Electronic Supporting Information

Modulating the active phase in perovskite LaCoO3 with B-

site doping of Cu for efficient methanol reforming to

produce hydrogen

Weiling Zhang,^{ab} Peiwei Han,^{ab} Juan Li,^b Zizhen Niu,^{ab} Guowei Wang,^{ab} Nan Wang,^b Xiangnan Li,^b Lyumeng Ye*^c and Xinjun Li*^{ab}

^a School of Energy Science and Engineering, University of Science and Technology of China.

^b Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences.

° South China Institute of Environmental Sciences, the Ministry of Ecology and Environment of

PRC.

* Corresponding author Email: lixinjun@ustc.edu.cn

 $\label{eq:Fig.S1} Fig.S1 \ SEM \ images \ of \ (a) LaCoO_{3} \ (b) LaCo_{0.97} Cu_{0.03} O_{3} \ (c) LaCo_{0.94} Cu_{0.06} O_{3} \ (d) LaCo_{0.88} Cu_{0.12} O_{3} \ (d) LaCo_{0.88} Cu_{0.88} Cu_{0.88} \ (d) LaCo_{0.88} \ (d) LaCo_$

Fig.S3 (a) O 1s, (b) Co 2p, (c) Cu 2p, and (d)Cu LMM XPS spectra of LaCo_{1-x}Cu_xO₃-300 catalysts (A: x=0, B: x=0.03, C:x=0.06, D:x=0.12).

Fig.S4 XRD pattern of $LaCo_{1-x}Cu_xO_3$ catalysts.

Fig.S5 The stability and cyclicity experiments of $LaCo_{0.97}Cu_{0.03}O_3\mbox{-}300\ catalysts.$

Element Line	Weight %	Weight % Error	Norm. Wt.%	Norm. Wt.% Err	Atom %	Atom % Error
о к	15.10	± 0.13	15.10	± 0.13	53.26	± 0.45
Со К	20.71	± 0.13	20.71	± 0.13	19.83	± 0.12
Cu K	1.74	± 0.11	1.74	± 0.11	1.54	± 0.10
La L	62.45	± 0.31	62.45	± 0.31	25.37	± 0.13
Total	100.00		100.00		100.00	

Table S1 EDS results of LaCo_{0.97}Cu_{0.03}O₃-300

Table S2 Chemical state distribution of elements on catalyst surface (Atomic %)

Complex	Cu		0			Со	
Samples	Cu ¹⁺ (%)	Cu ²⁺ (%)	O ₁ (%)	O _{II} (%)	O _Ⅲ (%)	Co ³⁺ (%)	Co ²⁺ (%)
LaCoO ₃ -300			43.29	53.06	3.66	82.02	17.98
LaCo _{0.97} Cu _{0.03} O ₃ -300	36.59	63.41	40.2	59.11	0.69	79.64	20.36
LaCo _{0.94} Cu _{0.06} O ₃ -300	39.18	60.82	38.1	59.24	2.65	78.97	21.03
LaCo _{0.88} Cu _{0.12} O ₃ -300	59.41	40.59	35.76	64.07	0.16	77.14	22.86