Supplementary information

High-performance (Al_{0.4}Ga_{0.6})₂O₃/Al_{0.32}Ga_{0.68}N-based UVC/UVB

tunable dual-band photodetector

Siyu Wu^a, Zhengyuan Wu^{a,b}, Pengfei Tian^a, Jason Hoo^c, Shiping Guo^c, and Zhilai Fang^{a,b,*}

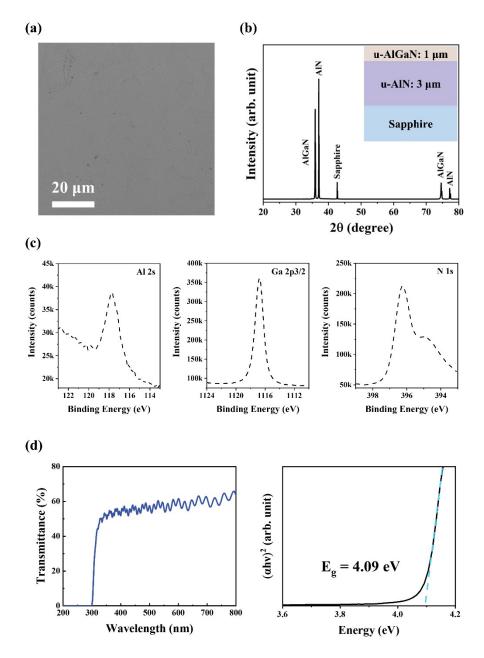
^a Academy for Engineering and Technology, and School of Information Science and

Technology, Fudan University, Shanghai 200433, China

^b Institute of Optoelectronics, Fudan University, Shanghai 200433, China

^c Advanced Micro-Fabrication Equipment Inc., 188 Taihua Road, Shanghai 201201, China

* E-mail address: <u>zlfang@fudan.edu.cn</u>


^{*} Corresponding author.

E-mail address: <u>zlfang@fudan.edu.cn</u>

Contents

- 1. Demonstration of AlGaN films
- 2. Spectral responsivity of the photodetectors based on AlGaN films
- 3. Schematic energy band diagrams of the dual-band PDs based on $(Al_xGa_{1-x})_2O_3/AlGaN$ heterojunction
- 4. Noise characteristics of the $(Al_{0.4}Ga_{0.6})_2O_3/Al_{0.32}Ga_{0.68}N$ film-based PDs

1. Demonstration of AlGaN films

Fig. S1 (a) Surface morphology of the AlGaN films. (b) XRD pattern of the AlGaN films with the structural schematic diagram of the samples shown in the inset. (c) XPS core-level spectra of Al 2s, Ga 2p3/2, and N 1s photoelectron peaks of the AlGaN films. (d) Transmission spectrum of the AlGaN films and corresponding Tauc plot.

The stoichiometric information of AlGaN films is identified as $Al_{0.32}Ga_{0.68}N$, and the bandgap is calculated to be 4.09 eV.

2. Spectral responsivity of the photodetectors based on AlGaN films

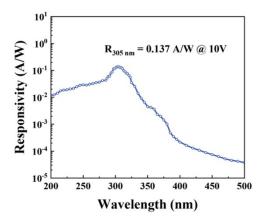
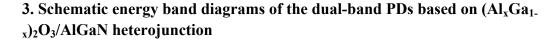



Fig. S2 Spectral responsivity of the PDs based on Al_{0.32}Ga_{0.68}N films at 10 V bias.

PDs based on pristine $Al_{0.32}Ga_{0.68}N$ film with the same MSM structure have been fabricated, and the spectral responsivities at 10 V bias are measured as a control in order to investigate the origin of the UVB response. At 10 V bias, the spectral response of the PDs shows a responsivity peak of 137 mA/W at 305 nm.

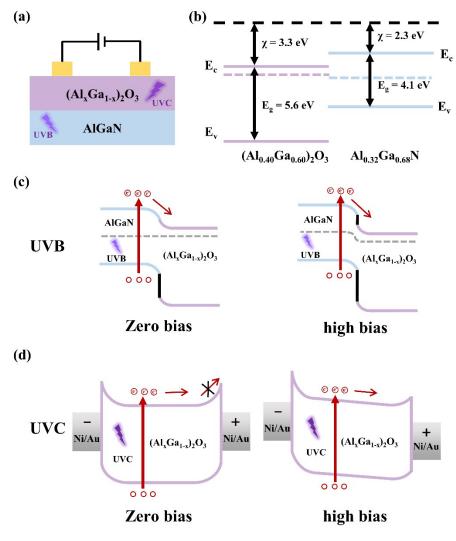


Fig. S3 (a) Schematic diagram of dual-band photodetection model. The schematic energy band diagrams of the PDs based on $(Al_xGa_{1-x})_2O_3/AlGaN$ heterojunction: (b) before contact, (c) UVB response and (d) UVC response at 0 V and a high bias.

The band alignments of $(Al_{0.4}Ga_{0.6})_2O_3/Al_{0.32}Ga_{0.68}N$ with respect to vacuum level were obtained from previous reports [*Appl. Phys. Lett.*, 2001, **78**, 2503-2505; *AIP Adv.*, 2020, **10**, 125321], XPS and optical transmission spectroscopy analysis, exhibiting a type II band alignment. Fig. S3 demonstrates the possible mechanism of dual-band response based on our $(Al_{0.4}Ga_{0.6})_2O_3/Al_{0.32}Ga_{0.68}N$ heterojunction. 4. Noise characteristics of the (Al_{0.4}Ga_{0.6})₂O₃/Al_{0.32}Ga_{0.68}N film-based PDs

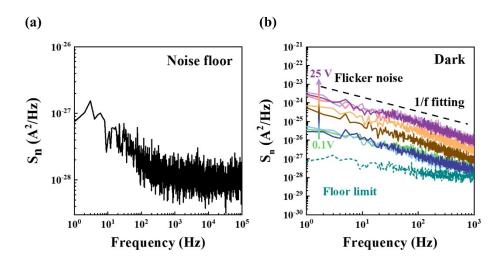


Fig. S4 (a) Instrument noise floor of the (Al_{0.4}Ga_{0.6})₂O₃/Al_{0.32}Ga_{0.68}N film-based PDs.
(b) Frequency-dependent noise power density at various bias voltages under dark condition.

It could be found that the noise power density spectrum can be well fitted with 1/f function, indicating the dominant noise source is the flicker noise in the PDs.