Polypyrrole coated cobalt sulfide as an effect host for sulfur cathode

Fengjin Yi^a, Baorui Jia^a, Ruoqi Song^a, Jihui Zhang^a, Mei Li^a, Weiliang Liu^a,

Jinshui Yao^a, Jiaxi Cui^c, Yuanhao Wang^{b*}, Manman Ren^{a*}

^a School of Materials Science and Engineering, Qilu University of Technology

(ShandongAcademy of Sciences), Jinan 250353, PR China

^b Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian

Boulevard, Nanshan District, Shenzhen 518055, P. R. China

^c Institute of Fundamental and Frontier Sciences, University of Electronic Science and

Technology of China, Chengdu 610054, China

* Corresponding Authors: wangyuanhao@szpt.edu.cn, renmanman@qlu.edu.cn

Fig. S1. Tafel plots calculated from the reduction peak R1.

Fig. S2. The peak current values of peak A1 versus the square root of scan rates of the

CoS@PPy/S, CoS/S, and PPy/S electrodes.

Fig. S3. Values of Q_H and Q_L in different electrodes

Fig. S4. Galvanostatic charge-discharge curves of (a) CoS@PPy/S and (b) PPy/S

electrodes under different C-rates.

Fig. S5. Cycling performance of the three electrodes at 0.5 C.

Fig. S6. SEM images of the CoS@PPy/S cathodes after 100 cycles.

Sample	A1	A2	C1	C2
CoS@PPy	2.84×10^{-7}	6.00×10^{-7}	8.24×10^{-8}	2.95 × 10 ⁻⁸
CoS	6.70×10^{-8}	1.23 × 10 ⁻⁷	1.90×10^{-8}	1.79 × 10 ⁻⁸
РРу	5.57 × 10 ⁻⁸	1.16 × 10 ⁻⁷	1.87×10^{-8}	1.39 × 10 ⁻⁸

Table S1. Lithium-ion diffusion rates (D_{Li^+} , cm² s⁻¹) between CoS@PPy/S, CoS/S

and PPy/S electrodes

Sample	S Loading	Rate	Specific Capacity	Ref
	(mg cm ⁻²)	(C)	(mA h g ⁻¹)	
CoS@PPy/S	1.1	2/3	678/625	This work
CoS/G/S	1.2-1.8	1/1.5	542/501	1
CoMoS ₃ /CoS/S	1.0	2	512	2
CoS/MWCNT-S	1.0-1.5	1/2	762/642	3
Hollow CoS/S	1.0-1.5	1/2	714/447	4
CoS@rGO/S	0.8-1.6	1/2	691/602	5
CoS ₂ /Fe ₇ S ₈ /NG-PP	1.0-1.4	2/3	620/555	6
TiO ₂ /S@PPy	2.0	1/2	586/402	7
PPy-AB/S	1.3-1.8	1/2	688/663	8
PPy/ZnO interlayer	1.3	1.5/2	501/404	9

Table S2. Comparison with the related works in literature

References:

- Z. Yu, N. Zhang, X. Zhang, Y. Li, G. Xie, W. Ge, L. Zhang and T. Zhang, J. *Electroanal. Chem.*, 2019, 854, 113524.
- 2 L. Yu, Y. Qu, R. Dang, Z. Ma, L. Duan and W. Lü, J. Electroanal. Chem., 2022, 907, 116025.
- 3 B. Zhang, S. Zhao, Z. Tang, P. Xie, A. Natarajan, Y. Zhou and X. Tian, J Solid State Electrochem, 2021, 26, 389-400.
- Y. Yu, L. Zhang, Y. Yan, X. Gao, S. Liu and R. Xu, *Journal of Materials Science:* Materials in Electronics, 2022, 33, 20479-20486.
- 5 C. Gao, C. Fang, H. Zhao, J. Yang, Z. Gu, W. Sun, W. Zhang, S. Li, L. Xu, X. Li and F. Huo, *J. Power Sources*, 2019, **421**, 132-138.
- 6 P. Chen, T. Wang, F. Tang, G. Chen and C. Wang, *Chem. Eng. J.*, 2022, 446, 136990.
- H. Song, H. Yuan, H. Chen, A. Tang, G. Xu, L. Liu, Z. Zhang and Q. Kuang, J Solid State Electrochem, 2020, 24, 997-1006.
- 8 W. Qin, B. Fang, S. Lu, Z. Wang, Y. Chen, X. Wu and L. Han, *RSC Advances*, 2015, 5, 13153-13156.
- 9 F. Yin, J. Ren, Y. Zhang, T. Tan and Z. Chen, Nanoscale Res. Lett., 2018, 13, 307.