed using NaOH in MeOH to get the final product Boc-NH-3,3-Dimethyl-Butanoic Acid (Boc-Adb) (10) (1.38 g, 75%).

Scheme S10: Synthesis of Boc-NH-3,3-Dimethyl-Butanoic Acid (Boc-Adb) (10)³.

4-((tert-butoxycarbonyl)amino)-3,3-dimethylbutanoic acid (10):

¹**H NMR** (400 MHz, Chloroform-*d*) δ 4.99 (t, J = 7.0 Hz, 1H, NH), 3.06 (d, J = 6.9 Hz, 2H, -NH-γCH₂-), 2.23 (s, 2H, -αCH₂-COOH), 1.44 (s, 9H, *Boc*), 1.00 (s, 6H, -C(CH₃)₂). ¹³**C NMR** (101 MHz, CDCl₃) δ 175.91, 157.13, 80.04, 77.35, 77.04, 76.72, 49.71, 44.05, 34.99, 28.34, 25.61. **HRMS** (ESI-QTOF) m/z calculated value for C₁₁H₂₁NO₄ is [M+Na] 254.1368 and observed 254.1359. **Boc deprotection and Fmoc protection reaction:** Boc-NH-3,3-Dimethyl-Butanoic Acid (Boc-Adb) (10) (5 mmol) was dissolved in 4 mL of DCM and then 10 mL of TFA was added to the reaction mixture at 0 °C. After 1 h, TFA was removed under a *vacuum*. The residue was dissolved in 15 mL of 10% NaHCO₃ (adjusts pH to ~8). The solution of Fmoc-OSu (5 mmol) in 22 mL of THF was added slowly to the reaction mixture and stirred overnight at room temperature. After completion of the reaction, the reaction mixture was acidified with 5% aq. HCl solution and extracted with ethyl acetate (30 x 3). The extracted ethyl acetate solution was washed with brine (100 ml) solution. The organic layer was then dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give the white solid product, Fmoc-NH-3,3-Dimethyl-Butanoic Acid (Fmoc-Adb) (11). which were directly used for solid-phase peptide synthesis without further purifications.

Scheme S11: Synthesis of Fmoc-NH-3,3-Dimethyl-Butanoic Acid (Fmoc-Adb) (11).

7) General procedure for the solid phase synthesis of peptides P1-P3:

Peptides were synthesized at 0.2 mmol scales on Knorr-Amide resin using standard Fmocchemistry. HBTU/HOBT was used as a standard coupling reagent. To avoid Michael addition of HOBT, we carried out-coupling reactions of *E*-vinylogous γ -amino acids only with HBTU.⁷ Reaction time for Fmoc-deprotections and couplings of amino acids were 45 min and 1.5 h, respectively. The final Fmoc-deprotected amine was acylated using Acetic anhydride and pyridine base (Ac₂O/Py). After completion of the synthesis, peptides were

cleaved from the resin using 20 mL of TFA/TIPS/Phenol/H₂O (88:2:5:5). After peptide cleavage, the resin was filtered out using the sintered funnel. The filtrate (which contains peptide) was evaporated under reduced pressure to give the crude peptide products. Peptides were further precipitated out using cold diethyl ether and purified through reverse phase HPLC on the C-18 column using MeOH/H₂O gradient. The purity of peptides was further confirmed using an analytical C-18 column in the same MeOH/H₂O gradient system. The mass of peptides was confirmed by MALDI TOF/TOF.

8) 2D-NMR (TOCSY & ROESY) analysis and NOE correlations with solid state structure of peptides P1-P3.

(The 2D-NMR analysis of Peptides P1 and P2 was conducted in both CD₃OH and CDCl₃. However, due to insolubility of peptide P3 in CDCl₃, it was analysed only in CD₃OH. The NMR analysis of Peptides P1, P2 and P3 in CD₃OH are provided first, followed by the NMR data acquired in CDCl₃.)

8.1) Peptide P1 2D-NMR (TOCSY & ROESY) analysis in CD₃OH:

Figure S4: ¹H NMR spectrum of peptide P1 in CD₃OH.

¹**H NMR (600 MHz, CD₃OH)** δ 8.56 (d, *J* = 8.5 Hz, 1H), 8.24 (s, 1H), 8.15 (s, 1H), 8.06 (s, 1H), 8.05 (s, 1H), 8.00 (d, *J* = 5.7 Hz, 1H), 7.59 (d, *J* = 9.7 Hz, 1H), 7.38 (d, *J* = 9.6 Hz, 1H), 7.21 – 7.09 (m, 10H_{Aromatic}), 6.93 (dd, *J* = 15.3, 5.4 Hz, 1H), 6.73 (s, 1H), 6.13 (dd, *J* = 15.3, 5.4 Hz, 1H), 6.73 (s, 1H), 6.13 (dd, *J* = 15.3, 5.4 Hz, 1H), 6.73 (s, 1H), 6.13 (dd, *J* = 15.3, 5.4 Hz, 1H), 6.73 (s, 1H), 6.13 (dd, *J* = 15.3, 5.4 Hz, 1H), 6.73 (s, 1H), 6.13 (dd, *J* = 15.3, 5.4 Hz, 1H), 6.73 (s, 1H), 6.13 (dd, *J* = 15.3, 5.4 Hz, 1H), 6.73 (s, 1H), 6.13 (dd, *J* = 15.3, 5.4 Hz, 1H), 6.73 (s, 1H), 6.13 (dd, *J* = 15.3, 5.4 Hz, 1H), 6.73 (s, 1H), 6.13 (dd, *J* = 15.3, 5.4 Hz, 1H), 6.73 (s, 1H), 6.13 (dd, *J* = 15.3, 5.4 Hz, 1H), 6.73 (s, 1H), 6.13 (dd, *J* = 15.3, 5.4 Hz, 1H), 6.73 (s, 1H), 6.13 (dd, *J* = 15.3, 5.4 Hz, 1H), 6.73 (s, 1H), 6.13 (dd, *J* = 15.3, 5.4 Hz, 1H), 6.73 (s, 1H), 6.13 (dd, *J* = 15.3, 5.4 Hz, 1H), 6.73 (s, 1H), 6.13 (dd, *J* = 15.3, 5.4 Hz, 1H), 6.73 (s, 1H), 6.13 (dd, *J* = 15.3, 5.4 Hz, 1H), 6.73 (s, 1H), 6.13 (dd, *J* = 15.3, 5.4 Hz, 1H), 6.73 (s, 1H), 6.13 (s, 1H), 6.14 (s, 1H), 6.14 (s, 1H), 6.14 (s, 1H), 6.14

1.8 Hz, 1H), 4.21 (m, 1H), 4.16 (m, 1H), 4.10 (m, 1H), 4.07 (m, 1H), 2.79 (dd, J = 13.7, 5.2 Hz, 2H), 2.64 (dd, J = 13.7, 9.9 Hz, 1H), 2.61 (dd, J = 13.7, 9.4 Hz, 1H), 2.45 (ddd, J = 14.3, 11.8, 4.7 Hz, 1H), 2.33 (m, 1H), 2.20 (dt, J = 14.3, 4.7 Hz, 1H), 2.08 (m, 1H), 2.03 (m, 1H), 2.00 (m, 1H), 1.93 (s, 3H), 1.88 (m, 1H), 1.62 (m, 1H), 1.55 (m, 1H), 1.38 (d, J = 7.3 Hz, 3H), 1.35 (s, 3H), 1.34 (s, 3H), 1.26 (s, 3H), 1.17 (s, 3H), 1.15 (s, 3H), 1.14 (s, 3H), 0.97 (d, J = 6.7 Hz, 3H), 0.93 (d, J = 6.7 Hz, 3H). **MALDI (TOF/TOF)** *m/z* calculated value for C₄₆H₆₈N₈O₈ [M+Na⁺] is 883.5052 and observed at 883.5010.

Residues	NH	αCH	βCH	γСН	δCH	εСН	CH _{term}
(N-Terminus)-							
COCH ₃	_	_	_	_	_	_	1.93
Aib(1)	8.15		1.17 (3H)		_	_	
			1.14 (3H)				
γPhe(2)	7.38	2.45 (1H)	2.08 (1H)	4.07	Benzylic	Aromatic	_
		2.20 (1H)	1.62 (1H)		2.79(1H)	7.21-7.09	
					2.64 (1H)	(5H)	
Ala(3)	8.00	4.16	1.38 (3H)	_	_	_	_
dγVal(4)	8.56	6.13	6.93	4.21	1.88	0.97 (3H)	
						0.93 (3H)	
Aib(5)	8.24	_	1.26 (3H)	_	_	_	_
			1.15 (3H)				
γPhe(6)	7.59	2.33 (1H)	2.00 (1H)	4.10	Benzylic	Aromatic	_
		2.03 (1H)	1.55 (1H)		2.79 (1H)	7.21-7.09	
					2.61 (1H)	(5H)	
Aib(7)	8.05	_	1.35 (3H)	_	_	_	_
			1.34 (3H)				
-NH ₂	8.06 ^[a]	_	—	_	_	_	—
(C-Terminus)	6.73 ^[b]						

Table S7. ¹H NMR Chemical Shifts (ppm) of **P1** in **CD₃OH** at 298 K.

^[a] CONH₂ Proton involved in Hydrogen bonding. ^[b] CONH₂ Proton is not involved in Hydrogen bonding. Aromatic protons are shown in ₆CH column. Chemical shift assigned by using TOCSY and ROESY spectra.

S25

Assignment of chemical shifts using TOCSY and ROESY spectra

The amino acid residues and their positions in the peptide sequence were identified using TOCSY and ROESY spectra, respectively.

The TOCSY spectrum was used to identify amino acids in the sequence of the peptides.

A) Partial TOCSY spectrum analysis of peptide P1 in CD₃OH

Below partial TOCSY spectrum showing the amino acid residues in peptide P1

Figure S5: (A) Partial TOCSY spectrum (NH vs α , β , γ , Backbone & Side Chain protons) of peptide **P1** showing correlation between intra residue protons.

B) Partial ROESY spectrum analysis of Peptide P1 in CD₃OH.

Below ROESY spectrums (B1) and (B2) depicting the NH \leftrightarrow NH, NH \leftrightarrow chiral C_aH, C_yH interactions respectively. The inter and intra-residue NOEs are marked with green and black labels respectively.

Figure S6: (B1) NH vs NH region of peptide P1 ROESY spectrum in CD₃OH. (B2) NH vs Chiral α , and γ protons region in ROESY spectrum of peptide P1 in CD₃OH. (B3) Crystal structure of peptide P1 depicting the distance between inter residue NOE corresponding protons in the ROESY spectrum (B1) and (B2). (inter-residue NOEs marked with green labels in the ROESY spectrum (B1) and (B2)).

C) List	of Inter-res	sidue NO	Es (marked v	with green la	abels) in partial	ROESY s	spectrum				
	(B1) and (B2) of peptide P1 in CD ₃ OH.										
Residue	H-atom	Residu e	H-atom	NOE observed	Type of NOE	Protons Region	Distance in crystal structure (Å)				
Aib (1)	NH	γPhe (2)	NH	Strong	NH/NH (1/2)		2.88				
γPhe (2)	NH	Ala (3)	NH	Very Weak	NH/NH (2/3)		4.07				
Ala (3)	NH	(E)- dγVal (4)	NH	Strong	NH/NH (3/4)		2.66				
Aib (5)	NH	γPhe (6)	NH	Strong	NH/NH (5/6)		2.9				
γPhe (6)	NH	Aib (7)	NH	Weak	NH/NH (6/7)		3.83				
Aib (7)	NH	CONH ₂ (8)	NH (Intra H- Bonded)	Strong (at Diagonal)	NH/NH (7/8)		2.76				
Aib (7)	NH	(9)	NH	Medium (Merged in Tocsy Signal)	NH/NH (7/9)	(Inter-	4.09				
(E)-dγVal	α CH	Aib (5)	NH	Very	αCH/NH (4/5)	Residue	2.34				
(4)	(Backbone)			Strong		NOE)					
(<i>E</i>)-dγVal (4)	α CH (Backbone)	Aib (6)	NH	Very Weak	αCH/NH (4/6)	NH vs NH	4.35				
γPhe (2)	Phenyl (o	(<i>E</i>)-	β СН	Strong	Ph(o &	region	2.64 (ortho)				
	& m) CH (side-chain)	dγVal (4)	(Backbone)		m)/βCH (2/4)	(Fig. S5: B1)	3.18 (meta)				
(E)-dγVal	β CH	Aib (5)	NH	Medium	βCH/NH (4/5)		4.27				
(4)	(Backbone)										
(<i>E</i>)-dγVal (4)	β CH (Backbone)	Aib (7)	NH	Medium	βCH/NH (4/7)		3.7				
γPhe (6)	Phenyl (ortho) CH	CONH ₂ (8)	NH (intra H- Bonded)	Medium	Ph(o)/NH (6/8)		3.29 (ortho)				

Table S8: NOEs Observed in NH \leftrightarrow NH and NH \leftrightarrow C_aH/ C_bH /C_yH Region of Peptide P1 in CD₃OH and the distance observed between respective protons in its crystal structure.

	(side-chain)								
γPhe (6)	Phenyl (ortho) CH	CONH ₂ (9)	NH	Medium	Ph(o)/NH (6/9)	I		3.71 (ortho)	
	(side-chain)								
Aib (5)	NH	γPhe	Phenyl	Very Weak))		6.42	
		(6)	(ortho) CI		(5/6)				
			(side-chain	·					
CONH ₂ (9)	NH	γPhe	γ CH	Medium	NH /γCH	[(9/6)	(Inter-		
		(6)	(Backbone	·			Residu		
CONH ₂ (8)	NH (intra	γPhe	γ CH	Very	NH /γCH	[(8/6)	NOE)	2.36	
	H-Bonded)	(6)	(Backbone	-		_	NH vs	·	
(E) -d γ Val	NH	Ala (3)	αCH	Strong	NH /αCH	I	& a CI	0.0.1	
(4)			(Backbone	·	(4/3)		region (Fig. S5		
(E) -d γ Val	NH	γPhe	γ CH	Strong	ΝΗ /γCΗ	l (4/2)	(Fig. 55 B2)	2.77	
(4)		(2)	(Backbone	·		0.5.0			
				lack labels) i	n partial F	ROES	Y spectr	um (B1) and	
(B2) of pe	ptide P1 in (CD ₃ OH.							
Residue	H-ato	m	Residue	H-atom	NOE	Protons		Distance in	
					observed	Re	gion	crystal	
								structure (Å)	
(E) -d γ Val (,)-dγVal (4)	NH	Strong			4.43	
	(Backbo						-		
(<i>E</i>)-d γ Val ()-dγVal (4)	NH	Strong			2.97	
	(Backbo			0.011		-			
(E) -d γ Val ()-dγVal (4)	β CH	Very		tra-	2.69	
D1 (2)	(Backbo		D1 (2)	(Backbone)	Strong		sidue	2.02.8.4.77	
γPhe (2)	NH		γPhe (2)	Phenyl (ortho) CH	Strong		OE) vs NH	3.03 & 4.77	
				(ortilo) CH (side-chain)			gion	(ortho)	
γPhe (6)	NH		γPhe (6)	Phenyl	Medium		_	3.83 &4.19	
γ1 ne (0)			71 nc (0)	(ortho) CH	wicululli	(Fig. S5: B1)		(ortho)	
CONH ₂ (8	CONH ₂ (8) NH		CONH ₂	NH	Strong			1.48	
001112(0	(Intra H-		(9)	1111	Suong			1.70	
	Bonde		(~)						
(E)-dγVal ()-dγVal (4)	ү СН	Strong			2.31	
			/	(Backbone)					
		1			1				
(E)-dγVal (β CH 	(E)-dγVal (4)	ү СН	Strong			2.84	

γPhe (2)	Phenyl	γPhe (2)	ү СН	Very		3.96 & 2.79
	(o & m) CH		(Backbone)	Strong		(ortho)
	(side-chain)					4.54 & 5.38
						(meta)
γPhe (6)	Phenyl	γPhe (6)	ү СН	Very	(Intra-	2.38 & 4.62
	(o & m) CH		(Backbone)	Strong	Residue	(ortho)
	(side-chain)				NOE)	4.67 &6.16
					NH vs γ & α	(meta)
γPhe (2)	NH	γPhe (2)	ү СН	Medium	CH region	2.75
			(Backbone)		(Fig. S5:	
γPhe (6)	NH	γPhe (6)	ү СН	Medium	B2)	2.75
			(Backbone)			
Ala (3)	NH	Ala (3)	α CH	Strong		2.56
			(side-chain)			
(E) -d γ Val (4)	NH	(<i>E</i>)-d γ Val (4)	ү СН	Strong		2.76
			(Backbone)			

8.2) Peptide P2 2D-NMR (TOCSY & ROESY) analysis in CD₃OH:

Figure S7: ¹H NMR spectrum of peptide P2 in CD₃OH.

¹**H** NMR (600 MHz, CD₃OH) δ 8.75 (d, J = 8.5 Hz, 1H), 8.31 (s, 1H), 8.29 (d, J = 6.3 Hz, 1H), 8.17 (d, J = 5.0 Hz, 1H), 8.16 (s, 1H), 8.15 (s, 1H), 8.14 (s, 1H), 8.11 (s, 1H), 8.00 (d, J = 9.8 Hz, 1H), 7.97 (s, 1H), 7.49 (d, J = 9.7 Hz, 1H), 7.46 (d, J = 9.9 Hz, 1H), 6.98 (dd, J = 15.2, 4.3 Hz, 1H), 6.71 (s, 1H), 6.15 (dd, J = 15.2, 2.0 Hz, 1H), 4.28 (m, 1H), 4.25 (m, 1H), 4.15 (m, 1H), 3.94 (m, 1H), 3.87 (m, 1H), 3.67 (m, 1H), 3.54 (m, 1H), 2.61 (ddd, J = 14.3, 12.3, 4.2 Hz, 1H), 2.42 (m, 1H), 2.32 (m, 1H), 2.22 (m, 1H), 2.15 (dt, J = 12.3, 3.4 Hz, 1H), 2.11 (m, 1H), 2.09 (m, 1H), 2.07 (m, 1H), 2.05 (m, 1H), 2.03 (m, 1H), 2.00 (s, 3H), 1.99 (s, 1H), 1.98 (m, 1H), 1.96 (m, 1H), 1.79 (m, 1H), 1.71 (m, 1H), 1.69 (m, 1H), 1.67 (m, 1H), 1.65 (m, 2H), 1.61 (m, 1H), 1.56 (m, 2H), 1.51 (m, 1H), 1.38 (s, 3H), 1.47 (s, 3H), 1.466 (s, 6H), 1.46 (br, 1H), 1.45 (s, 3H), 1.44 (s, 6H), 1.41 (m, 2H), 1.38 (s, 3H), 1.28 (s, 3H), 1.23 (m, 1H), 1.11 (m, 1H), 1.04 (d, J = 4.7 Hz, 3H), 1.02 (d, J = 4.7 Hz, 3H), 0.99 (d, J = 6.6 Hz, 3H), 0.93 (d, J = 6.6 Hz, 3H), 0.91 (d, J = 4.5 Hz, 3H), 0.91 (d, J = 4.5 Hz, 3H), 0.89 (d, J = 6.5 Hz, 3H), 0.74 (d, J = 6.4 Hz, 3H). MALDI (TOF/TOF) *m*/*z* calculated value for C₆₄H₁₁₆N₁₂O₁₂ [M+Na⁺] is 1267.87 and observed at 1267.94.

Residues	NH	αCH	βCH	γCH	δCH	εСН	ζСН	CH _{term}
-COCH ₃		_				_	_	2.00
Aib(1)	8.31	—	1.466(6H)	—	—	—	—	—
γ Val(2)	7.46	2.32 (1H)	2.07 (1H)	3.54	1.51	0.90 (3H)	_	_
		2.11 (1H)	1.61 (1H)			0.87 (3H)		
Aib(3)	8.14		1.38 (3H)		_			
			1.28 (3H)					
γLeu(4)	8.17	2.61 (1H)	2.05 (1H)	3.87	1.56 (1H)	1.11 (1H)	0.85(3H)	
		2.15(1H)	1.67 (1H)				0.74(3H)	
Ala(5)	8.16	4.15 (1H)	1.45 (3H)	—	—	—	_	_
$d\gamma Val(6)$	8.75	6.15 (1H)	6.98 (1H)	4.28	2.03 (1H)	1.04 (3H)	—	_
						1.02 (3H)		
Leu(7)	8.29	4.25 (1H)	1.65 (2H)	1.79	0.99 (3H)	_	_	_
					0.93 (3H)			
γLeu(8)	7.49	2.22 (1H)	1.98 (1H)	3.94	1.41 (2H)	1.23 (1H)	0.89(3H)	_
		2.09 (1H)	1.46 (1H)				0.84(3H)	
Aib(9)	8.11	—	1.48 (3H)	—	_	—	—	—
			1.47 (3H)					
γ Val(10)	8.00	1.99 (1H)	1.96 (1H)	3.67	1.69 (1H)	0.91 (3H)		
		1.99 (1H)	1.71 (1H)			0.91 (3H)		
Aib(11)	7.97	—	1.44 (6H)	—	_	—	—	—
-NH ₂	8.15 ^[a]	—	—	—	—	—	—	—
	6.71 ^[b]							

Table S9. ¹H NMR Chemical Shifts (ppm) of **P2** in **CD₃OH** at 298 K.

^{[a] CONH}₂ Proton involved in Hydrogen bonding. ^{[b] CONH}₂ Proton is not involved in Hydrogen bonding. Chemical shift assigned by using TOCSY and ROESY spectra.

Assignment of chemical shifts using TOCSY and ROESY spectra

The amino acid residues and their positions in the peptide sequence were identified using TOCSY and ROESY spectra, respectively.

The TOCSY spectrum was used to identify amino acids in the sequence of the peptides.

A) Partial TOCSY spectrum analysis of peptide P2 in CD₃OH.

Below partial TOCSY spectrum showing the amino acid residues in peptide P2.

Figure S8: (A1) Partial TOCSY spectrum (NH vs α , β , γ & Backbone protons) of peptide P2 showing correlation between intra residue protons.

B) Partial ROESY spectrum analysis of Peptide P2 in CD₃OH.

Below ROESY spectrums (B1) and (B2) depicting the NH \leftrightarrow NH, NH \leftrightarrow chiral C_aH, C_yH interactions respectively. The inter and intra-residue NOEs are marked with green and black labels respectively.

S35

Figure S9: (B1) NH vs NH region of peptide P2 ROESY spectrum in CD₃OH. (B2) NH vs Chiral α , and γ protons region in ROESY spectrum of peptide P2 in CD₃OH. (B3) Crystal structure of peptide P2 depicting the distance between inter residue NOE corresponding protons in the ROESY spectrum (B1) and (B2). (inter-residue NOEs marked with green labels in the ROESY spectrum (B1) and (B2)).

Table S10: NOEs Observed in NH \leftrightarrow NH and NH \leftrightarrow C_aH/C_bH/C_bH/C_bH Region of Peptide P2 in CD₃OH and the distance observed between respective protons in its crystal structure.

C) List	C) List of Inter-residue NOEs (marked with green labels) in partial ROESY spectrum										
	(B1) and $(B2)$ of peptide P2 in CD ₃ OH.										
Residue	esidue H-atom Residue H-atom NOE Type of NOE Protons Dista										
	observed						in crystal				
							structure				
							(Å)				
Aib (1)	NH	γVal (2)	NH	Strong	NH/NH (1/2)		2.69				
γVal (2)	NH	Aib (3)	NH	Weak	NH/NH (2/3)		3.62				
Aib (3)	NH	γLeu (4)	NH	Strong	NH/NH (3/4)		2.79				

				(-1			
				(at			
				Diagonal)			
γLeu (4)	NH	Ala (5)	NH	Weak	NH/NH (4/5)		3.79
				(at			
				Diagonal)			
Ala (5)	NH	(<i>E</i>)-	NH	Strong	NH/NH (5/6)		2.69
		dγVal (6)					
Leu (7)	NH	γLeu (8)	NH	Very	NH/NH (7/8)		2.64
				Strong			
γLeu (8)	NH	Aib (9)	NH	Very Weak	NH/NH (8/9)		3.52
Aib (9)	NH	γVal (10)	NH	Strong	NH/NH (9/10)		2.80
γVal (10)	NH	Aib (11)	NH	Weak	NH/NH	(Inter-	3.63
				(at	(10/11)	Residue	
				Diagonal)		NOE)	
Aib (11)	NH	CONH ₂	NH (intra H-	Strong	NH/NH	NH vs	2.80
		(12)	Bonded)		(11/12)	NH	
Aib (11)	NH	CONH ₂	NH	Weak	NH/NH	region	4.16
		(13)			(11/13)	(Fig. S7:	
Leu (7)	NH	(<i>E</i>)-	β CH	Weak	NH/βCH	B1)	4.24
		dyVal (6)	(Backbone)		(7/6)		
Aib (9)	NH	(<i>E</i>)-	β CH	Very Weak	NH/βCH		3.77
		dyVal (6)	(Backbone)		(9/6)		
Leu (7)	NH	(<i>E</i>)-	α CH	Very	NH/ αCH		2.38
		dγVal (6)	(Backbone)	Strong	(7/6)		
γLeu (8)	NH	(<i>E</i>)-	α CH	Very Weak	NH/ αCH		4.14
		dγVal (6)	(Backbone)		(8/6)		
(E)-dyVal	NH	γLeu (4)	γ CH	Strong	NH/ yCH (6/4)	(Inter-	3.17
(6)			(Backbone)			Residue	
(E)-dyVal	NH	Ala (5)	α CH	Strong	NH/ αCH	NOE)	3.3
(6)			(Backbone)	_	(6/5)	NH vs γ	
Leu (7)	NH	γLeu (4)	ү СН	Weak	NH/ γCH (7/4)	& a CH	3.5
			(Backbone)			region	
γLeu (4)	NH	γVal (2)	ү СН	Very	NH/ yCH (4/2)	(Fig. S7:	2.65
			(Backbone)	Strong		B2)	
Ala (5)	NH	γVal (2)	ү СН	Very Weak	NH/ yCH (5/2)		4.02
			(Backbone)				
CONH ₂	NH (intra	γVal (10)	ү СН	Very	NH/ yCH		2.66
		,			,		

3.38 3.37 3.43 2.526 4.06
3.37 3.43 2.526
3.43 2.526
3.43 2.526
2.526
2.526
4.06
4.06
3.38
3.38
4.94
2.61
3.61
2.01
2.91
4.456
1.150
(B1) and
(<u>-</u> -) und
istance in
crystal
ucture (Å)
ructure (Å) 2.57
2.57

Strong

(13)

	(Intra H- Bonded)				(Fig. S7: B1)	
(<i>E</i>)-dγVal (6)	α CH	(<i>E</i>)-dγVal (6)	β СН	Very		2.76
	(Backbone)		(Backbone)	Strong		
(<i>E</i>)-dγVal (6)	NH	(<i>E</i>)-dγVal (6)	ү СН	Strong		2.78
			(Backbone)			
Leu (7)	NH	Leu (7)	α CH	Strong		2.70
			(Backbone)			
γLeu (4)	NH	γLeu (4)	ү СН	Very		2.80
			(Backbone)	Strong		
Ala (5)	NH	Ala (5)	α CH	Strong	(Intra-	2.68
			(Backbone)		Residue	
γVal (10)	NH	γVal (10)	ү СН	Very	NOE)	2.79
			(Backbone)	Strong	NH vs	
γVal (2)	NH	γVal (2)	ү СН	Strong	chiral γ & α	2.78
			(Backbone)		CH region	
γLeu (8)	NH	γLeu (8)	ү СН	Very	(Fig. S7:	2.77
			(Backbone)	Strong	B 2)	
(<i>E</i>)-dγVal (6)	β СН	(<i>E</i>)-dγVal (6)	ү СН	Very		2.44
	(Backbone)		(Backbone)	Strong		
(<i>E</i>)-dγVal (6)	α CH	(<i>E</i>)-dγVal (6)	ү СН	Medium		3.29
	(Backbone)		(Backbone)			

8.3) Peptide P3 2D-NMR (TOCSY & ROESY) analysis in CD₃OH:

P3

Figure S10: ¹H NMR spectrum of peptide P3 in CD₃OH.

1H NMR (600 MHz, CD₃OH) δ 8.50 (d, *J* = 8.5 Hz, 1H), 8.39 (s, 1H), 8.32 (s, 1H), 8.23 (s, 1H), 7.83 (t, *J* = 7.2 Hz, 1H), 7.78 (s, 1H), 7.60 (s, 1H), 7.42 (d, *J* = 8.0 Hz, 2H), 7.37 (d, *J* = 11.0 Hz, 1H), 7.23 (dt, *J* = 7.9, 3.7 Hz, 3H), 7.15 (m, 1H), 6.75 (s, 1H), 6.59 (m, 1H), 6.14 (m, 1H), 6.10 (m, 1H), 4.62 (s, 1H), 3.91 (m, 1H), 3.13 (t, *J* = 6.6 Hz, 1H), 3.07 (t, *J* = 6.6 Hz, 1H), 2.99 – 2.96 (m, 1H), 2.95 – 2.93 (m, 1H), 2.46 – 2.39 (m, 1H), 2.08 (s, 2H), 2.04 (br, 1H), 1.99 (s, 3H), 1.53 (s, 3H), 1.51 (s, 3H), 1.50 (s, 3H), 1.48 (s, 3H), 1.47 (s, 6H), 1.43 – 1.42 (m, 4H), 1.37 (s, 3H), 1.11 (m, 1H), 1.02 (s, 3H), 0.97 (s, 3H), 0.96 (s, 3H), 0.84 (m, 3H), 0.81 (m, 3H). **MALDI (TOF/TOF)** *m/z* calculated value for C₄₅H₇₂N₈O₈ [M+Na⁺] is 875.60 and observed at 875.68.

Residues	NH	αCH	βCH	γСН	δCH	εCH	CH _{term}
-COCH ₃	_	—	_	—		_	1.99(3H)
Aib(1)	8.39		1.53 (3H))			_
			1.51 (3H))			

Table S11. ¹H NMR Chemical Shifts (ppm) of **P3** in **CD₃OH** at 298 K.

γLeu(2)	7.37	2.43(1H)	1.42(2H)	3.91(1H)	1.42(1H)	1.42(1H)	Sidechain
		2.04(1H)			1.11(1H)		0.84(3H)
							0.81(3H)
Aib(3)	7.78	_	1.37 (3H)	_	_	_	_
			1.02 (3H)				
ddePhe(4)	8.50	6.10(1H)	7.15(1H)	6.59(1H)	6.14(1H)	4.62(1H)	Benzylic
							2.98(1H)
							2.94(1H)
							Aromatic
							7.42 (O) 7.23(M,P)
Aib(5)	8.32	_	1.50 (3H)	_	_	_	
			1.48 (3H)				
γAdp(6)	7.83	2.08(2H)	Sidechain	3.13(1H)	_	—	_
			0.97 (3H)	3.07(1H)			
			0.96 (3H)				
Aib(7)	8.23	_	1.47 (6H)	_	_	_	_
-NH ₂	7.60 ^[a]	_	_	_	_	_	_
	6.75 ^[b]						

^[a] CONH₂ Proton involved in Hydrogen bonding. ^[b] CONH₂ Proton is not involved in Hydrogen bonding. Aromatic protons are shown in CH_{term} column. Chemical shift assigned by using TOCSY and ROESY spectra.

Assignment of chemical shifts using TOCSY and ROESY spectra

The amino acid residues and their positions in the peptide sequence were identified using TOCSY and ROESY spectra, respectively.

The TOCSY spectrum was used to identify amino acids in the sequence of the peptides.

A) Partial TOCSY spectrum analysis of peptide P3 in CD₃OH.

Below partial TOCSY spectrum showing the amino acid residues in peptide P3.

Figure S11: (A) Partial TOCSY spectrum (NH vs α , β , γ , Backbone & Side Chain protons) of peptide **P3** showing correlation between intra residue protons.

B) Partial ROESY spectrum analysis of Peptide P3 in CD₃OH.

Below partial ROESY spectrum (**B1**) depicting the NH \leftrightarrow NH, NH \leftrightarrow C_aH/ C_bH /chiral C_yH interactions respectively. The inter and intra-residue NOEs are marked with green and black labels respectively.

Figure S12: (**B1**) is the partial ROESY spectrum of peptide **P3** in **CD₃OH** showing sequential NOEs of NH \leftrightarrow NH and NH \leftrightarrow C_{α}H/ C_{β}H /chiral C_{γ}H. (**B2**) Crystal structure of peptide **P3** depicting the distance between inter residue NOE corresponding protons in the ROESY spectrum (B1). (inter-residue NOEs marked with green labels in the ROESY spectrum (B1)).

Table S12: NOEs Observed in NH \leftrightarrow NH and NH \leftrightarrow C_aH/C_bH /chiral C_yH region of Peptide P3 and the distance observed between respective protons in its crystal structure.

C) List of Inter-residue NOEs (marked with green labels) in partial ROESY spectrum (B1) of peptide P3 in CD₃OH.

Residue	H-	Residue	H-	NC)E	Type o	of NOE	P	rotons	Dist	ance in
	atom		atom	obser	rved			R	egion	crystal	structure
											(Å)
Aib (1)	NH	γLeu (2)	NH	We	eak	NHi↔	NHi+1	(]	Inter-	2	2.75
γLeu (2)	ү СН	Aib (3)	NH	We	eak	γCHi↔	NHi+1	R	esidue	3	3.67
γLeu (2)	у СН	(<i>E</i> , <i>E</i>)-	NH	Stro	ong	γCHi↔	NHi+2	N	NOE)	2	2.84
		ddePhe (4)						N	IH vs		
γLeu (2)	у СН	(<i>E</i> , <i>E</i>)-	у СН	Stro	ong	γCHi↔	yCHi+2	NI	I/CaH/	2	2.90
		ddePhe (4)						CβH	I /chiral		
γLeu (2)	у СН	(<i>E</i> , <i>E</i>)-	αCH	We	eak	γCHi↔	aCHi+2	СуН	I region	3	3.82
		ddePhe (4)						(F	ig. S9:		
Aib (3)	NH	(<i>E</i> , <i>E</i>)-	NH	Med	ium	NH <i>i</i> ↔NH <i>i</i> +1		-	B1)	2	2.73
		ddePhe (4)									
(<i>E</i> , <i>E</i>)-	αCH	Aib (5)	NH	Stro	ong	αCHi↔	NHi+1	-	-	2	2.32
ddEPhe											
(4)											
Aib (5)	NH	Adb (6)	NH	We	eak	NHi↔	NHi+1	-	-	2	2.73
Adb (6)	у СН	Aib (7)	NH	Med	ium	γCHi↔	NHi+1	-		2	3.17
Adb (6)	у СН	CONH ₂	NH	We	eak	γCHi↔	NHi+2	-	-		2.6
		(NH8)									
D) Intra	a-residu	ie NOEs (1	marked	with l	black	labels)	in partia	al R(DESY sp	ectrum	(B1) o
peptide l	P 3 in C	D ₃ OH.									
Residu	e	H-atom	Resid	ue	H	atom	NOE		Protons	Di	stance in
							observe		Region		crystal
									5		ucture (Å
γLeu (2	2)	у СН	γLeu ((2)		NH	Strong	ŗ,	(Intra-		2.77
(E,E)-dda	Phe E	Benzyl CH ₂	(E,E)-dd	<i>EPhe</i>		NH	Strong	ŗ.	Residue		2.66
	1						-				

(E,E) -dd ε Phe	Benzyl CH ₂	(E,E) -dd ε Phe	Phenyl (o) H	Very	NH vs	2.30
(4)		(4)		Strong	NH/CaH/	
(E,E) -dd ε Phe	Benzyl CH ₂	(E,E) -dd ε Phe	Phenyl(m&p)	Weak	CβH /chiral	4.51 (m)
(4)		(4)	Н		CγH region	5.57 (p)
(E,E) -dd ε Phe	Benzyl CH ₂	(E,E) -dd ε Phe	у СН	Weak	(Fig. S9:	2.31
(4)		(4)			B1)	
(E,E) -dd ε Phe	Benzyl CH ₂	(E,E) -dd ε Phe	δ CH	Very		2.55
(4)		(4)		Strong		
(E,E) -dd ε Phe	εCH	(E,E) -dd ε Phe	NH	Medium		2.75
(4)		(4)				
(E,E) -dd ε Phe	εCH	(E,E) -dd ε Phe	Phenyl (o) H	Strong		2.46
(4)		(4)				
(E,E) -dd ε Phe	εCH	(E,E) -dd ε Phe	Phenyl(m&p)	Weak		5.58(m)
(4)		(4)	Н			5.94(p)
(E,E) -dd ε Phe	εCH	(E,E) -dd ε Phe	у СН	Medium		2.98
(4)		(4)				
(E,E) -dd ε Phe	εCH	(E,E) -dd ε Phe	δ CH	Very		2.58
(4)		(4)		Strong		
(E,E) -dd ε Phe	Phenyl(o) H	(E,E) -dd ε Phe	NH	Medium		3.60
(4)		(4)				
(E,E) -dd ε Phe	у СН	(E,E) -dd ε Phe	NH	Medium		2.75
(4)		(4)				
(E,E) -dd ε Phe	δ CH	(E,E) -dd ε Phe	NH	Weak		3.50
(4)		(4)				
(E,E) -dd ε Phe	β CH	(E,E) -dd ε Phe	δ CH	Very		2.50
(4)		(4)		Strong		
Adb (6)	ү СН	Adb (6)	NH	Very		2.75
				Strong		
CONH ₂ (NH8)	NH	CONH ₂	NH	Very		1.49
		(NH9)		Strong		

8.4) Peptide P1 2D-NMR (TOCSY & ROESY) analysis in CDCl₃:

Figure S13: ¹H NMR spectrum of peptide P1 in CDCl₃.

¹**H NMR** (**600 MHz**, **CDCl**₃) δ 8.51 (d, *J* = 6 Hz, 1H), 8.36 (s, 1H), 7.93 (s, 1H), 7.86 (d, *J* = 6 Hz, 1H), 7.65 (s, 1H), 7.41 (s, 1H), 7.20 (m, 2H_{Aromatic}), 7.15 (m, 4H_{Aromatic}), 7.11 (d, *J* = 7 Hz, 1H), 7.07 (m, 4H_{Aromatic}), 6.96 (d, *J* = 7 Hz, 1H), 6.92 (d, *J* = 15 Hz, 1H), 6.23 (d, *J* = 15 Hz, 1H), 5.31 (s, 1H), 4.23 (m, 1H), 4.12 – 4.07 (m, 3H), 2.75 (t, 1H), 2.70 (t, 1H), 2.65 (t, 1H), 2.57 (t, 1H), 2.43 (m, 1H), 2.22 (br, 1H), 2.17 (br, 1H), 2.11 (br, 1H), 2.08 (br, 1H), 2.05 (br, 1H), 1.95 (s, 3H), 1.86 (m, 1H), 1.69 (br, 1H), 1.54 (s, 1H), 1.51 (s, 3H), 1.45 (s, 9H), 1.33 (s, 3H), 1.19 (s, 3H), 1.15 (s, 3H), 1.04 (d, 3H), 0.97 (d, 3H). **MALDI (TOF/TOF)** *m/z* calculated value for C₄₆H₆₈N₈O₈ [M+Na⁺] is 883.5052 and observed at 883.5010.

Residues	NH	αCH	βCH	γCH	δCH	εCH

Table S13. ¹H NMR Chemical Shifts (ppm) of P1 in CDCl₃ at 298 K.

Residues	NH	αCH	βCH	γCH	δCH	εCH	CH _{term}
-COCH ₃	—	_	—		—		1.95
(N-Terminus)							
Aib(1)	7.65	_	1.33 (3H)		_		_
			1.19 (3H)				

γPhe(2)	7.11	2.43 (1H)	2.08 (1H)	4.07	Benzylic	Aromatic	_
		2.17 (1H)	1.69 (1H)		2.7(1H)	7.2 (P)	
					2.65 (1H)	7.15 (O)	
						7.07 (M)	
Ala(3)	7.86	4.11	1.45 (3H)	—	—	—	—
dyVal(4)	8.51	6.23	6.92	4.23	1.86	1.04 (3H)	
						0.97 (3H)	
Aib(5)	7.41	—	1.45 (3H)	—	—	—	—
			1.15 (3H)				
γPhe(6)	6.96	2.22 (1H)	2.05 (1H)	4.12	Benzylic	Aromatic	—
		2.11 (1H)	1.54 (1H)		2.75 (1H)	7.2 (P)	
					2.57 (1H)	7.15 (O)	
						7.07 (M)	
Aib(7)	7.93	—	1.51 (3H)	—	—	—	—
			1.45 (3H)				
-NH ₂	8.36 ^[a]	—	—	—	—	—	—
(C-Terminus)	5.31 ^[b]						

^[a] Proton involved in Hydrogen bonding. ^[b] Proton is not involved in Hydrogen bonding. Aromatic proton indicated by (O) ortho, (P) para, and (M) Meta in ₆CH column.

Assignment of chemical shifts using TOCSY and ROESY spectra

The amino acid residues and their positions in the peptide sequence were identified using TOCSY and ROESY spectra, respectively.

The TOCSY spectrum was used to identify amino acids in the sequence of the peptides.

A) Partial TOCSY spectrum analysis of peptide P1 in CDCl₃.

Below partial TOCSY spectrum showing the amino acid residues in peptide P1.

Figure S14: (A) Partial TOCSY spectrum (NH vs α , β , γ , Backbone & Side Chain protons) of peptide **P1** showing correlation between intra residue protons.

B) Partial ROESY spectrum analysis of Peptide P1 in CDCl₃.

Below ROESY spectrum (**B1**) depicting the NH \leftrightarrow NH, NH \leftrightarrow chiral C_aH, C_YH interactions respectively. The inter and intra-residue NOEs are marked with green and black labels respectively.

Peptide P1

Figure S15: (**B1**) NH vs NH, NH vs Chiral α , and γ protons region in ROESY spectrum of peptide **P1** in **CDCl₃**. (**B2**) Crystal structure of peptide **P1** depicting the distance between inter residue NOE corresponding protons in the ROESY spectrum (**B1**). (inter-residue NOEs marked with green labels in the ROESY spectrum (**B1**)).

Table S14: NOEs Observed in NH \leftrightarrow NH and NH \leftrightarrow C_{α}H/C_{β}H/C_{γ}H Region of Peptide P1 in CDCl₃ and the distance observed between respective protons in its crystal structure.

C) List (esidue NOEs (m (B1) c		P1 in CDC	-	single spectrum
Residue	H-	Residue	H-	NOE	Distance in	Type of NOE
	atom		atom	observed	crystal	
					structure	
					(Å)	
Aib (1)	NH	γPhe (2)	NH	Medium	2.88	NH <i>i</i> ↔NH <i>i</i> +1
γPhe (2)	ү СН	(E)- $d\gamma Val(4)$	NH	Strong	2.77	$\gamma CHi \leftrightarrow NHi + 2$
Ala (3)	NH	(E)- $d\gamma Val(4)$	NH	Medium	2.66	NH <i>i</i> ↔NH <i>i</i> +1
(E) -d γ Val	βCH	Aib (7)	NH	Weak	3.7	β CH <i>i</i> \leftrightarrow NH <i>i</i> +3
(4)						
(E) -d γ Val	αCH	Aib (5)	NH	Very	2.34	$\alpha \text{CH}i \leftrightarrow \text{NH}i + 1$
(4)				Strong		
Aib (5)	NH	γPhe (6)	NH	Weak	2.9	NH <i>i</i> ↔NH <i>i</i> +1
γPhe (6)	ү СН	Aib (7)	NH	Weak	3.31	$\gamma CHi \leftrightarrow NHi + 1$
γPhe (6)	ү СН	CONH ₂ (NH8)	NH	Medium	2.36	$\gamma CHi \leftrightarrow NHi + 2$
D) Intra-	residue	NOEs (marked w	ith black	labels) in p	partial ROESY s	pectrum (B1) of
		pe	ptide P1	in CDCl 3.		
Residu	ie	H-atom	Res	idue	H-atom	NOE
						observed
γPhe (2	2)	у СН	γPh	e (2)	NH	Medium
Ala (3	3)	αCH	Ala	u (3)	NH	Strong
(E)-dγVa	1 (4)	αCH	(E) -d γ	Val (4)	NH	Strong
(E)-dγVa	1 (4)	βCH	(E) -d γ	Val (4)	NH	Medium

(<i>E</i>)-dγVal (4)	у СН	(E)- $d\gamma Val(4)$	NH	Strong
(E) -d γ Val (4)	αCH	(<i>E</i>)-d γ Val (4)	β CH	Strong
(E) -d γ Val (4)	αCH	(<i>E</i>)-d γ Val (4)	ү СН	Strong
(<i>E</i>)-dγVal (4)	β CH	(E)- $d\gamma$ Val (4)	ү СН	Very Strong
γPhe (6)	ү СН	γPhe (6)	NH	Medium

8.5) Peptide P2 2D-NMR (TOCSY & ROESY) analysis in CDCl3:

Figure S16: ¹H NMR spectrum of peptide P2 in CDCl₃.

¹**H NMR (600 MHz, CDCl₃)** δ 8.80 (d, *J* = 6 Hz, 1H), 8.76 (s, 1H), 8.17 (d, *J* = 7.8 Hz, 1H), 8.09 (s, 1H), 8.06 (s, 1H), 8.04 (s, 1H), 7.92 (s, 1H), 7.84 (s, 1H), 7.75 (s, 1H), 7.14 (d, *J* = 8.4 Hz, 1H), 7.08 (d, *J* = 4.8 Hz, 1H), 6.96 (dd, *J* = 15, 2.4 Hz, 1H), 6.78 (d, *J* = 8.4 Hz, 1H), 6.33

(d, J = 15 Hz, 1H), 5.10 (s, 1H), 4.29 (m, 1H), 4.19 (m, 1H), 4.09 (m, 1H), 3.95 (m, 1H), 3.93 (m, 1H), 3.68 (m, 1H), 3.54 (m, 1H), 2.65 (br, 1H), 2.41 (br, 1H), 2.26 (br, 4H), 2.17 (br, 1H), 2.08 (m, 4H), 2.05 (s, 3H), 2.00 (m, 3H), 1.79 (m, 2H), 1.67 (m, 6H), 1.57 (m, 2H), 1.50 (m, 22H), 1.41 (s, 3H), 1.35 (br, 3H), 1.21 (br, 2H), 1.11 (br, 1H), 1.07 (m, 6H), 0.99 (d, J = 6 Hz, 3H), 0.93 (d, J = 6 Hz, 3H), 0.85 (m, 21H), 0.75 (d, J = 6 Hz, 3H). **MALDI (TOF/TOF)** *m/z* calculated value for C₆₄H₁₁₆N₁₂O₁₂ [M+Na⁺] is 1267.87 and observed at 1267.94.

Residues	NH	αCH	βCH	γCH	δCH	εCH	ζСН	CH _{term}
-COCH ₃	—	_	_		_	_	_	2.05
Aib(1)	7.841		1.492(6H)			<u> </u>	<u> </u>	
γ Val(2)	7.14	2.26 (1H)	1.64 (1H)	3.54	2.10	0.86 (6H)	—	—
		2.17 (1H)	1.5 (1H)					
Aib(3)	8.09	_	2.27 (3H)	—	_	_	_	—
			1.42 (3H)					
γLeu(4)	8.17	2.65 (1H)	1.65 (2H)	3.95	1.56 (1H)	2.00 (1H)	0.83(3H)	—
		2.07(1H)			1.08 (1H)		0.74(3H)	
Ala(5)	7.92	4.09 (1H)	1.50 (3H)	—	—	—	—	—
$d\gamma Val(6)$	8.80	6.33 (1H)	6.96 (1H)	4.29	2.02 (1H)	1.06 (6H)	_	_
Leu(7)	7.08	4.19 (1H)	1.67 (1H)	1.78	0.98 (3H)	—	_	—
			1.56 (1H)		0.92 (3H)			
γLeu(8)	6.78	2.07 (2H)	1.36 (2H)	3.93	1.20 (2H)	1.40 (1H)	0.83(6H)	_
Aib(9)	7.75	—	1.51 (6H)	—	—	—	—	—
γVal(10)	8.04	2.41 (1H)	1.68 (2H)	3.68	1.80 (1H)	0.88 (6H)	_	—
		1.99 (1H)						
Aib(11)	8.06	—	1.49 (6H)	—	—	—	_	—
-NH ₂	8.76 ^[a]	_	_	_	_	_	_	_
	5.10 ^[b]							

Table S15. ¹H NMR Chemical Shifts (ppm) of **P2** in **CDCl3** at 298 K.

^[a] Proton involved in Hydrogen bonding. ^[b] Proton is not involved in Hydrogen bonding.

Assignment of chemical shifts using TOCSY and ROESY spectra

The amino acid residues and their positions in the peptide sequence were identified using TOCSY and ROESY spectra, respectively.

The TOCSY spectrum was used to identify amino acids in the sequence of the peptides.

A) Partial TOCSY spectrum analysis of peptide P2 in CDCl3.

Below partial TOCSY spectrum showing the amino acid residues in peptide P2.

Figure S17: (A) Partial TOCSY spectrum (NH vs chiral α , & γ protons) of peptide **P2** showing correlation between intra residue protons.

B) Partial ROESY spectrum analysis of Peptide P2 in CDCl3.

Below ROESY spectrums (B1) depicting the NH \leftrightarrow NH, NH \leftrightarrow chiral C_aH, C_yH interactions respectively. The inter and intra-residue NOEs are marked with green and black labels respectively.

Figure S18: (**B1**) NH vs NH, NH vs Chiral α , and γ protons region in ROESY spectrum of peptide **P2** in **CDCl3**. (**B2**) Crystal structure of peptide **P2** depicting the distance between inter

residue NOE corresponding protons in the ROESY spectrum (**B1**). (inter-residue NOEs marked with green labels in the ROESY spectrum (**B1**)).

Table S16: NOEs Observed in NH \leftrightarrow NH and NH \leftrightarrow C_{α}H/C_{β}H/C_{γ}H Region of Peptide P2 in CDCl₃ and the distance observed between respective protons in its crystal structure.

		(B 1) of pepti	de P2 in CDC	.]]3.	
Residue	H-	Residue	H-	NOE	Distance in	Type of NOE
	atom		atom	observed	crystal	
					structure	
					(Å)	
Aib (1)	NH	γVal (2)	NH	Medium	2.69	NH <i>i</i> ↔NH <i>i</i> +1
γVal (2)	NH	Aib (3)	NH	Weak	3.62	NH <i>i</i> ↔NH <i>i</i> +1
γVal (2)	у СН	γLeu (4)	NH	Strong	2.65	$\gamma CHi \leftrightarrow NHi + 2$
γVal (2)	у СН	Ala (5)	NH	Medium	4.02	$\gamma CHi \leftrightarrow NHi + 3$
Aib (3)	NH	γLeu (4)	NH	Medium	2.79	NH <i>i</i> ↔NH <i>i</i> +1
γLeu (4)	NH	(<i>E</i>)-dyVal	NH	Weak	4.63	NH <i>i</i> ↔NH <i>i</i> +2
		(6)				
γLeu (4)	у СН	(<i>E</i>)-dγVal	NH	Strong	3.17	$\gamma CHi \leftrightarrow NHi + 2$
		(6)				
γLeu (4)	у СН	(E)-dyVal	αCH	Very	2.9	$\gamma CHi \leftrightarrow \alpha CHi + 2$
		(6)		Strong		
γLeu (4)	ү СН	Leu (7)	NH	Strong	3.5	$\gamma CHi \leftrightarrow NHi + 3$
Ala (5)	NH	(E)-dyVal	NH	Medium	2.69	NH <i>i</i> ↔NH <i>i</i> +1
		(6)				
Ala (5)	αCH	(<i>E</i>)-dγVal	NH	Medium	3.3	$\alpha CHi \leftrightarrow NHi + 1$
		(6)				
Ala (5)	αCH	(E)-dyVal	αCH	Weak	4.45	$\alpha CHi \leftrightarrow \alpha CHi + 1$
		(6)				
(E)-dγVal	NH	Leu (7)	NH	Weak	4.8	NH <i>i</i> ↔NH <i>i</i> +1
(6)						
(E)-dyVal	β CH	Aib (9)	NH	Medium	3.76	β CH <i>i</i> \leftrightarrow NH <i>i</i> +3

(6)						
	au			**	2.20	
(E)-dγVal	αCH	Leu (7)	NH	Very	2.38	$\alpha \text{CH}i \leftrightarrow \text{NH}i + 1$
(6)				Strong		
Leu (7)	NH	γLeu (8)	NH	Medium	2.64	NH <i>i</i> ↔NH <i>i</i> +1
Leu (7)	αCH	γLeu (8)	NH	Medium	3.38	$\alpha \text{CH}i \leftrightarrow \text{NH}i + 1$
Leu (7)	αCH	Aib (9)	NH	Strong	3.4	$\alpha \text{CH}i \leftrightarrow \text{NH}i + 2$
Leu (7)	αCH	γVal (10)	NH	Strong	4.0	$\alpha \text{CH}i \leftrightarrow \text{NH}i + 3$
γVal (10)	NH	Aib (11)	NH	Strong	3.63	NH <i>i</i> ↔NH <i>i</i> +1
γVal (10)	у СН	Aib (11)	NH	Strong	3.37	$\gamma CHi \leftrightarrow NHi + 1$
γVal (10)	у СН	CONH ₂	NH	Strong	2.66	$\gamma CHi \leftrightarrow NHi + 2$
		(NH12)				
γVal (10)	у СН	CONH ₂	NH	Medium	3.6	γ CH <i>i</i> \leftrightarrow NH <i>i</i> +3
		(NH13)				
Aib (11)	NH	CONH ₂	NH	Weak	2.8	NH <i>i</i> ↔NH <i>i</i> +1
		(NH12)				
D) Intra-r	esidue N		with bla	ck labels) in	partial ROESY	spectrum (B1) of
D) Intra-r peptide P2		OEs (marked	with bla	ck labels) in	partial ROESY	spectrum (B1) of
	in CDCl	OEs (marked		ck labels) in	partial ROESY H-atom	spectrum (B1) of NOE
peptide P2	in CDCl	OEs (marked 3.			-	
peptide P2	in CDCl 1e	OEs (marked 3.	R		-	NOE
peptide P2 Residu	in CDCl ie	OEs (marked 3. H-atom	γ	esidue	H-atom	NOE observed
peptide P2 Residu γVal (2	in CDCl 1e 2) 4)	OEs (marked 3. H-atom γ CH	R γ	Val (2)	H-atom NH	NOE observed Strong
peptide P2 Residu γVal (2 γLeu (4	in CDCl 1e 2) 4))	OEs (marked 3. H-atom γ CH γ CH	γ γ γ γ γ	Val (2) Leu (4)	H-atom NH NH	NOE observed Strong Strong
peptide P2 Residu γVal (2 γLeu (4 Ala (5	in CDCl 1e 2) 4) 1 (6)	OEs (marked 3.	γ γ γ γ (E)-	Val (2) Leu (4) Ala (5)	H-atom NH NH NH	NOE observed Strong Strong Very Strong
peptide P2 Residu γVal (2 γLeu (4 Ala (5 (<i>E</i>)-dγVa	in CDCl 1e 2) 4) 1 (6) 1 (6)	YOEs (marked) 3. H-atom γ CH γ CH α CH γ CH	γ γ γ γ (E)- (E)-	Residue Val (2) Leu (4) Ala (5) dγVal (6)	H-atom NH NH NH NH	NOE observed Strong Strong Very Strong Strong
peptide P2 Residu γ Val (2 γ Leu (4 Ala (5 (E)-d γ Va (E)-d γ Va	in CDCl 1e 2) 4) 1 (6) 1 (6) 1 (6)	YOEs (marked) 3. H-atom γ CH	Р	Residue Val (2) Leu (4) Ala (5) dγVal (6) dγVal (6)	H-atom NH NH NH NH NH β CH	NOEobservedStrongStrongVery StrongStrongVery StrongStrongVery Strong
peptide P2 Residu γ Val (2 γ Leu (4 Ala (5 (E)-d γ Va (E)-d γ Va (E)-d γ Va	in CDCl 1e 2) 4) 1 (6) 1 (6) 1 (6) 1 (6)	Y CH γ CH	γ γ γ γ (E)- (E)- (E)- (E)- (E)- (E)-	LesidueVal (2)Leu (4)Ala (5) $d\gamma$ Val (6) $d\gamma$ Val (6)	H-atom NH NH NH NH β CH α CH	NOEobservedStrongStrongVery StrongStrongVery StrongStrongVery StrongStrongStrong
peptide P2 Residu γ Val (2 γ Leu (4 Ala (5 (E)-d γ Va (E)-d γ Va (E)-d γ Va (E)-d γ Va	in CDCl 10 10 10 10 10 10 10 10 10 10	VOEs (marked) 3. H-atom γ CH γ CH γ CH γ CH γ CH γ CH β CH β CH	R γ γ γ (E)-	LesidueVal (2)Leu (4)Ala (5) $d\gamma$ Val (6) $d\gamma$ Val (6) $d\gamma$ Val (6)	H-atom NH NH NH NH β CH α CH NH	NOEobservedStrongStrongVery StrongStrongVery StrongStrongVery StrongMedium
peptide P2 Residu γ Val (2) γ Leu (4) Ala (5) (E)-d γ Va (E)-d γ Va (E)-d γ Va (E)-d γ Va (E)-d γ Va	in CDCl 10 10 10 10 10 10 10 10 10 10	IOEs (marked3. γ CH β CH β CH α CH	R γ γ γ (E)-	Residue Val (2) Leu (4) Ala (5) $d\gamma$ Val (6)	H-atom NH NH NH NH β CH α CH NH NH	NOEobservedStrongStrongVery StrongStrongVery StrongStrongMediumStrongStrong
peptide P2 Residu γ Val (2) γ Leu (4) Ala (5) (E)-d γ Va (E)-d γ Va (E)-d γ Va (E)-d γ Va (E)-d γ Va (E)-d γ Va	in CDCl 10 10 10 10 10 10 10 10 10 10	γ CH α CH β CH α CH α CH	R γ γ γ (E)- (E)-	Residue Val (2) Leu (4) Ala (5) $d\gamma$ Val (6)	H-atom NH NH NH NH β CH α CH NH NH NH NH NH	NOEobservedObservedStrongStrongVery StrongStrongVery StrongStrongStrongStrongStrongStrongStrongStrongStrongStrongStrongStrongStrongStrongStrong

9) HPLC Trace of Peptides P1-P3:

Figure S19: Reverse-phase-HPLC profiles of peptides **P1**, **P2** and **P3** on a C-18 column using methanol/water gradients at a flow rate of 2.0 mL/min. Eluted compounds were detected by the UV absorbance at 220 nm.

10) CD Spectroscopy of peptides P1-P3

Fig S20: CD Spectroscopy of peptides **P1, P2** and **P3** in Methanol (CH₃OH) at a concentration of 1mg/mL.

10.2) CD Spectroscopy of Peptide P1 and P2 in Chloroform (CHCl₃):

Fig S21: CD Spectroscopy of peptides **P1** and **P2** in Chloroform (CHCl₃) at a concentration of 1mg/mL. (Peptide P3 is insoluble in CHCl₃)

11) Superimposed structures of Peptide 'P3' and '434 repressor DNAbinding domain' protein

Figure S22: Superimposed crystal structure of peptide P3 (shown in ball and stick model) with the solution NMR structure of '434 repressor DNA-binding domain' (shown in line ribbon) protein in the region of Helix-Turn-Helix motif along residues 8 to 21 (**PDB DOI:** <u>https://doi.org/10.2210/pdb2r63/pdb</u>)

12) 1H NMR, and Mass Spectra of Peptides P1-P3 and monomers:

12.1) Peptide P1 ¹HNMR in CD₃OH:

Peptide P2 ¹HNMR in CD₃OH:

Peptide P2 ¹HNMR in CDCl₃:

10

2018\IISER-96-2-2018 Label A9 Run # 411

S62

Page 1

s (m/z)

12/28/2018 11:28:14 AM

Peptide P3 ¹HNMR in CD₃OH:

All Building Blocks ¹H and ¹³C NMR and HRMS spectra's:

13) SI References:

- Mali, S. M.; Bandyopadhyay, A.; Jadhav, S. V.; Ganesh Kumar, M.; Gopi, H. N. Synthesis of α, β-unsaturated γ-amino esters with unprecedented high (*E*)-stereoselecctivity and their conformational analysis in peptides. *Org.Biomol.Chem.* 2011, *9*, 6566-6566.
- (2) Nalawade, S. A.; Singh, M.; Puneeth Kumar, Drgk. R.; Dey, S.; Gopi, H. N. Stereoselective Synthesis of Backbone Extended π-Conjugated Amino Esters. *Org. Biomol. Chem.* 2023. https://doi.org/10.1039/d3ob00090g.
- (3) Misra, R.; George, G.; Saseendran, A.; Raghothama, S.; Gopi, H. N. Ambidextrous α,γ-Hybrid Peptide Foldamers. *Chem. Asian J.* **2019**, *14*, 4408-4414.
- (4) (a) Sheldrick, G. M. Phase annealing in *SHELX-90*: direct methods for larger structures. *Acta Crystallogr.* 1990, *A46*, 467-473. (b) Sheldrick, G. M. SHELXL-97, Program for Crystal Structure Solution and Refinement, Universität Göttingen (Germany) 1997.

- (5) Spek, A. L. *Acta Crystallogr*. PLATON, an integrated tool for the analysis of the results of a single crystal structure determination. **1990**, *A46*, C34.
- (6) The solvent mask (void determination) in OLEX is based on: Jiang, J.- S.; Brünger, A. T. Protein hydration observed by X-ray diffraction. Solvation properties of penicillopepsin and neuraminidase crystal structures. *J. Mol. Biol.* 1994, 243, 100-115.
- (7) Mali, S. M.; Ganesh Kumar, M.; Katariya, M. M.; Gopi, H. N. HBTU mediated 1hydroxybenzotriazole (HOBt) conjugate addition: synthesis and stereochemical analysis of β-benzotriazole *N*-oxide substituted γ-amino acids and hybrid peptides. *Org. Biomol. Chem.* **2014**, *2*, 8462-8472.