Supporting Information for

A novel stalactiform structural CoNi-rGO for supercapacitors with enhanced

electrochemical performance

Yang Sun,^{‡b} Zhaoyi Zhang,^{‡a} Cong Xiang,^a Yifan Jiang,^a Yan Feng,^a Xiaomei Cheng,^a Xiangzi

Li,*a and Meifang Wang *a

^a Department of Pharmacy, Wannan Medical College, Wuhu 241002, China

^b School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu,

241000, China

* Corresponding authors.

E-mail addresses: <u>li-xiang-zi@163.com</u> (X. Z. Li), <u>zijingyuwinter@163.com</u> (M. F. Wang).

S1 Experiment Characterization

The X-ray powder diffraction (XRD, MiniFlex600) was conducted on a D/teX Ultra2 diffractometer. Field emission scanning electron microscopy (FESEM) images were obtained on a Hitachi S-4800 field emission scanning electron microscope with an operating voltage of 5 kV. Transmission electron microscopy (TEM) and HAADF-STEM-EDX mapping images were obtained on a Hitachi HT7700 transmission electron microscope, employing an accelerating voltage of 120 kV. X-ray photoelectron spectroscopy (XPS) of the product was carried out using a Thermo ESCALAB 250 instrument, employing monochromic Al K α (hv = 1486.6 eV) at a power of 150 W. Nitrogen adsorption-desorption isotherms were measured at the liquid nitrogen temperature (77 K), using a Micromeritics ASAP 2460 analyzer. Surface areas were calculated by the Brunauer-Emmett-Teller (BET) method. Operando Raman measurements were recorded

using a Raman spectrometer (RENISHAW in Via system, U.K.) with a 532 nm He/Ne laser as the excitation source.

S2 Electrochemical Measurements

The electrochemical performance measurements were carried out by CHI 660E electrochemical workstation (Chenhua Instruments, China). In a three-electrode system, the samples were adopted directly as the working electrodes $(1 \times 1 \text{ cm}^2)$, Hg/HgO and Pt wires as reference and counter electrodes, respectively. Cyclic voltammetry (CV, 0 - 0.7 V), electrochemical impedance spectroscopy (EIS, at open circuit potential with an amplitude of 5 mV, 10⁵ - 0.01 Hz) and galvanostatic charge/discharge (GCD, 0 - 0.5 V) measurements were examined in 2 M KOH aqueous electrolytes. At different current densities, the specific gravimetric capacitance (C_s, or F g⁻¹) of the hybrid battery was calculated by equation (S1): [1]

$$C_s = \frac{i * \Delta T}{m * \Delta V} \tag{S1}$$

where *m* (g) is the mass of the active material, *i* (A) is the constant discharging current, ΔT (s) is the duration of the discharge process and ΔV (V) is the voltage window.

An asymmetric supercapacitor (ASC) was prepared using S-CoNi-rGO as the positive electrode, the activated carbon (AC) as the negative electrode, and glass fiber paper as the separator. The electrochemical test was carried out in 2 M KOH electrolyte. The AC electrode was made by mixing active materials, acetylene black and polyvinylidene fluoride with a mass ratio of 7:2:1 on a nickel foam and then drying at 60 °C for 24 h.

The charge balance of the supercapacitor follows $q^+ = q^-$, where q^+ and q^- represent the charges stored by the positive and negative electrodes respectively. The optimized mass ratio

between the positive and negative electrode materials for S-CoNi-rGO//AC can be calculated based on the charge balance relationship ($q^+ = q^-$) in the following equation: [2,3]

$$\frac{m^+}{m^-} = \frac{C^- \Delta V^-}{C^+ \Delta V^+} \tag{S2}$$

where $C^{+/-}$ (F g⁻¹) are the specific capacitances of positive and negative electrodes, $\Delta V^{+/-}$ (V) are the potential windows of positive and negative electrodes, and $m^{+/-}$ (g) stands for the loading masses of materials on the positive and negative electrodes.

The energy density (E, Wh kg⁻¹) and power density (P, kW kg⁻¹) were obtained from GCD curves according to the following formula: [4]

$$E = \frac{C_S \Delta V^2}{7.2}$$
(S3)
$$P = \frac{3600E}{\Delta t}$$
(S4)

where $C_S(F g^{-1})$ represents the specific capacitance, $\Delta V(V)$ stands for the potential window, Δt (s) stands for the time of discharging, respectively.

S3 Supplementary Tables and Figures

Fig. S1. XPS spectra of CoNi-rGO, S-CoNi-rGO for C 1s.

Fig. S2. Raman spectra of S-CoNi-rGO.

Fig. S3. N₂ adsorption/desorption isotherms and pore-size (inset) distributions of (a) CoNi-1, (b) CoNi-F, (c) CoNi-rGO, (d) S-CoNi-rGO, respectively.

Fig. S4. (a-c) CV curves at different scan rates, (d-f) GCD curves at different current densities,

(g-i) the cycling performance at various current densities of CoNi-1, CoNi-F, CoNi-rGO.

Fig. S5. The cycling stability for CoNi-1, CoNi-F, CoNi-rGO and S-CoNi-rGO at current density of 10 A g⁻¹.

Fig. S6. The SEM images of S-CoNi-rGO after 10000 recycles tests.

Fig. S7. The SEM images of S-CoNi-rGO // AC ASC device after 5000 recycles tests.

Fig. S8. (a-h) LED-driven tests during 120 min.

Materials	CoNi-1	CoNi-F	CoNi-rGO	S-CoNi-rGO
Specific surface area (m ² g ⁻¹)	51.94	26.88	69.59	32.52
Pore volume (cm ³ g ^{-1})	0.119	0.110	0.175	0.132

Table S1. The specific surface area and pore volume of of CoNi-1, CoNi-F, CoNi-rGO, S-CoNi-rGO.

 Table S2. Comparison of S-CoNi-rGO//AC device electrochemical performances with those

 reported literatures.

Hybrid battery	Electrolyte	Energy density W h kg ⁻¹	Power density kW kg ⁻¹	Ref.
Co ₃ O ₄ @Ni(OH) ₂ //AC	PVA:KOH	40.0	3.45	[5]
NiCo-MOF//AC	PVA:KOH	45.3	0.85	[4]
NiCo ₂ O ₄ @Ni(OH) ₂ //AC	2M KOH	98.5	0.85	[6]
CuCo HNSs/NF//AC	1M KOH	144.4	40	[7]
CF@CuO@CoNi LDH//RGO	2M KOH	92.5	0.4	[8]
Ni(OH) ₂ /CNT//AC	ЗМ КОН	32.5	1.8	[9]
NiCo ₂ S ₄ @Ni(OH) ₂ //AC	2M KOH	53.3	0.29	[10]
Co(OH) ₂ /fCNT fCNT	PVA:KOH	17	7	[11]
NMCOH-2.4//NDG	3 M KOH	92	1.7	[12]
S-CoNi-rGO //AC	2 M KOH	114.03	0.85	This work

 Table S3. S-CoNi-rGO//AC device electrochemical performances at different current densities.

Hybrid battery	The current density A g ⁻¹	The capacitance F g ⁻¹	Energy density Wh kg ⁻¹	Power density kW kg ⁻¹
S-CoNi-rGO//AC	1	284.1	114.03	0.854
S-CoNi-rGO//AC	2	276.9	111.14	1.724
S-CoNi-rGO//AC	3	267.9	107.53	2.579
S-CoNi-rGO//AC	4	259.2	104.04	3.419

S-CoNi-rGO//AC	5	253.5	101.75	4.249
S-CoNi-rGO//AC	8	246.0	96.57	6.803
S-CoNi-rGO//AC	10	234.7	94.21	8.501

Supplementary References

- [1] A. Gowrisankar, T. Selvaraju, Langmuir, 2021, 37, 5964-5978.
- [2] D. Merum, R. R. Nallapureddy, M. R. Pallavolu, T. K. Mandal, R. R. Gutturu, N. Parvin, A. N. Banerjee and S. W. Joo, ACS Appl. Energy Mater., 2022, 5, 5561-5578.
- [3] J. J. Xia, L. M. Zhang, S. G. Xuan, Y. H. Ni, L. Zhang, CrystEngComm, 2022, 24, 2159-2170.
- [4] H. Li, X. F. Wang, L. L. Dai, F. J. Guo, H. Y. Mi, C. C. Ji and L.Y. Sun, *Inorg. Chem.*, 2022, 61, 3866-3874.
- [5] X. Bai, Q. Liu, J. Liu, H. Zhang, Z. Li, X. Jing, P. Liu, J. Wang and R. Li, Chem. Eng. J., 2017, 31, 35-45.
- [6] P. Xia, Q. Y. Wang, Y. T. Wang, W. Quan, D. L. Jiang and M. Chen, J. Alloy. Compd., 2019, 771, 784-792.
- [7] N. Jayababu, D. Kim, Small, 2021, 17, 2102369.
- [8] F. Chen, C. Chen, Q. Hu, B. Xiang, T. T. Song, X. F. Zou, W. N. Li, B. X. Xiong and M. S. Deng, *Chem. Eng. J.*, 2020, 401, 126145.
- [9] B. Guan, Y. Li, B. Yin, K. Liu, D. Wang, H. Zhang and C. Cheng, *Chem. Eng. J.*, 2017, 308, 1165-1173.
- [10] Y. Yang, D. Cheng, S. Chen, Y. Guan and J. Xiong, *Electrochim. Acta*, 2016, 193, 116-127.
- [11] R. Ranjithkumar, S. E. Arasi, P. Devendran, N. Nallamuthu, A. Arivarasan, P. Lakshmanan,
 S. Sudhahar and M. K. Kumar, *Diam. Relat. Mater.*, 2020, **110**, 108120.
- [12] F. N. I. Sari, K. C. Lin and J. M. Ting, Appl. Surf. Sci., 2022, 576, 151805.