Supporting Information

FeS Nanosheets Assembled with 1T-MoS₂ Nanoflowers on Iron Foam for Efficient Overall Water Splitting

Bo Feng^a, Shuting Jin^b, Jihui Lang^b, Jian Wang^a, Jie Hua^a, Yunfei Sun^a, Wei Zhang^a, Jin Wang^a, Jian Cao^{*,b} ^aCollege of Information Technology, Jilin Normal University, Siping 136000, PR China ^bCollege of Physics, Jilin Normal University, Changchun 130103, PR China Corresponding author E-mail: caojian 928@163.com

1. Experimental

1.1 Materials: All chemicals were used without further purification (analytical grade). Thioacetamide (CH₃CSNH₂) and sodium molybdate dihydrate (Na₂MoO₄·2H₂O, 99%) were purchased from Shanghai Aladdin Biochemical Technology Co.Ltd (Shanghai, China) and Sinopharm Chemical Reagent Co. Ltd (Shanghai, China).

1.2 Treatment of the Fe foam: A piece of IF ($20 \text{ mm} \times 25 \text{ mm}$) was washed with 1 mol/L HCl, acetone, 75% alcohol, and deionized water for several times to clear the surface impurities, and dried at 60 °C for 6 h in vacuum.

1.3 Materials Characterization: X-ray diffraction (XRD) patterns were obtained on a MAC Science MXP-18 X-ray diffractometer utilizing a Cu target radiation source. Transmission electron micrographs (TEM), high-resolution transmission electron micrographs (HRTEM) images were acquired on JEM-2100 electron microscope with the accelerating voltage of 200 kV. The scanning electron microscope (SEM) images, the elemental mappings and energy dispersive X-ray spectroscopy (EDAX) images were obtained on JEOLJ SM-7800F at 10.0 kV. The surface chemistry and the binding energy of different electronic states of the samples were examined by XPS with a Thermo ESCALAB 250Xi.

1.4 Electrochemical Characterization: HER/OER electrochemical performance tests were performed with a CHI 760E electrochemical workstation (Chenhua Corp., Shanghai) in a standard three-electrode system at ambient temperature, of which the graphite rod was used as the counter electrode, the Hg/HgO electrode was worked as the reference electrode and the FMSx sample (cutting into pieces of 0.3×0.3 cm²) was acted as the working electrode. In the two-electrode cell system, the as-prepared FMS_{0.5} was served as cathode and anode respectively for overall water splitting. For comparison, 1T-MoS₂ was dropped on IF for testing, which named as 1T-MoS₂/IF. The electrolyte was 1.0 M KOH (pH = 13.6) for all the electrochemical tests. Before the electrochemical experiments, the electrolyte was previously degassed with N₂ for 30 min. All the potentials were converted to potentials versus the reversible hydrogen electrode (RHE) by using the following equation:

 $E_{RHE} = E_{SCE} + 0.098 + 0.059 \times PH$

Linear sweep voltammetry (LSV) curves were tested at a scan rate of 5 mV s⁻¹ to obtain the polarization curves, which were steady-state after several cycles. All measured polarization curves were iR-corrected. For comparison, commercial Pt/C or RuO₂ were also prepared as working electrodes. In a typical process, 20 mg of the commercial Pt/C (20 wt%) (or RuO₂) powder was dispersed in a mixture of 60 μ l of nafion solution (1wt %) and 540 μ l of isopropanol solution, which was sonicated for 30 minutes. Then 8 μ l of the above solution was dropped on a piece of cleaned IF foam (0.3 cm × 0.3 cm, catalysts loading \approx 3 mg cm⁻²). The cycle durability was measured by the chronoamperometric response. Electrochemical impedance spectroscopy (EIS) measurements were carried out at frequency ranging from 0.1 to 10⁴ Hz.

2. Supplementary Results

Fig. S1 SEM images of FMS 0.1(a) and FMS 0.9(b)

Electrolyte	Catalyst	Overpotential (mV)	Current density (mA/cm ²)	Tafel slope (mV/dec²)	ref
1 М КОН	FeS/Ni ₃ S ₂ @NF	130	10	124	[1]
1 М КОН	CoS ₂ /FeS-MOF@NF-1	137	10	80	[2]
1 M KOH	MoS ₂ @Fe/Ni-MOF ₆₀₀ -3	140	10	158	[3]
1 М КОН	Ni-1T MoS ₂	199	10	52.7	[4]
1 M KOH	TEA-1T MoS ₂	355	10	70	[5]
1 M KOH	CT _{0.5} -G1	312	10	85	[6]
1 M KOH	1T/2H MoS ₂ (25D) /Ti ₃ C ₂ T _{x-1}	300	10	117.2	[7]
1 M KOH	1T MoS ₂ /GO	209	10	71.7	[8]
1 M KOH	rGO/1T-MoS ₂ /CeO ₂	140	10	43	[9]
1 M KOH	FMS 0.5	245	100	80.6	This work

Table S1. Comparison of HER performance of FMS 0.5 with reported electrocatalysts

Electrolyte	Catalyst	Overpotential (mV)	Current density (mA/cm ²)	Tafel slope (mV/dec²)	ref
1 M KOH	FeS/Ni ₃ S ₂ @NF	192	10	70	[1]
1 М КОН	CoS ₂ /FeS-MOF@NF- 1	244	50	27	[2]
1 M KOH	MoS ₂ @Fe/Ni-MOF ₆₀₀ -3	340	10	158	[3]
1 М КОН	Ni-1T MoS ₂	310	10	103.2	[4]
1 М КОН	FeS/Fe ₃ C@N-S-C-800	570	10	81	[10]
1 M KOH	1T-Ni _{0.2} Mo _{0.8} S _{1.8} P _{0.2} NS/CC	305	40	76.5	[11]
1 M KOH	0.2-A@NF	190	10	166	[12]
1 М КОН	NiFe LDH/MoS ₂	190	10	31	[13]
1 М КОН	NiFe ₂ O ₄ /MoS ₂	280	10	48.7	[14]
1 М КОН	MoS ₂ /NiS ₂ /CC-2	384	100	58	[15]
1 M KOH	FMS 0.5	316	100	88.3	This work

Table S2. Comparison of OER performance of FMS 0.5 with reported electrocatalysts

Table S3.The charge transfer resistance of IF, FeS, $1T-MoS_2/IF$ and FMSx

Samples	IF	FeS	1T MoS ₂ /IF	FMS0.1	FMS0.5	FMS0.9
$R_{ct}(\Omega)$ HER	1.92	1.1	1.43	0.9	0.72	0.93
$R_{ct}(\Omega) OER$	1.15	1	0.98	0.7	0.65	0.71

References

[1] H. Li, S. Yang, W. Wei, M. Zhang, Z. Jiang, Z. Yan, J. Xie, Chrysanthemum-like FeS/Ni₃S₂ heterostructure nanoarray as a robust bifunctional electrocatalyst for overall water splitting, Journal of Colloid and Interface Science, 2022, 608, 536-548.

[2] Y. Yang, Q. Zhou, J. Yang, D. Qian, Y. Xiong, Z. Li, Z. Hu, Metal–organic framework derived CoS_2/FeS -MOF with abundant heterogeneous interface as bifunctional electrocatalyst for electrolysis of water, International Journal of Hydrogen Energy, 2022, 47, 33728-33740.

[3] Z. Lin, T. Feng, X. Ma, G. Liu, Fe/Ni bi-metallic organic framework supported 1T/2H MoS₂ heterostructures as efficient bifunctional electrocatalysts for hydrogen and oxygen evolution, Fuel, 2023, 339, 127395.

[4] G. Wang, G. Zhang, X. Ke, X. Chen, X. Chen, Y. Wang, G. Huang, J. Dong, S. Chu, M. Sui, Direct synthesis of stable 1T-MoS₂ doped with Ni single atoms for water splitting in alkaline media, Small, 2022, 18, 2107238.

[5] A. S. Goloveshkin, N. D. Lenenko, M. I. Buzin, V. I. Zaikovskii, A. V. Naumkin, A. S. Golub, Organic interlayers boost the activity of MoS₂ toward hydrogen evolution by maintaining high 1T/2H phase ratio, International Journal of Hydrogen Energy, 2023, 48, 10555-10565.

[6] Y. Zhao, X. Zhang, T. Wang, T. Song, P. Yang, Fabrication of rGO/CdS@2H, 1T, amorphous MoS₂ heterostructure for enhanced photocatalytic and electrocatalytic activity, International Journal of Hydrogen Energy, 2020, 45, 21409-21421.

[7] J. Y. Loh, F. M. Yap, W. J. Ong, 2D/2D heterojunction interface: Engineering of 1T/2H MoS₂ coupled with $Ti_3C_2T_x$ heterostructured electrocatalysts for pH-universal hydrogen evolution, Journal of Materials Science & Technology, 2024, 179, 86-97.

[8] Y. Lv, H. Pan, J. Lin, Z. Chen, Y. Li, H. Li, M. Shi, R. Yin, S. Zhu, One-pot hydrothermal approach towards 2D/2D heterostructure based on 1T MoS₂ chemically bonding with GO for extremely high electrocatalytic performance, Chemical Engineering Journal, 2022, 428, 132072.

[9] K. Nie, X. Qu, D. Gao, B. Li, Y. Yuan, Q. Liu, X. Li, S. Chong, Z. Liu, Engineering phase stability of semimetallic MoS_2 monolayers for sustainable

electrocatalytic hydrogen production, ACS Applied Materials & Interfaces, 2022, 14, 19847-19856.

[10] F. Kong, X. Fan, A. Kong, Z. Zhou, X. Zhang, Y. Shan, Covalent phenanthroline framework derived FeS@Fe₃C composite nanoparticles embedding in N-S-Codoped carbons as highly efficient trifunctional electrocatalysts, Advanced Functional Materials, 2018, 28, 1803973.

[11] U. N. Pan, T. I. Singh, D. R. Paudel, C. C. Gudal, N. H. Kim, J. H. Lee, Covalent doping of Ni and P on 1T-enriched MoS₂ bifunctional 2D-nanostructures with active basal planes and expanded interlayers boosts electrocatalytic water splitting, Journal of Materials Chemistry A, 2020, 8, 19654-19664.

[12] Y. Zhao, S. Wei, F. Wang, L. Xu, Y. Liu, J. Lin, K. Pan, H. Pang, Hatted 1T/2H-phase MoS₂ on Ni₃S₂ nanorods for efficient overall water splitting in alkaline media, Chemistry–A European Journal, 2020, 26, 2034-2040.

[13] S. Chakraborty, S. Marappa, S. Agarwal, D. Bagchi, A. Rao, C.P. Vinod, S.C. Peter, A. Singh, M. Eswaramoorthy, Improvement in oxygen evolution performance of NiFe layered double hydroxide grown in the presence of 1T-rich MoS₂, ACS Applied Materials & Interfaces, 2022, 14, 31951-31961.

[14] M. M. Sebastian, P. Velayudham, A. Schechter, N. Kalarikkal, Spinel nickel ferrite nanoparticles supported on a 1T/2H mixed-phase MoS₂ heterostructured composite as a bifunctional electrocatalyst for oxygen evolution and oxygen reduction reactions, Energy & Fuels, 2022, 36, 7782-7794.

[15] J. Xu, J. Rong, Y. Zheng, Y. Zhu, K. Mao, Z. Jing, T. Zhang, D. Yang, F. Qiu, Construction of sheet-on-sheet hierarchical MoS₂/NiS₂ heterostructures as efficient bifunctional electrocatalysts for overall water splitting, Electrochimica Acta, 2021, 385, 138438.