STRUCTURAL CHEMISTRY OF PENTA- AND HEXANITRATO THORIUM(IV) COMPLEXES ISOLATED USING N-H DONORS

Madeline C. Shore, ${ }^{1}$ Aaron D. Nicholas, ${ }^{2}$ Monica Vasiliu, ${ }^{3}$ Kyle C. Edwards, ${ }^{3}$ Gabriel F. de Melo, ${ }^{3}$ Jeffery A. Bertke, ${ }^{1}$ David A. Dixon, ${ }^{3}$ and Karah E. Knope ${ }^{1, *}$
${ }^{1}$ Department of Chemistry, Georgetown University, Washington, D.C. 20057, United States of America
${ }^{2}$ Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, United States of America
${ }^{3}$ Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States of America
*kek44@georgetown.edu

ELECTRONIC SUPPLEMENTAL INFORMATION

Table of Contents

1. SYNTHETIC DETAILS.2
2. CRYSTALLOGRAPHIC REFINEMENT DETAILS OF COMPOUNDS 1-15. 5
3. ORTEP DIAGRAMS OF COMPOUNDS 1-15. 8
4. SUPRAMOLECULAR PACKING DIAGRAMS 23
5. POWDER X-RAY DIFFRACTION PLOTS OF COMPOUNDS 1-15. 38
6. RAMAN AND INFRARED PLOTS OF COMPOUNDS 1-15. 46
7. SUPRAMOLECULAR INTERACTIONS OBSERVED IN COMPOUNDS 1-15. 64
8. COMPUTATIONAL METHODS. 69
9. REFERENCES 96

1. SYNTHETIC DETAILS.

Synthesis of $\left.\mathrm{PiperH}_{2}\left[\mathrm{Th}_{\left(\mathrm{NO}_{3}\right)}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{2} \cdot\left[\mathrm{PiperH}_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]$ (1)

$\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{4}(0.048 \mathrm{~g}, 0.1 \mathrm{mmol})$ was dissolved in nitric acid $\left(\mathrm{HNO}_{3(\mathrm{aq})}, 500 \mu \mathrm{~L}, 1 \mathrm{M}\right)$ to form an acidic $\mathrm{Th}^{\mathrm{IV}}$ solution $(0.25 \mathrm{M})$. The 3 mL glass vial was then charged with piperazine $(0.0086 \mathrm{~g}$, 0.1 mmol) layered with $500 \mu \mathrm{~L}$ of 1-hexanol yielding a clear solution, which was left to evaporate under a nitrogen atmosphere. After approximately 4 days, clear block crystals formed at the bottom of the vial. Single crystal X-ray diffraction determined the crystals to be PiperH${ }_{2}\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{2} \cdot\left[\operatorname{PiperH} \mathrm{H}_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]$ (1). The bulk phase was found to be impure from powder X-ray diffraction, therefore elemental analysis is not reported. Yield: 42.5%.

Synthesis of $\left(\mathrm{TerpyH}_{2}\right)\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{2} \cdot\left[\left(\operatorname{TerpyH}_{2}\right)_{3}\left(\mathrm{NO}_{3}\right)_{6}\right] \cdot 4\left(\mathrm{H}_{2} \mathrm{O}\right)(2)$

$\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{4}(0.048 \mathrm{~g}, 0.1 \mathrm{mmol})$ was dissolved in nitric acid $\left(\mathrm{HNO}_{3(\mathrm{aq})}, 500 \mu \mathrm{~L}, 1 \mathrm{M}\right)$ to form an acidic $\mathrm{Th}^{\mathrm{IV}}$ solution $(0.25 \mathrm{M})$. The 3 mL glass vial was then charged with terpyridine $(0.0233 \mathrm{~g}$, 0.1 mmol) layered with $500 \mu \mathrm{~L}$ of 1-hexanol yielding a clear solution, which was left to evaporate under a nitrogen atmosphere. After approximately 4 days, clear block crystals formed at the bottom of the vial. Single crystal X-ray diffraction determined the crystals to be $(\text { TerpyH })_{2}$) $\left.\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot\left[\operatorname{TerpyH}_{2}\left(\mathrm{NO}_{3}\right)_{3}\right]$ (2). The bulk phase was found to be impure from powder X-ray diffraction, therefore elemental analysis is not reported. Yield: 25.2%.

Synthesis of $(\mathbf{P y H})_{2}\left[\mathbf{T h}\left(\mathrm{NO}_{3}\right)_{6}\right] \cdot\left(\mathbf{P y H} \cdot \mathrm{NO}_{3}\right)(3)$

$\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{4}(0.048 \mathrm{~g}, 0.1 \mathrm{mmol})$ was dissolved in nitric acid $\left(\mathrm{HNO}_{3(\mathrm{aq})}, 500 \mu \mathrm{~L}, 1 \mathrm{M}\right)$ to form an acidic $\mathrm{Th}^{\mathrm{IV}}$ solution $(0.25 \mathrm{M})$. The 3 mL glass vial was then charged with Pyridine ($8.08 \mu \mathrm{~L}, 0.1$ mmol) layered with $500 \mu \mathrm{~L}$ of 1-hexanol yielding a clear solution, which was left to evaporate under a nitrogen atmosphere. After approximately 4 days, clear block crystals formed at the bottom of the vial. Single crystal X-ray diffraction determined the crystals to be $(\mathrm{HPy})_{2}\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right] \cdot(\mathrm{HPy})\left(\mathrm{NO}_{3}\right)(3)$. The bulk phase was found to be impure from powder X-ray diffraction, therefore elemental analysis is not reported. Yield: 32.3\%. Raman and IR spectroscopies are also reported for this compound.

Synthesis of $(\mathbf{P y H})_{2}\left[\mathbf{T h}\left(\mathrm{NO}_{3}\right)_{6}\right] \cdot \mathbf{2}\left(\mathrm{PyH} \cdot \mathrm{NO}_{3}\right)(4)$

$\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{4}(0.048 \mathrm{~g}, 0.1 \mathrm{mmol})$ was dissolved in nitric acid $\left(\mathrm{HNO}_{3(\mathrm{aq})}, 500 \mu \mathrm{~L}, 3 \mathrm{M}\right)$ to form an acidic $\mathrm{Th}^{\mathrm{IV}}$ solution $(0.25 \mathrm{M})$. The 3 mL glass vial was then charged with Pyridine $(8.08 \mu \mathrm{~L}, 0.1$ mmol yielding a clear solution, which was left to evaporate under a nitrogen atmosphere. After approximately 4 days, clear block crystals formed at the bottom of the vial. Single crystal X-ray diffraction determined the crystals to be $(\mathrm{HPy})_{2}\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right] \cdot(\mathrm{HPy})_{2}\left(\mathrm{NO}_{3}\right)_{2}(4)$. The bulk phase was found to be impure from powder X-ray diffraction, therefore elemental analysis is not reported. Yield: 27.7%. Raman and IR spectroscopies are also reported for this compound.

Synthesis of (3,5-DiMePyH $)_{2}\left[\mathrm{Th}_{\left(\mathrm{NO}_{3}\right) 6}\right]^{-}\left[(3,5-\mathrm{DiMePyH})\left(\mathrm{NO}_{3}\right)\right]$ (5)

$\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{4}(0.048 \mathrm{~g}, 0.1 \mathrm{mmol})$ was dissolved in nitric acid $\left(\mathrm{HNO}_{3(\mathrm{aq})}, 500 \mu \mathrm{~L}, 3 \mathrm{M}\right)$ to form an acidic $\mathrm{Th}^{\mathrm{IV}}$ solution $(0.25 \mathrm{M})$. The 3 mL glass vial was then charged with 3,5 -dimethylpyridine $(11.35 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$ yielding a clear solution, which was left to evaporate under a nitrogen atmosphere. After approximately 4 days, clear block crystals formed at the bottom of the vial. Single crystal X-ray diffraction determined the crystals to be $(3,5-\mathrm{DiMePy})_{2}\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right] \cdot[(3,5-$ $\mathrm{DiMePyH})\left(\mathrm{NO}_{3}\right)$] (5). The bulk phase was found to be impure from powder X-ray diffraction,
therefore elemental analysis is not reported. Yield: 25.3\%. Raman and IR spectroscopies are also reported for this compound.

Synthesis of (3,5-DiMePyH) ${ }_{2}\left[\mathrm{Th}_{\left.\left(\mathrm{NO}_{3}\right)_{6}\right] \text { (6) }}\right.$

$\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{4}(0.048 \mathrm{~g}, 0.1 \mathrm{mmol})$ was dissolved in nitric acid $\left(\mathrm{HNO}_{3(\mathrm{aq})}, 500 \mu \mathrm{~L}, 1 \mathrm{M}\right)$ to form an acidic $\mathrm{Th}^{\mathrm{IV}}$ solution $(0.25 \mathrm{M})$. The 3 mL glass vial was then charged with 3,5 -dimethylpyridine $(11.35 \mu \mathrm{~L}, 0.1 \mathrm{mmol})$ yielding a clear solution, which was left to evaporate under a nitrogen atmosphere. After approximately 4 days, clear block crystals formed at the bottom of the vial. Single crystal X-ray diffraction determined the crystals to be $(3,5-\mathrm{DiMePyH})_{2}\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right]$. The bulk phase was found to be impure from powder X-ray diffraction, therefore elemental analysis is not reported. Yield: 22.6%. Raman and IR spectroscopies are also reported for this compound.

Synthesis of $\left(\right.$ TerpyH $\left._{2}\right)\left[\mathbf{T h}\left(\mathbf{N O}_{3}\right)_{6}\right] \cdot\left(\right.$ TerpyH $\left._{\mathbf{2}}\right)\left(\mathbf{N O}_{3}\right)_{\mathbf{2}}(7) . \operatorname{Th}\left(\mathrm{NO}_{3}\right)_{4}(0.048 \mathrm{~g}, 0.1 \mathrm{mmol})$ was dissolved in nitric acid $\left(\mathrm{HNO}_{3(\mathrm{aq})}, 500 \mu \mathrm{~L}, 3 \mathrm{M}\right)$ to form an acidic $\mathrm{Th}^{\mathrm{IV}}$ solution $(0.25 \mathrm{M})$. The 3 mL glass vial was then charged with Terpyridine ($0.0233 \mathrm{~g}, 0.1 \mathrm{mmol}$) yielding a clear solution, which was left to evaporate under a nitrogen atmosphere. After approximately 4 days, clear block crystals formed at the bottom of the vial. Single crystal X-ray diffraction determined the crystals to be $($ TerpyH 2$\left.)\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right] \cdot(\text { TerpyH})_{2}\right)\left(\mathrm{NO}_{3}\right)_{2}(7)$. The bulk phase was found to be impure from powder X-ray diffraction, therefore elemental analysis is not reported. Yield: 45.54\%. Raman and IR spectroscopies are also reported for this compound.

Synthesis of (4-MePyH $)_{2}\left[\mathbf{T h}\left(\mathbf{N O}_{3}\right)_{6}\right]$ (8). $\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{4}(0.048 \mathrm{~g}, 0.1 \mathrm{mmol})$ was dissolved in nitric acid $\left(\mathrm{HNO}_{3(\mathrm{aq})}, 500 \mu \mathrm{~L}, 1 \mathrm{M}\right)$ to form an acidic $\mathrm{Th}^{\mathrm{IV}}$ solution $(0.25 \mathrm{M})$. The 3 mL glass vial was then charged with 4-methylpyridine $(9.87 \mu \mathrm{~L}, 0.1 \mathrm{mmol})$ yielding a clear solution, which was left to evaporate under a nitrogen atmosphere. After approximately 4 days, clear block crystals formed at the bottom of the vial. Single crystal X-ray diffraction determined the crystals to be (4$\mathrm{MePyH})_{2}\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right]$ (8). The bulk phase was found to be impure from powder X-ray diffraction, therefore elemental analysis is not reported. Yield: 13.6\%. Raman and IR spectroscopies are also reported for this compound.
 was dissolved in nitric acid $\left(\mathrm{HNO}_{3(\mathrm{aq})}, 500 \mu \mathrm{~L}, 1 \mathrm{M}\right)$ to form an acidic $\mathrm{Th}^{\mathrm{IV}}$ solution $(0.25 \mathrm{M})$. The 3 mL glass vial was then charged with Bipyridine ($0.0156 \mathrm{~g}, 0.1 \mathrm{mmol}$) layered with $500 \mu \mathrm{~L}$ of 1 hexanol yielding a clear solution, which was left to evaporate under a nitrogen atmosphere. After approximately 4 days, clear block crystals formed at the bottom of the vial. Single crystal X-ray diffraction determined the crystals to be $\left(4,4-\mathrm{BipyH}_{2}\right)\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right] \cdot\left[\left(4,4-\mathrm{BipyH}_{2}\right)\left(\mathrm{NO}_{3}\right)_{2}\right]$ (10). The bulk phase was found to be impure from powder X-ray diffraction, therefore elemental analysis is not reported. Yield: 11.5%. Raman and IR spectroscopies are also reported for this compound.

Synthesis of $(\mathbf{P h t h a l H})_{2}\left[\mathbf{T h}\left(\mathbf{N O}_{3}\right)_{6}\right](\mathbf{1 0}) . \operatorname{Th}\left(\mathrm{NO}_{3}\right)_{4}(0.048 \mathrm{~g}, 0.1 \mathrm{mmol})$ was dissolved in nitric acid $\left(\mathrm{HNO}_{3 \text { (aq) }}, 500 \mu \mathrm{~L}, 1 \mathrm{M}\right)$ to form an acidic $\mathrm{Th}^{\mathrm{IV}}$ solution $(0.25 \mathrm{M})$. The 3 mL glass vial was then charged with Phthalazine ($0.0130 \mathrm{~g}, 0.1 \mathrm{mmol}$) layered with $500 \mu \mathrm{~L}$ of 1-hexanol yielding a clear solution, which was left to evaporate under a nitrogen atmosphere. After approximately 4 days, clear block crystals formed at the bottom of the vial. Single crystal X-ray diffraction determined the crystals to be $(\mathrm{PhthalH})_{2}\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right](11)$. The bulk phase was found to be impure
from powder X-ray diffraction, therefore elemental analysis is not reported. Yield: 15.8\%. Raman and IR spectroscopies are also reported for this compound.

Synthesis of $\left[\right.$ TerpyH $\left.\mathbf{H}_{2}\right]\left[\mathbf{T h}\left(\mathbf{N O}_{3}\right)_{6}\right] \cdot \mathbf{H}_{\mathbf{2}} \mathbf{O}(\mathbf{1 1}) \mathrm{Th}\left(\mathrm{NO}_{3}\right)_{4}(0.048 \mathrm{~g}, 0.1 \mathrm{mmol})$ was dissolved in nitric acid $\left(\mathrm{HNO}_{3(a q)}, 500 \mu \mathrm{~L}, 3 \mathrm{M}\right)$ to form an acidic $\mathrm{Th}^{\mathrm{IV}}$ solution $(0.25 \mathrm{M})$. The 3 mL glass vial was then charged with Terpyridine ($0.0233 \mathrm{~g}, 0.1 \mathrm{mmol}$) yielding a clear solution, which was left to evaporate under a nitrogen atmosphere. After approximately 4 days, clear block crystals formed at the bottom of the vial. Single crystal X-ray diffraction determined the crystals to be $\left[\right.$ Terpy $\left.\mathrm{H}_{2}\right]\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]$ (12). The bulk phase was found to be impure from powder X-ray diffraction, therefore elemental analysis is not reported. Yield: 32.5\%. Raman and IR spectroscopies are also reported for this compound.

Synthesis of (2-MePyH $)_{\mathbf{2}}\left[\mathbf{T h}\left(\mathbf{N O}_{\mathbf{3}}\right)_{\mathbf{6}}\right] \cdot \mathbf{2} \mathbf{H}_{\mathbf{2}} \mathbf{O} \mathbf{(1 2)} \mathbf{.} \mathbf{T h}\left(\mathrm{NO}_{3}\right)_{4}(0.048 \mathrm{~g}, 0.1 \mathrm{mmol})$ was dissolved in nitric acid $\left(\mathrm{HNO}_{3(\text { aq) }}, 500 \mu \mathrm{~L}, 3 \mathrm{M}\right)$ to form an acidic $\mathrm{Th}^{\mathrm{IV}}$ solution $(0.25 \mathrm{M})$. The 3 mL glass vial was then charged with 2-methylpyridine ($9.875 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$) a clear solution, which was left to evaporate under a nitrogen atmosphere. After approximately 4 days, clear block crystals formed at the bottom of the vial. Single crystal X-ray diffraction determined the crystals to be (2$\mathrm{MePyH})_{2}\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (13). The bulk phase was found to be impure from powder X-ray diffraction, therefore elemental analysis is not reported. Yield: 15.7\%. Raman and IR spectroscopies are also reported for this compound.

Synthesis of (3-MePyH $)_{\mathbf{2}}\left[\mathbf{T h}\left(\mathbf{N O}_{3}\right)_{6}\right](\mathbf{1 3}) . \operatorname{Th}\left(\mathrm{NO}_{3}\right)_{4}(0.048 \mathrm{~g}, 0.1 \mathrm{mmol})$ was dissolved in nitric acid $\left(\mathrm{HNO}_{3(a q)}, 500 \mu \mathrm{~L}, 1 \mathrm{M}\right)$ to form an acidic $\mathrm{Th}^{\mathrm{IV}}$ solution $(0.25 \mathrm{M})$. The 3 mL glass vial was then charged with 3-methylpyridine $(9.875 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$ yielding a clear solution, which was left to evaporate under a nitrogen atmosphere. After approximately 4 days, clear block crystals formed at the bottom of the vial. Single crystal X-ray diffraction determined the crystals to be (3$\mathrm{MePyH})_{2}\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right]$ (14). The bulk phase was found to be impure from powder X-ray diffraction, therefore elemental analysis is not reported. Yield: 31.6\%. Raman and IR spectroscopies are also reported for this compound.

Synthesis of (3-ClPyH $)_{\mathbf{2}}\left[\mathbf{T h}\left(\mathbf{N O}_{3}\right)_{6}\right] \mathbf{(1 4)} . \mathrm{Th}\left(\mathrm{NO}_{3}\right)_{4}(0.048 \mathrm{~g}, 0.1 \mathrm{mmol})$ was dissolved in nitric acid $\left(\mathrm{HNO}_{3 \text { (aq) }}, 500 \mu \mathrm{~L}, 3 \mathrm{M}\right)$ to form an acidic $\mathrm{Th}^{\mathrm{IV}}$ solution $(0.25 \mathrm{M})$. The 3 mL glass vial was then charged with 3-chloropyridine $(9.5 \mu \mathrm{~L}, 0.1 \mathrm{mmol})$ yielding a clear solution, which was left to evaporate under a nitrogen atmosphere. After approximately 4 days, clear block crystals formed at the bottom of the vial. Single crystal X-ray diffraction determined the crystals to be (3$\mathrm{ClPyH})_{2}\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right]$ (9). The bulk phase was found to be impure from powder X-ray diffraction, therefore elemental analysis is not reported. Yield: 31.5\%. Raman and IR spectroscopies are also reported for this compound.

Synthesis of $(\mathbf{P h e n H})_{\mathbf{2}}\left[\mathbf{T h}\left(\mathbf{N O}_{3}\right)_{\mathbf{6}}\right] \cdot \mathbf{2}\left[\mathbf{H}_{2} \mathbf{O}\right](\mathbf{1 5}) . \mathbf{T h}\left(\mathrm{NO}_{3}\right)_{4}(0.048 \mathrm{~g}, 0.1 \mathrm{mmol})$ was dissolved in nitric acid $\left(\mathrm{HNO}_{3 \text { (aq) }}, 500 \mu \mathrm{~L}, 1 \mathrm{M}\right)$ to form an acidic $\mathrm{Th}^{\mathrm{IV}}$ solution $(0.25 \mathrm{M})$. The 3 mL glass vial was then charged with Phenanthroline ($0.0180 \mathrm{~g}, 0.1 \mathrm{mmol}$) layered with $500 \mu \mathrm{~L}$ of 1-hexanol yielding a clear solution, which was left to evaporate under a nitrogen atmosphere. After approximately 4 days, clear block crystals formed at the bottom of the vial. Single crystal X-ray diffraction determined the crystals to be $(\mathrm{PhenH})_{2}\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]_{2}$ (15). The bulk phase was
found to be impure from powder X-ray diffraction, therefore elemental analysis is not reported. Yield: 19.9\%. Raman and IR spectroscopies are also reported for this compound.

2. CRYSTALLOGRAPHIC REFINEMENT DETAILS OF COMPOUNDS 1-15.

Note: Crystallographic refinement details can be found in the "experimental refinement section" of the crystallographic information files (CIFs). Details are also provided below for ease of the reader.

For 1-15, non-hydrogen atoms were found in the Fourier difference map and refined anisotropically. Hydrogen atoms bound to carbons of heterocyclic rings were placed in calculated positions and their Ueq values were assigned values 1.2 times that of their parent atom. The protonated nitrogen heterocycle H atom was located in the difference map and its position was allowed to freely refine. Remaining H atoms were included as riding idealized contributors. The protonated nitrogen heterocycles H atom U's were assigned as 1.5 times U_{eq} of the carrier atom; remaining H atom U's were assigned as 1.2 times carrier $\mathrm{U}_{\text {eq }}$. If the $\mathrm{X}-\mathrm{H}$ distance $(\mathrm{X}=\mathrm{N}, \mathrm{O})$ was not within reasonable limits, the distance was fixed; for water molecules, $\mathrm{O}-\mathrm{H}$ distances were fixed at $0.88(0.02) \AA$. For the protonated nitrogen atoms contained within heterocyclic counterions, $\mathrm{N}-\mathrm{H}$ distances were fixed to $0.86(0.02) \AA$. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are considered individually in the estimation of esds in distances, angles, and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving 1.s. planes. Details for each compound are provided below.

Compound 1

The asymmetric unit of 1 consists of the anionic $\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{1-}$ moiety, one $\mathrm{NO}_{3}{ }^{1-}$, and two half $\left[\mathrm{PiperH}_{2}\right]^{2+}$ moieties that lie on inversion centers. The H atoms for the coordinated water molecule were located in the difference map and their positions were allowed to freely refine. Remaining H atoms were included as riding idealized contributors. Water H atom U's were assigned as 1.5 times U_{eq} of the carrier atom; remaining H atom U 's were assigned as 1.2 times carrier U_{eq}.

Compound 2

All structural components of 2 sit on general positions within the asymmetric unit. The $\left[\text { TerpyH } \mathrm{H}_{2}\right]^{2+} \mathrm{N}-\mathrm{H}$ and water H atoms were located in the difference map. The $\mathrm{N}-\mathrm{H}$ distances were restrained to be 0.88 (esd $0.01 \AA$) and the O-H distances were restrained to be 0.84 (esd $0.01 \AA$). Remaining H atoms were included as riding idealized contributors. Water and amine H atom U's were assigned as 1.5 times $U_{\text {eq }}$ of the carrier atom; remaining H atom U's were assigned as 1.2 times carrier U_{eq}.

Compound 3

The asymmetric unit of $\mathbf{3}$ consists of one half of the anionic $\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right]^{2-}$ moiety, with Th1 lying on an inversion center. Additionally, there is one $[\mathrm{PyH}]^{1+}$ cation, and one half $\left(\mathrm{NO}_{3}\right)^{1-}$ and one half $[\mathrm{PyH}]^{1+}$ moieties that lie about two-fold axes. The pyridinium N-H hydrogen atoms were located in the difference map and the distances were restrained to be 0.88 (esd $0.02 \AA$).
Remaining H atoms were included as riding idealized contributors. Heteroatom H U's were assigned as 1.5 times U_{eq} of the carrier atom; remaining H atom U's were assigned as 1.2 times carrier U_{eq}.

Compound 4

The asymmetric unit of $\mathbf{4}$ consists of one half of the anionic $\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right]^{2-}$ moiety in which Th1 lies on an inversion center, one $\left(\mathrm{NO}_{3}\right)^{1-}$ and two $[\mathrm{PyH}]^{1+}$ moieties at general positions. All of the coordinated $\left(\mathrm{NO}_{3}\right)^{1-}$ anions are disordered over two orientations. The like $\mathrm{N}-\mathrm{O}$ distances were restrained to be similar (esd $0.01 \AA$). Similar displacement amplitudes (esd 0.01) were imposed on disordered sites overlapping by less than the sum of van der Waals radii. The pyridinium N-H hydrogen atoms were located in the difference map and the positions were allowed to freely refine. Remaining H atoms were included as riding idealized contributors. Pyridinium N-H atom U's were assigned as 1.5 times $U_{\text {eq }}$ of the carrier atom; remaining H atom U's were assigned as 1.2 times carrier $\mathrm{U}_{\text {eq }}$.

Compound 5

All components of $\mathbf{5}$ sit on general positions within the asymmetric unit. The [3,5-DiMePyH $]^{1+}$ $\mathrm{N}-\mathrm{H}$ hydrogren atoms were located in the difference map. The N-H distances were restrained to be 0.84 (esd $0.02 \AA$). Remaining H atoms were included as riding idealized contributors. The pyridinium heteroatom H U's were assigned as 1.5 times U_{eq} of the carrier atom; remaining H atom U's were assigned as 1.2 times carrier U_{eq}.

Compound 6

A structural model consisting of one half of the $\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right]^{2-}$ anion and one $(3,5-\mathrm{DiMePyH})^{1+}$ cation per asymmetric unit was developed. The ($3,5-\mathrm{DiMePyH})^{1+} \mathrm{N}-\mathrm{H}$ hydrogen was located in the difference map and the position was allowed to freely refine. Methyl H atom positions, R CH_{3}, were optimized by rotation about R-C bonds with idealized C-H, R--H and $\mathrm{H}--\mathrm{H}$ distances. Remaining H atoms were included as riding idealized contributors. (3,5-DiMePyH) ${ }^{1+}$ heteroatom H U's were assigned as 1.5 times $\mathrm{U}_{\text {eq }}$ of the carrier atom; remaining H atom U's were assigned as 1.2 times carrier U_{eq}.

Compound 7

The asymmetric unit of 7 consists of one half of the anionic $\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right]^{2-}$ moiety in which Th1 lies about a two-fold axis, one $\left(\mathrm{NO}_{3}\right)^{1-}$ and one $\left[\text { TerpyH } \mathrm{H}_{2}\right]^{2+}$ moieties are at general positions. The $\left[\text { TerpyH } \mathrm{H}_{2}\right]^{2+} \mathrm{N}-\mathrm{H} \mathrm{H}$ atoms were located in the difference map and the positions were allowed to freely refine. Remaining H atoms were included as riding idealized contributors. The $\left[\text { TerpyH } \mathrm{H}_{2}\right]^{2+}$ heteroatom H U's were assigned as 1.5 times U_{eq} of the carrier atom; remaining H atom U's were assigned as 1.2 times carrier $\mathrm{U}_{\text {eq }}$.

Compound 8

The asymmetric unit of $\mathbf{8}$ consists of one half of the anionic $\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right]^{2-}$ moiety in which Th1 lies on an inversion center, and one $[4-\mathrm{MePyH}]^{1+}$ moiety at a general position. The $[4-\mathrm{MePyH}]^{1+} \mathrm{N}-\mathrm{H}$ H atom was located in the difference map and the position was allowed to freely refine. Remaining H atoms were included as riding idealized contributors. The $[4-\mathrm{MePyH}]^{1+}$ heteroatom H U's were assigned as 1.5 times U_{eq} of the carrier atom; remaining H atom U's were assigned as 1.2 times carrier U_{eq}.

Compound 9

The asymmetric unit of $\mathbf{9}$ consists of the $\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right]^{2-}$ moiety, one $\left(\mathrm{NO}_{3}\right)^{1-}$, and one $\left[4,4^{\prime}-\mathrm{BipyH}_{2}\right]^{2+}$ in general positions as well as one half $\left[4,4^{\prime} \text { - } \mathrm{BipyH}_{2}\right]^{2+}$ lying on an inversion center. The $\left[4,4^{\prime}\right.$ ' $\left.\mathrm{BipyH}_{2}\right]^{2+} \mathrm{N}-\mathrm{H} H$ atoms were located in the difference map and their positions were allowed to freely refine. Remaining H atoms were included as riding idealized contributors. [4,4- $\left.\mathrm{BipyH}_{2}\right]^{2+}$ $\mathrm{N}-\mathrm{H} H$ atom U's were assigned as 1.5 times U_{eq} of the carrier atom; remaining H atom U's were assigned as 1.2 times carrier $\mathrm{U}_{\text {eq }}$.

Compound 10

The asymmetric unit of $\mathbf{1 0}$ consists of one half of the anionic $\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right]^{2-}$ moiety in which Th1 lies on a two-fold axis, and one $[\mathrm{PhthalH}]^{1+}$ moiety at a general position. The $[\mathrm{PhthalH}]^{1+} \mathrm{N}-\mathrm{H} \mathrm{H}$ atom could not be located in the difference map and thus was placed in a calculated position. Remaining H atoms were also included as riding idealized contributors. H atom U's were assigned as 1.2 times carrier U_{eq}.

Compound 11

All components of $\mathbf{1 1}$ sit on general positions within the asymmetric unit. The $\left[\text { TerpyH } \mathrm{H}_{2}\right]^{2+} \mathrm{N}-\mathrm{H}$ and water H atoms were located in the difference map and their positions were allowed to freely refine. Remaining H atoms were included as riding idealized contributors. Water and $\left[\text { TerpyH } \mathrm{H}_{2}\right]^{2+}$ $\mathrm{N}-\mathrm{H} H$ atom U's were assigned as 1.5 times U_{eq} of the carrier atom; remaining H atom U's were assigned as 1.2 times carrier $\mathrm{U}_{\text {eq }}$.

Compound 12

The asymmetric unit of $\mathbf{1 2}$ consists of one half of the anionic $\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right]^{2-}$ moiety in which Th1 lies on a two-fold axis, and one $[2-\mathrm{MePyH}]^{1+}$ moiety and one water molecule at general positions. The $[2-\mathrm{MePyH}]^{1+} \mathrm{N}-\mathrm{H}$ and water H atoms were located in the difference map and their positions were allowed to freely refine. Remaining H atoms were included as riding idealized contributors. Water and $[2-\mathrm{MePyH}]^{1+}$ heteroatom hydrogen U's were assigned as 1.5 times $\mathrm{U}_{\text {eq }}$ of the carrier atom; remaining H atom U 's were assigned as 1.2 times carrier U_{eq}.

Compound 13

The asymmetric unit of $\mathbf{1 3}$ consists of one half of the anionic $\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right]^{2-}$ moiety in which Th1 lies on a two-fold axis, and one $[3-\mathrm{MePyH}]^{1+}$ moiety at a general position. The $[3-\mathrm{MePyH}]^{1+} \mathrm{N}-$ $\mathrm{H} H$ atom was located in the difference map and its position was allowed to freely refine. Remaining H atoms were included as riding idealized contributors. The $[3-\mathrm{MePyH}]^{1+} \mathrm{N}-\mathrm{H} \mathrm{H}$ atom U's were assigned as 1.5 times $U_{\text {eq }}$ of the carrier atom; remaining H atom U's were assigned as 1.2 times carrier $\mathrm{U}_{\text {eq }}$.

Compound 14

The asymmetric unit of $\mathbf{1 4}$ consists of one half of the anionic $\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right]^{2-}$ moiety in which Th1 lies on a two-fold axis, and one $[3-\mathrm{ClPyH}]^{1+}$ moiety at a general position. The $[3-\mathrm{ClPyH}]^{1+} \mathrm{N}-\mathrm{H}$ H atom was located in the difference map and its position was allowed to freely refine. Remaining H atoms were included as riding idealized contributors. $[3-\mathrm{ClPyH}]^{1+}$ heteroatom H U's were assigned as 1.5 times U_{eq} of the carrier atom; remaining H atom U 's were assigned as 1.2 times carrier $U_{\text {eq }}$.

Compound 15

The asymmetric unit of $\mathbf{1 5}$ consists of one half of the anionic $\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right]^{2-}$ moiety in which Th1 lies on an inversion center, and one $[\mathrm{PhenH}]^{1+}$ moiety and one water molecule at general positions. The $[\mathrm{PhenH}]^{1+} \mathrm{N}-\mathrm{H}$ and water H atoms were located in the difference map and their positions were allowed to freely refine. Remaining H atoms were included as riding idealized contributors. Water and two of the $[\mathrm{PhenH}]^{1+} \mathrm{N}-\mathrm{H} H$ atom U's were assigned as 1.5 times U_{eq} of the carrier atom; remaining H atom U 's were assigned as 1.2 times carrier U_{eq}

3. ORTEP DIAGRAMS OF COMPOUNDS 1-15.

Figure S1. Thermal ellipsoid plot (50\% probability level) of compound 1, PiperH $H_{2}\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{2} \cdot\left[\right.$ PiperH $\left.\mathrm{H}_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]$ at 100 K . Symmetry equivalent atoms were generated through their respective symmetry elements ($\mathrm{i}=1-\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z}$).

Figure S2. Thermal ellipsoid plot (50\% probability level) of compound 2, $\left(\mathrm{TerpyH}_{2}\right)\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] 2 \bullet\left[\left(\mathrm{TerpyH}_{2}\right)_{3}\left(\mathrm{NO}_{3}\right)_{6}\right] \bullet 4\left(\mathrm{H}_{2} \mathrm{O}\right)$, at 100 K .

Figure S3. Thermal ellipsoid plot (50% probability level) of compound 3, $(\mathrm{PyH})_{2}\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right] \cdot\left(\mathrm{PyH} \cdot \mathrm{NO}_{3}\right)$, at 100 K . Symmetry equivalent atoms were generated through their respective symmetry elements $(i=1-x, 1-\mathrm{y}, 1-\mathrm{z})$.

Figure S5. Thermal ellipsoid plot (50\% probability level) of compound 5, (3,5$\mathrm{DiMePyH})_{2}\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right] \cdot\left[(3,5-\mathrm{DiMePyH})\left(\mathrm{NO}_{3}\right)\right]$, at 100 K .

Figure S6. Thermal ellipsoid plot (50% probability level) of compound 6, (3,5DiMePyH $)_{2}\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right]$, at 100 K . Symmetry equivalent atoms were generated through their respective symmetry elements ($\mathrm{i}=1-\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z}$).
 $(\text { TerpyH })_{2}$) $\left.\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right] \cdot\left(\right.$ TerpyH $\left.\mathrm{H}_{2}\right)\left(\mathrm{NO}_{3}\right)_{2}$, at 100 K . Symmetry equivalent atoms were generated through the following symmetry operations: $\mathrm{i}=1-\mathrm{x}, \mathrm{y}, 1 / 2-\mathrm{z} ; \mathrm{ii}=1-\mathrm{x}, \mathrm{y}, 3 / 2-\mathrm{z}$.

Figure S8. Thermal ellipsoid plot (50\% probability level) of compound 8, $(4-\mathrm{MePyH})_{2}\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right]$, at 100 K . Symmetry equivalent atoms were generated through the following symmetry operations: $\mathrm{i}=1 / 2-\mathrm{x}, 1 / 2+\mathrm{y}, 1 / 2-\mathrm{z} ; \mathrm{ii}=2-\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z}$.

Figure S9. Thermal ellipsoid plot (50% probability level) of compound 9, [4,4'$\left.\mathrm{BipyH}_{2}\right]_{2}\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right]_{2} \bullet\left[4,4{ }^{\prime}-\mathrm{BipyH}_{2} \cdot 2 \mathrm{NO}_{3}\right]$, at 100 K . Symmetry equivalent atoms were generated through the following operation: $\mathrm{i}=1-\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z}$.

Figure S11. Thermal ellipsoid plot (50\% probability level) of compound 11, $\left[\right.$ TerpyH $\left.H_{2}\right]\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right] \cdot \mathrm{H}_{2} \mathrm{O}$, at 100 K .

Figure S12. Thermal ellipsoid plot (50\% probability level) of compound 12, $(2 \mathrm{MePyH})_{2}\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, at 100 K . Symmetry equivalent atoms were generated through the following symmetry operation: $\mathrm{i}=1-\mathrm{x}, \mathrm{y}, 1 / 2-\mathrm{z}$.

Figure S13. Thermal ellipsoid plot (50% probability level) of compound 13, (3$\mathrm{MePyH})_{2}\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right]$, at 100 K . Symmetry equivalent atoms were generated through the following symmetry operations: $\mathrm{i}=1-\mathrm{x}, \mathrm{y}, 1-\mathrm{z} ; \mathrm{i}=1-\mathrm{x}, \mathrm{y}, 3 / 2-\mathrm{z}$.

Figure S14. Thermal ellipsoid plot (50\% probability level) of compound 14, (3$\mathrm{ClPyH})_{2}\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right]$, at 100 K . Symmetry equivalent atoms were generated the following operations: $\mathrm{i}=1-\mathrm{x}, \mathrm{y}, 3 / 2-\mathrm{z}$.

Figure S15. Thermal ellipsoid plot (50\% probability level) of compound 15, $(\mathrm{PhenH})_{2}\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right] \cdot 2\left[\mathrm{H}_{2} \mathrm{O}\right]$, at 100 K . Symmetry equivalent atoms were generated the following symmetry operations: $\mathrm{i}=1-\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z}$.

4. SUPRAMOLECULAR PACKING DIAGRAMS.

The structures of the compounds reported herein adopt supramolecular extended networks that result from noncovalent interactions including hydrogen bonding, and $\pi-\pi$ stacking interactions.

Figure S16. Packing diagram of (1) PiperH2 $\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{2} \cdot\left[\operatorname{PiperH} \mathrm{H}_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]$ Looking down the y -axis. The H -bonding network along x and z axes further propagates into a 2 D supramolecular network.

Figure S17. Packing diagram of (2) $\left[\text { TerpyH } \mathrm{H}_{2}\right]_{2}\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{5}\right]\left[\mathrm{NO}_{3}\right]_{3}\left[\mathrm{H}_{2} \mathrm{O}\right]_{2}$
From the pentanitrato structural unit H -bonding and pi-pi stacking along the x -axis further propagate this compound into a 3D supramolecular framework.

Figure S18. Packing diagram of (3), $(\mathrm{PyH})_{2}\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right] \cdot\left(\mathrm{PyH} \cdot \mathrm{NO}_{3}\right)$
In this 0D supramolecular network, there are no non-covalent interactions along the y-axis, however, in this figure $\mathrm{C}-\mathrm{H}---\mathrm{O}$ interaction distances are shown for clarity.

Figure S19. Packing diagram of (4), $(\mathrm{PyH})_{2}\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right] \cdot 2\left(\mathrm{PyH} \cdot \mathrm{NO}_{3}\right)$
Carbon atoms have been omitted for clarity. Viewed down the y-axis there are no non-covalent interactions between the thorium structural units which further indicates the 0D network for this compound.

Figure S20. Packing diagram of (5) (3,5-DiMePyH $)_{2}\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right] \cdot\left[(3,5-\mathrm{DiMePyH})\left(\mathrm{NO}_{3}\right)\right]$ There is no propagation along the z -axis further indicating the 0 D nature of this unit.

Figure S21. Packing diagram of (6) [3,5-DiMePy $]_{2}\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right]$.

Figure S22. Packing diagram of (7) $\left(\mathrm{TerpyH} \mathrm{H}_{2}\right)\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right] \cdot\left(\mathrm{TerpyH} \mathrm{H}_{2}\right)\left(\mathrm{NO}_{3}\right)_{2}$
There are no non-covalent interactions between the thorium structural units further indicating the 0D supramolecular framework.

Figure S23. Packing diagram of (8) $[4-\mathrm{MePyH}]_{2}\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right]$
There is no propagation along the y or x axes further indicating the 1 D connectivity along the z axis of this supramolecular network.

Figure S24. Packing diagram of (9) $\left[4,4-\mathrm{BipyH}_{2}\right]_{2}\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right]_{2} \bullet\left[4,4-\mathrm{BipyH}_{2} \cdot 2 \mathrm{NO}_{3}\right]$
Propagating along z axis from the thorium metal center, H-bonding interactions connect between the outer coordination sphere bipyridinium's as well as the nitrates to form 1D chains.

Figure S25. Packing diagram of (10) $(\text { PhthalH })_{2}\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right]$
While the 1D chains propagate along the z -axis, here one can see there is no propagation along the x axis, further indicating the 1 D supramolecular network.

Figure S26. Packing diagram of (11) $\left[\right.$ Terpy $\left.\mathrm{H}_{2}\right]\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right] \cdot \mathrm{H}_{2} \mathrm{O}$
Viewed down the x -axis showing the non-covalent interactions that propagate this system into a 1D supramolecular network.

Figure S27. Packing diagram of (12) $(2 \mathrm{MePyH})_{2}\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
Viewed down the y-axis showing the non-covalent interactions along the z -axis that propagate this system into a 2D supramolecular network.

Figure S28. Packing diagram of (13) $(3-\mathrm{MePyH})_{2}\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right]$
Shows the non-covalent interactions along the z -axis that propagate this system into a 2 D supramolecular network.

Figure S29. Packing diagram of (14) $[3-\mathrm{ClPyH}]_{2}\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right]$
Viewed down the x -axis showing the non-covalent interactions along the z axis that propagates this system into a 2D supramolecular network.

Figure S30. Packing diagram of (15) $(\mathrm{PhenH})_{2}\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right] \cdot 2\left[\mathrm{H}_{2} \mathrm{O}\right]$
Shows the non-covalent interactions down the x -axis, which further propagate this system into a 2D supramolecular network.

5. POWDER X-RAY DIFFRACTION PLOTS OF COMPOUNDS 1-15.

Figure S31. Powder X-ray diffraction pattern (collected with $\mathrm{Cu} \mathrm{K} \alpha$ radiation) observed for 1 (teal) overlaid with the pattern calculated from the single crystal structure of 1 at 100 K (black).

Figure S32. Powder X-ray diffraction pattern (collected with $\mathrm{Cu} \mathrm{K} \alpha$ radiation) observed for 2 (orange) overlaid with the pattern calculated from the single crystal structure of 2 at 100 K (black)

Figure S33. Powder X-ray diffraction pattern (collected with $\mathrm{Cu} \mathrm{K} \alpha$ radiation) observed for 3 (red) overlaid with the pattern calculated from the single crystal structure of 3 at 100 K (black)

Figure S34. Powder X-ray diffraction pattern (collected with $\mathrm{Cu} \mathrm{K} \alpha$ radiation) observed for 4 (blue) overlaid with the pattern calculated from the single crystal structure of 4 at 100 K (black)

Figure S35. Powder X-ray diffraction pattern (collected with $\mathrm{Cu} \mathrm{K} \alpha$ radiation) observed for 5 (pink) overlaid with the pattern calculated from the single crystal structure of 5 at 100 K (black).

Figure S36. Powder X-ray diffraction pattern (collected with $\mathrm{Cu} \mathrm{K} \alpha$ radiation) observed for 6 (purple) overlaid with the pattern calculated from the single crystal structure of 6 at 100 K (black).

Figure S37. Powder X-ray diffraction pattern (collected with $\mathrm{Cu} \mathrm{K} \alpha$ radiation) observed for 7 (green) overlaid with the pattern calculated from the single crystal structure of 7 at 100 K (black).

Figure S38. Powder X-ray diffraction pattern (collected with $\mathrm{Cu} \mathrm{K} \alpha$ radiation) observed for 8 (blue) overlaid with the pattern calculated from the single crystal structure of 8 at 100 K (black).

Figure S39. Powder X-ray diffraction pattern (collected with $\mathrm{Cu} \mathrm{K} \alpha$ radiation) observed for 9 (purple) overlaid with the pattern calculated from the single crystal structure of 9 at 100 K (black)

Figure S40. Powder X-ray diffraction pattern (collected with $\mathrm{Cu} \mathrm{K} \alpha$ radiation) observed for 10 (orange) overlaid with the pattern calculated from the single crystal structure of 10 at 100 K (black)

Figure S41. Powder X-ray diffraction pattern (collected with $\mathrm{Cu} \mathrm{K} \alpha$ radiation) observed for 11 (maroon) overlaid with the pattern calculated from the single crystal structure of 11 at 100 K (black).

Figure S42. Powder X-ray diffraction pattern (collected with $\mathrm{Cu} \mathrm{K} \alpha$ radiation) observed for 12 (blue) overlaid with the pattern calculated from the single crystal structure of 12 at 100 K (black).

Figure S43. Powder X-ray diffraction pattern (collected with $\mathrm{Cu} \mathrm{K} \alpha$ radiation) observed for 13 (brown) overlaid with the pattern calculated from the single crystal structure of 13 at 100 K (black).

Figure S44. Powder X-ray diffraction pattern (collected with $\mathrm{Cu} \mathrm{K} \alpha$ radiation) observed for 14 (yellow) overlaid with the pattern calculated from the single crystal structure of 14 at 100 K (black).

Figure S45. Powder X-ray diffraction pattern (collected with $\mathrm{Cu} \mathrm{K} \alpha$ radiation) observed for 15 (teal) overlaid with the pattern calculated from the single crystal structure of 15 at 100 K (black).

6. RAMAN AND INFRARED PLOTS OF COMPOUNDS 1-15.

Figure S46. Infrared and Raman spectra of PiperH$H_{2}\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{2} \cdot\left[\operatorname{PiperH} \mathrm{H}_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]$ (1) (Raman =blue, IR = red). IR (cm-1): 701, 749, 821, 869, 954, 997, 1089, 1203, 1294, 1361, 1427, 1456, 1523, 1590, 2360, 2829, 3029. Raman (cm-1): 210, 242, 410, 447, 458, 721, 749, 816, 926, 1036, 1211, 1317, 1418, 1469, 1527, 1563, 2769, 2818, 2924, 2980, 3021.

Figure S47. Infrared and Raman spectra of
$\left(\right.$ Terpy $\left.\mathrm{H}_{2}\right)\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{2} \bullet\left[\left(\mathrm{TerpyH}_{2}\right)_{3}\left(\mathrm{NO}_{3}\right)_{6}\right] \cdot 4\left(\mathrm{H}_{2} \mathrm{O}\right)(2)$ (Raman =blue, IR = red). IR $\left(\mathrm{cm}^{-1}\right)$: 739, 800, 930, 1030, 1270, 1450, 1590, 3000. Raman: 240, 251, 749, 1017, 1253, 1357, 1465, 1675, 3150.

Figure S48. Infrared and Raman spectra $(\mathrm{PyH})_{2}\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right] \cdot\left(\mathrm{PyH}^{\prime} \cdot \mathrm{NO}_{3}\right)$, (3) (Raman $=$ blue, $\mathrm{IR}=$ red). IR (cm^{-1}): 741, 810, 937, 1030, 1280, 1500, 1610, 3120. Raman $\left(\mathrm{cm}^{-1}\right): 253,272,472,652$, 749, 1017, 1275, 1578, 3180.

Figure S49. Infrared and Raman spectra of $(\mathrm{PyH})_{2}\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right] \cdot 2\left(\mathrm{PyH} \cdot \mathrm{NO}_{3}\right)$ (4) (Raman =blue, IR $=$ red). IR $\left(\mathrm{cm}^{-1}\right): 748,806,918,1030,1280,1420,1520,1640,3090 . \operatorname{Raman}\left(\mathrm{cm}^{-1}\right): 473,643$, 753, 1039, 1198, 1575, 1635, 3120.

Figure S50. Infrared and Raman spectra of $(3,5-\mathrm{DiMePyH})_{2}\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right] \cdot\left[(3,5-\mathrm{DiMePyH})\left(\mathrm{NO}_{3}\right)\right]$, (5) $($ Raman $=$ blue, $\operatorname{IR}=$ red $)$. IR $\left(\mathrm{cm}^{-1}\right)$: 741, 806, 860, 914, 964, 1270, 1520, 1620, 3490. Raman $\left(\mathrm{cm}^{-1}\right): 257,510,745,1008,2980,3015$.

Figure S51. Infrared and Raman spectra of (3,5-DiMePyH $)_{2}\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right]$ (6) $($ Raman $=b l u e, ~ I R=$ red). IR (cm^{-1}): 741, 806, 860, 933, 1030, 1280, 1520, 1670. Raman (cm^{-1}): 253, 515, 740, 1002, 2975, 3030.

Figure S52. Infrared and Raman spectra of $\left(\mathrm{TerpyH}_{2}\right)\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right] \cdot\left(\mathrm{TerpyH}_{2}\right)\left(\mathrm{NO}_{3}\right)_{2}$ (7) (Raman $=$ blue, $\mathrm{IR}=$ red $)$. $\mathrm{IR}\left(\mathrm{cm}^{-1}\right): 790,850,1150,1355,1600,2352$. Raman $\left(\mathrm{cm}^{-1}\right): 237,253,753,1027$, 1249, 1363, 1470, 1670, 3230.

Figure S53. Infrared and Raman spectra of $(4-\mathrm{MePyH})_{2}\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right]$, (8) $($ Raman $=$ blue, $\mathrm{IR}=$ red $)$. IR (cm ${ }^{-1}$): 771, 918, 1030, 1300, 1430, 1510, 1640, 2360. Raman: 503, 1079, 1253, 1522, 2875, 3010.

Figure S54. Infrared and Raman spectra of $\left[4,4-\mathrm{BipyH}_{2}\right]_{2}\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right]_{2} \cdot\left[4,4-\mathrm{BipyH}_{2} \cdot 2 \mathrm{NO}_{3}\right]$ (9) (Raman =blue, $\mathrm{IR}=$ red). $\mathrm{IR}\left(\mathrm{cm}^{-1}\right): 717,748,802,849,930,1020,1280,1520,1620,2920$. Raman: 252, 267, 589, 753, 1088, 1290, 1575, 2010, 3100.

Figure S55. Infrared and Raman spectra of $(\mathrm{PhthalH})_{2}\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right](10)$ (Raman $=$ blue, $\mathrm{IR}=$ red $)$. IR (cm^{-1}): 740, 810, 841, 949, 1020, 1280, 1380, 1430, 1510, 3220. Raman (cm^{-1}): 250, 271, 591, 749, 1091, 1292, 1578, 2015, 3101.

Figure S56. Infrared and Raman spectra of $\left[\right.$ TerpyH$\left.H_{2}\right]\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right] \cdot \mathrm{H}_{2} \mathrm{O}(11)$ (Raman $=$ blue, $\mathrm{IR}=$ red). IR (cm^{-1}): 751, 922, 1105, 1259, 1670, 1750, 3250. Raman (cm^{-1}): 235, 257, 753, 1025, 1257, 1362, 1469, 1678, 3160.

Figure S57. Infrared and Raman spectra of (2-MePyH) $2\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, (12) (Raman =blue, IR $=$ red). IR $\left(\mathrm{cm}^{-1}\right): 690,741,779,801,870,947,1029,1068,1102,1266,1519,1657,2328,2367$, 2741, 3503, 3593. Raman $\left(\mathrm{cm}^{-1}\right): 219,240,545,633,708,755,804,1013,1034,1055,1171,1246$, 1301, 1513, 1549, 1630, 2927, 3071, 3088, 3108, 3513.

Figure S58. Infrared and Raman spectra of (3-MePyH $)_{2}\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right](13)($ Raman $=$ blue, $\mathrm{IR}=$ red $)$. IR (cm^{-1}): 741, 802, 856, 941, 1030, 1270, 1530. Raman (cm^{-1}): 287, 514, 597, 752, 1056, 1247, 2875, 3015.

Figure S59. Infrared and Raman spectra of $(3-\mathrm{ClPyH})_{2}\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right]$, (14) $($ Raman $=$ blue, $\mathrm{IR}=$ red $)$. IR (cm^{-1}): 729, 802, 895, 1030, 1120, 1270, 1520, 1620, 2360, 3120. Raman $\left(\mathrm{cm}^{-1}\right): 247,256,456$, 612, 748, 1096, 1176, 1210, 1251, 1347, 1598, 1603, 3080.

Figure S60. Infrared and Raman spectra of $(\mathrm{PhenH})_{2}\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right] \cdot 2\left[\mathrm{H}_{2} \mathrm{O}\right]$ (15) (Raman =blue, IR $=$ red). IR $\left(\mathrm{cm}^{-1}\right): 717,721,771,852,941,1020,1540,1610,2920 . \operatorname{Raman}\left(\mathrm{cm}^{-1}\right): 436,687,1144$, 1354, 1443, 2365, 3501, 3754.

Table S1. Assignment of characteristic peaks for both Raman and IR peaks for compound $\mathbf{1}$ PiperH $H_{2}\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{2} \cdot\left[\operatorname{PiperH} \mathrm{H}_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]$, representative of the pentanitrato molecular unit.

IR (cm^{-1})	$\operatorname{Raman}\left(\mathrm{cm}^{-1}\right)$	Assignment
3029	3021	
	2980	
	2924	
2829	2818	
	2769	
2360		
1590	1563	$\mathrm{H}_{2} \mathrm{O}$ bend
1523	1527	NO nitrate/ $\mathrm{H}_{2} \mathrm{O}$ bend
1456	1469	
1427	1418	
1361	1317	NO_{2} group asymmetric
1294	1211	NO_{2} group asymmetic
1203 (
1089	1036	NO_{2} symmetric stretch
997		
954	926	
869		
821	816	NO_{3} - group inversion
749	749	NO_{2} bend
701	721	Find $\mathrm{O}-\mathrm{NO}_{2}$ bend.
	458	$\mathrm{H}_{2} \mathrm{O}$ rock
	447	$\mathrm{H}_{2} \mathrm{O}$ rock
	410	$\mathrm{H}_{2} \mathrm{O}$ rock
	242	$\mathrm{H}_{2} \mathrm{O}-\mathrm{Th}$
	210	$\mathrm{NO}_{3}-\mathrm{H}_{2} \mathrm{O}$ group-Th

Table S2. Assignment of characteristic peaks for both Raman and IR peaks for compound 12 (2$\mathrm{MePyH})_{2}\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, representative of the hexanitrato molecular unit.

IR $\left(\mathrm{cm}^{-1}\right)$	Raman $\left(\mathrm{cm}^{-1}\right)$	Assignment
3593		3513
3503	3108	
	3088	
	3071	
	2927	
2741		
2367		N-O terminal stretch of $\mathrm{NO}_{3}{ }^{-}$
2328	1630	Asymmetric NO_{2}
1657	1549	
	1513	Symmetric NO_{2}
1519	1301	Symmetric NO_{2}
	1246	Symmetric NO_{2}
1266	1171	
1102	1055	
1068	1034	
1029	1013	
947	804	Symmetric ONO_{3}
870		
801	755	Th-NO bends NO_{2}
779	708	Th NO_{3} stretretches
741	633	

Table S3 Average Th- $\mathrm{OH}_{\mathrm{H} 2 \mathrm{O}}$ and $\mathrm{Th}-\mathrm{O}_{\mathrm{NO} 3}$ average bond distances for penta nitrato complexes $\mathbf{1 - 2}$ as well as the average $\mathrm{Th}-\mathrm{NO}_{3}$ distance for the 13 hexanitrato complexes. ${ }^{a}$

Compound	$\mathrm{Th}-\mathrm{OH}_{2}(\mathrm{~A})$	$\mathrm{Th}-\mathrm{NO}_{3}(\AA)$
$\mathbf{1}$	$2.4396(8)$	$2.59557(2)$
$\mathbf{2}$	$2.4449(9)$	$2.567783(2)$
$\mathbf{3 - 1 5}_{\text {(average) }}$	-	$2.5616(1)$

${ }^{\text {a }}$ Errors are the standard deviation of the mean.

Table S4 Average Th-ONO3 bond distances for 3-15. ${ }^{a}$

Compound	$\mathrm{Th}-\mathrm{NO}_{3}(\AA)$
$\mathbf{3}$	$2.5265(2)$
4	$2.5496(2)$
5	$2.5585(2)$
$\mathbf{6}$	$2.5687(2)$
$\mathbf{7}$	$2.5567(2)$
$\mathbf{8}$	$2.5619(2)$
$\mathbf{9}$	$2.5575(2)$
$\mathbf{1 0}$	$2.5620(2)$
$\mathbf{1 1}$	$2.5638(2)$
$\mathbf{1 2}$	$2.5598(2)$
$\mathbf{1 3}$	$2.5596(2)$
$\mathbf{1 4}$	$2.5577(2)$

${ }^{\text {a }}$ Errors are the standard deviation of the mean.

7. SUPRAMOLECULAR INTERACTIONS OBSERVED IN COMPOUNDS 1-

 15.Supramolecular interactions were calculated using the "Calc All" function within the PLATON software suite. ${ }^{1}$ Significant noncovalent interactions for reported compounds - such as hydrogen bonding, and $\pi-\pi$ stacking interactions - are tabulated below, guided by the classification of supramolecular interactions as reported previously. ${ }^{2-4}$

Noncovalent Interaction Notations:

- $\mathrm{D}=$ donor atom involved in supramolecular interaction.
- $\mathrm{A}=$ acceptor atom involved in supramolecular interaction.
- $\beta=$ angle formed between C_{g} and the plane normal to C_{g}.
- $\mathrm{C}_{\mathrm{g}}--\mathrm{C}_{\mathrm{g}}=$ Distance between ring centroids.

Table S5. Selected noncovalent hydrogen bonding interactions- observed in (1).

Interaction	$\begin{aligned} & \text { Distance }(\AA), \\ & \text { D-H---A } \end{aligned}$	$\begin{aligned} & \text { Angle }\left({ }^{\circ}\right), \\ & \angle \mathrm{D}-\mathrm{H}--\mathrm{A} \end{aligned}$
O(81)-H --- O(42)\#1	2.829(2)	176(3)
$\mathrm{O}(81)-\mathrm{H}--\mathrm{O}(43)$	3.029(2)	125(2)
$\mathrm{O}(81)-\mathrm{H}--\mathrm{O}(11) \# 2$	2.854(2)	172(3)
$\mathrm{O}(91)-\mathrm{H}--\mathrm{O}(41)$	2.817(2)	164(3)
$\mathrm{O}(91)-\mathrm{H}--\mathrm{O}(43)$	2.902(2)	114(2)
$\mathrm{O}(91)-\mathrm{H}-\mathrm{-} \mathrm{O}(21) \# 3$	2.805(2)	175(3)
$\mathrm{O}(91)-\mathrm{H}--\mathrm{O}(23)$	3.189(2)	130(2)
N(61)-H --- (O33)	3.127(2)	159
N(61)-H --- (O3)	3.039(2)	114
N(61)-H --- (O51)	2.866(2)	169
N(61)-H --- (O52)	2.988(2)	116
N(71)-H --- (O52)	2.796(2)	167
N(71)-H --- (O51)\#4	3.001(2)	160

Symmetry transformations used to generate equivalent atoms:
\#1 x, 1/2-y,-1/2+z \#2 1+x,y,z \#3 x,1/2-y,1/2+z \#4-1+x,y,z

Table S6. Selected noncovalent interactions - such as hydrogen bonding and $\pi-\pi$ stacking interactions - observed in (2). $\mathrm{C}_{\mathrm{g} 1}=$ centroid formed from ring containing atoms $\mathrm{N}_{9}, \mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$, $\mathrm{C}_{4}, \mathrm{C}_{5} ; \mathrm{C}_{\mathrm{g} 4}=$ centroid formed from ring containing atoms $\mathrm{N}_{12}, \mathrm{C}_{16}, \mathrm{C}_{17}, \mathrm{C}_{18}, \mathrm{C}_{19}, \mathrm{C}_{20} ; \mathrm{C}_{\mathrm{g} 3}=$ centroid formed from ring containing atoms $\mathrm{N}_{11}, \mathrm{C}_{11}, \mathrm{C}_{12}, \mathrm{C}_{13}, \mathrm{C}_{14}, \mathrm{C}_{15} ; \mathrm{C}_{\mathrm{g} 6}=$ centroid formed from ring containing atoms $\mathrm{N}_{14}, \mathrm{C}_{26}, \mathrm{C}_{27}, \mathrm{C}_{28}, \mathrm{C}_{29}, \mathrm{C}_{30}$.

Interaction	$\begin{aligned} & \text { Distance }(\AA), \\ & \text { D-H---A } \end{aligned}$	$\begin{aligned} & \text { Angle }\left({ }^{\circ}\right), \\ & \angle \mathrm{D}-\mathrm{H}--\mathrm{A} \end{aligned}$	$\begin{aligned} & \text { Distance }(\AA), \\ & \mathrm{C}-\mathrm{H}---\mathrm{C}_{\mathrm{g}} \end{aligned}$	$\beta\left({ }^{\circ}\right.$)
$\mathrm{N}(9)-\mathrm{H}--\mathrm{O}(19)$	2.725(4)	171(3)	-	-
$\mathrm{N}(11)-\mathrm{H}--\mathrm{O}(19)$	2.687(4)	168(4)	-	-
$\mathrm{N}(12)-\mathrm{H}--\mathrm{O}(22)$	2.681(4)	167(3)	-	-
N(14)-H --- O(22)	2.759(4)	168(3)	-	-
$\mathrm{O}(16)-\mathrm{H}--\mathrm{O}(18)$	2.713(3)	169(3)	-	-
$\mathrm{O}(16)-\mathrm{H}--\mathrm{O}(23)$	2.638(3)	176(3)	-	-
$\mathrm{O}(17)-\mathrm{H}--\mathrm{O}(24)$	2.689(3)	176(3)	-	-
$\mathrm{O}(17)-\mathrm{H}--\mathrm{O}(27)$	2.661(3)	172(3)	-	-
$\mathrm{O}(27)-\mathrm{H}-\mathrm{--}$ O(28)	2.765(3)	177(3)	-	-
$\mathrm{O}(27)-\mathrm{H}--\mathrm{O}(26)$	2.923(3)	171(3)	-	-
$\mathrm{O}(28)$ - H --- $\mathrm{O}(24)$	2.845(3)	174(3)	-	-
$\mathrm{O}(28)-\mathrm{H}-\mathrm{-}$ O(3)	2.987(4)	165(3)	-	-
${\mathrm{Cg} 1---\mathrm{C}_{4} 4}$	-	-	3.5299 (18)	13.1
$\mathrm{C}_{\mathrm{g} 3}---\mathrm{C}_{\mathrm{g} 6}$	-	-	$3.7674(18)$	25.2

Table S7. Selected noncovalent interactions - such as hydrogen bonding, halogen $-\pi, \mathrm{C}-\mathrm{H}-\pi$, and $\pi-\pi$ stacking interactions - observed in (3). $\mathrm{C}_{\mathrm{g} 1}=$ centroid formed from ring containing atoms $\mathrm{N}_{51}, \mathrm{C}_{51}, \mathrm{C}_{52}, \mathrm{C}_{53}, \mathrm{C}_{54}, \mathrm{C}_{55} ; \mathrm{C}_{\mathrm{g} 2}=$ centroid formed from ring containing atoms $\mathrm{N}_{61}, \mathrm{C}_{61}, \mathrm{C}_{62}, \mathrm{C}_{63}$, $\mathrm{C}_{62 _c}, \mathrm{C}_{61 _c}$.

Interaction	Distance (\AA), $\mathrm{D}-\mathrm{H}---\mathrm{A}$	Angle $\left({ }^{\circ}\right)$, $\angle \mathrm{D}-\mathrm{H}---\mathrm{A}$	Distance (\AA), $\mathrm{C}_{\mathrm{g}---\mathrm{C}_{\mathrm{g}}}$	$\beta\left({ }^{\circ}\right)$
$\mathrm{N}(51)-\mathrm{H}--\mathrm{O}(41)$	$3.056(3)$	$151(6)$	-	-
$\mathrm{N}(51)-\mathrm{H}--\mathrm{O}(42)$	$2.928(2)$	$108(4)$	-	-
$\mathrm{N}(61)-\mathrm{H}--\mathrm{O}(41) \# 1$	$2.869(4)$	$148(9)$	-	-
$\mathrm{C}_{\mathrm{g} 1---\mathrm{C}_{\mathrm{g} 2}}$	-	-	$3.5980(15)$	22.3

Symmetry transformations used to generate equivalent atoms: \#1 1-x,y,3/2-z

Table S8. Selected noncovalent interactions - such as hydrogen bonding, observed in (4).

Interaction	Distance (\AA), D-H---A	Angle $\left(^{\circ}\right)$, $\angle \mathrm{D}-\mathrm{H}---\mathrm{A}$
$\mathrm{N}(51)-\mathrm{H}--\mathrm{O}(43)$	$2.849(2)$	$161(3)$
$\mathrm{N}(61)-\mathrm{H}--\mathrm{O}(42)$	$2.753(2)$	$177(3)$
$\mathrm{N}(61)-\mathrm{H}--\mathrm{O}(43)$	$3.112(2)$	$122(2)$

Table S9. Selected noncovalent interactions - such as hydrogen bonding, and $\pi-\pi$ stacking interactions - were observed in (5). $\mathrm{C}_{\mathrm{g} 2}=$ centroid formed from ring containing atoms $\mathrm{N}_{81}, \mathrm{C}_{81}$, $\mathrm{C}_{82}, \mathrm{C}_{83}, \mathrm{C}_{84}, \mathrm{C}_{85} ; \mathrm{C}_{83}=$ centroid formed from ring containing atoms $\mathrm{N}_{91}, \mathrm{C}_{91}, \mathrm{C}_{92}, \mathrm{C}_{93}, \mathrm{C}_{94}, \mathrm{C}_{95}$.

Interaction	$\begin{aligned} & \text { Distance }(\AA), \\ & \text { D-H---A } \end{aligned}$	$\begin{aligned} & \text { Angle }\left({ }^{\circ}\right), \\ & \angle \mathrm{D}-\mathrm{H}--\mathrm{A} \end{aligned}$	$\begin{aligned} & \text { Distance }(\AA), \\ & \text { C }_{\mathrm{g}}---\mathrm{C}_{\mathrm{g}} \end{aligned}$	$\beta\left({ }^{\circ}\right)$
$\mathrm{N}(71)-\mathrm{H}--\mathrm{O}(61)$	3.066(5)	173(2)	-	-
N(71)-H --- O(62)	3.421(2)	129(2)	-	-
N(81)-H --- O(63)	2.965(4)	143(5)	-	-
N(91)-H --- O(61)	3.129(2)	154(2)	-	-
$\mathrm{N}(91)-\mathrm{H}---\mathrm{O}(63)$	3.038(4)	174(3)	-	-
${\mathrm{Cg} 22---\mathrm{Cg}^{2}}$	-	-	3.7087(12)	23.6

Table S10. Selected noncovalent interactions - such as hydrogen bonding, and $\pi-\pi$ stacking interactions - were observed in (6).

Interaction	Distance (\AA), D-H---A	Angle $\left(^{\circ}\right)$, $\angle \mathrm{D}-\mathrm{H}---\mathrm{A}$
$\mathrm{N}(41)-\mathrm{H}--\mathrm{O}(12)$	$2.889(3)$	$154(4)$

Table S11. Selected noncovalent interactions - such as hydrogen bonding interactions - were observed in (7).

Interaction	Distance (\AA), $\mathrm{D}-\mathrm{H}---\mathrm{A}$	Angle $\left(^{\circ}\right)$, $\angle \mathrm{D}-\mathrm{H}---\mathrm{A}$
$\mathrm{N}(53)-\mathrm{H}--\mathrm{O}(41)$	$2.6528(19)$	$166(2)$
$\mathrm{N}(51)-\mathrm{H}--\mathrm{O}(41)$	$2.685(2)$	$168(2)$

Table S12. Selected noncovalent interactions - such as hydrogen bonding, and $\pi-\pi$ stacking interactions - were observed in (8). $\mathrm{C}_{\mathrm{g} 1}=$ centroid formed from ring containing atoms $\mathrm{N}_{31}, \mathrm{C}_{31}$, $\mathrm{C}_{32}, \mathrm{C}_{33}, \mathrm{C}_{34}, \mathrm{C}_{35}$.

Interaction	Distance (\AA), $\mathrm{D}-\mathrm{H}---\mathrm{A}$	Angle $\left({ }^{\circ}\right)$, $\angle \mathrm{D}-\mathrm{H}---\mathrm{A}$	Distance (\AA), $\mathrm{C}_{\mathrm{g}}--\mathrm{C}_{\mathrm{g}}$	$\beta\left({ }^{\circ}\right)$
$\mathrm{N}(31)-\mathrm{H}---\mathrm{O}(23) \# 1$	$3.249(2)$	$159(2)$	-	-
$\mathrm{N}(31)-\mathrm{H}--\mathrm{O}(3) \# 2$	$3.124(2)$	$128(2)$	-	-
$\mathrm{N}(31)-\mathrm{H}--\mathrm{O}(12) \# 3$	$2.964(2)$	$109(2)$	-	-
$\mathrm{C}_{\mathrm{g} 1}--\mathrm{C}_{\mathrm{g} 1}$	-	-	$3.7906(10)$	17.2

Symmetry transformations used to generate equivalent atoms: \#1 3/2-x, 1/2+y, 1/2-z; \#2 1-x,-y,1z; \#3 2-x,-y,1-z

Table S13. Selected noncovalent interactions - such as hydrogen bonding interactions - were observed in (9).

Interaction	Distance (\AA), D-H---A	Angle $\left(^{\circ}\right)$, $\angle \mathrm{D}-\mathrm{H}---\mathrm{A}$
$\mathrm{N}(61)-\mathrm{H}--\mathrm{O}(21) \# 1$	$2.932(3)$	$172(3)$
$\mathrm{N}(71)-\mathrm{H}--\mathrm{O}(81) \# 2$	$2.762(3)$	$179(3)$
$\mathrm{N}(91)-\mathrm{H}--\mathrm{O}(82)$	$2.767(4)$	$171(4)$
$\mathrm{N}(91)-\mathrm{H}--\mathrm{O}(82)$	$3.038(2)$	$127(3)$

Symmetry transformations used to generate equivalent atoms: \#1 1+x,y,z; \#2-1+x,y,z
Table S14. Selected noncovalent interactions - such as hydrogen bonding, and $\pi-\pi$ stacking interactions - were observed in (10). $\mathrm{C}_{\mathrm{g} 1}=$ centroid formed from ring containing atoms $\mathrm{N}_{31}, \mathrm{~N}_{32}$, $\mathrm{C}_{31}, \mathrm{C}_{32}, \mathrm{C}_{37}, \mathrm{C}_{38} ; \mathrm{C}_{\mathrm{g} 2}=$ centroid formed from ring containing atoms $\mathrm{C}_{32}, \mathrm{C}_{33}, \mathrm{C}_{34}, \mathrm{C}_{35}, \mathrm{C}_{36}, \mathrm{C}_{37}$.

Interaction	Distance (\AA), $\mathrm{D}-\mathrm{H}---\mathrm{A}$	Angle $\left({ }^{\circ}\right)$, $\angle \mathrm{D}-\mathrm{H}---\mathrm{A}$	Distance (\AA), $\mathrm{C}_{\mathrm{g}}--\mathrm{C}_{\mathrm{g}}$	$\beta\left({ }^{\circ}\right)$
$\mathrm{N}(32)-\mathrm{H}--\mathrm{O}(13)$	$2.968(5)$	$158(2)$	-	-
$\mathrm{C}_{\mathrm{g} 1}--\mathrm{C} 2$	-	$3.629(2)$	21.5	

Table S15. Selected noncovalent interactions - such as hydrogen bonding, and $\pi-\pi$ stacking interactions - were observed in (11). $\mathrm{C}_{\mathrm{g} 2}=$ centroid formed from ring containing atoms $\mathrm{N}_{71}, \mathrm{C}_{71}$, $\mathrm{C}_{72}, \mathrm{C}_{73}, \mathrm{C}_{74}, \mathrm{C}_{75} ; \mathrm{C}_{83}=$ centroid formed from ring containing atoms $\mathrm{N}_{81}, \mathrm{C}_{81}, \mathrm{C}_{82}, \mathrm{C}_{83}, \mathrm{C}_{84}, \mathrm{C}_{85}$.

Interaction	Distance (\AA), $\mathrm{D}-\mathrm{H}---\mathrm{A}$	Angle $\left({ }^{\circ}\right)$, $\angle \mathrm{D}-\mathrm{H}---\mathrm{A}$	Distance (\AA), $\mathrm{C}_{\mathrm{g}}---\mathrm{C}_{\mathrm{g}}$	$\beta\left({ }^{\circ}\right)$
$\mathrm{N}(61)-\mathrm{H}--\mathrm{O}(91) \# 1$	$2.762(3)$	$160(3)$	-	-
$\mathrm{N}(81)-\mathrm{H}--\mathrm{O}(91)$	$2.745(3)$	$155(3)$	-	-
$\mathrm{O}(91)-\mathrm{H}--\mathrm{O}(2)$	$2.771(2)$	$177(2)$	-	-
$\mathrm{O}(91)-\mathrm{H}--\mathrm{O}(23) \# 2$	$2.829(2)$	$163(4)$	-	-
$\mathrm{C}_{\mathrm{g} 2}---\mathrm{C}_{\mathrm{g} 3}$	-	-	$3.7773(12)$	24.4

Symmetry transformations used to generate equivalent atoms: \#1 1-x,1-y,1-z; \#2-1+x,y,z

Table S16. Selected noncovalent interactions - such as hydrogen bonding, and $\pi-\pi$ stacking interactions - were observed in (12).

Interaction	Distance (\AA), D-H---A	Angle $\left(^{\circ}\right)$, $\angle \mathrm{D}-\mathrm{H}---\mathrm{A}$
$\mathrm{O}(41)-\mathrm{H}--\mathrm{O}(21)$	$2.887(2)$	$168(3)$
$\mathrm{O}(41)-\mathrm{H}--\mathrm{O}(13) \# 1$	$2.941(2)$	$121(3)$
$\mathrm{O}(41)-\mathrm{H}--\mathrm{O}(2) \# 2$	$3.097(3)$	$146(3)$
$\mathrm{N}(31)-\mathrm{H}--\mathrm{O}(41)$	$2.711(3)$	$169(3)$

Symmetry transformations used to generate equivalent atoms: \#1 x,1+y,z; \#2 x,1-y,1/2+z

Table S17. Selected noncovalent interactions - such as hydrogen bonding, and $\pi-\pi$ stacking interactions - were observed in (13). $\mathrm{C}_{\mathrm{g} 1}=$ centroid formed from ring containing atoms $\mathrm{N}_{41}, \mathrm{C}_{41}$, $\mathrm{C}_{42}, \mathrm{C}_{43}, \mathrm{C}_{44}, \mathrm{C}_{45}$.

Interaction	Distance (\AA), $\mathrm{D}-\mathrm{H}---\mathrm{A}$	Angle $\left({ }^{\circ}\right)$, $\angle \mathrm{D}-\mathrm{H}---\mathrm{A}$	Distance (\AA), $\mathrm{C}_{\mathrm{g}}---\mathrm{C}_{\mathrm{g}}$	$\beta\left({ }^{\circ}\right)$
$\mathrm{N}(41)-\mathrm{H}---\mathrm{O}(21)$	$2.833(4)$	$143(4)$	-	-
$\mathrm{N}(41)-\mathrm{H}--\mathrm{O}(23) \# 1$	$3.093(4)$	$127(4)$	-	-
$\mathrm{Cg}_{\mathrm{g} 1}--\mathrm{Cg} 1$	-	-	$3.574(2)$	7.0

Symmetry transformations used to generate equivalent atoms: \#1 $1 / 2-\mathrm{x}, 1 / 2-\mathrm{y}, 1-\mathrm{z}$
Table S18. Selected noncovalent interactions - such as hydrogen bonding, and $\pi-\pi$ stacking interactions - were observed in (14). $\mathrm{C}_{\mathrm{g} 1}=$ centroid formed from ring containing atoms $\mathrm{N}_{31}, \mathrm{C}_{31}$, $\mathrm{C}_{32}, \mathrm{C}_{33}, \mathrm{C}_{34}, \mathrm{C}_{35}$.

Interaction	Distance (\AA), $\mathrm{D}-\mathrm{H}---\mathrm{A}$	Angle $\left({ }^{\circ}\right)$, $\angle \mathrm{D}-\mathrm{H}---\mathrm{A}$	Distance (\AA), $\mathrm{C}_{\mathrm{g}}---\mathrm{C}_{\mathrm{g}}$	$\beta\left({ }^{\circ}\right)$
$\mathrm{N}(31)-\mathrm{H}---\mathrm{O}(11) \# 1$	$2.790(3)$	$155(3)$	-	-
$\mathrm{N}(31)-\mathrm{H}--\mathrm{O}(13)$	$3.061(3)$	$119(2)$	-	-
$\mathrm{C}_{\mathrm{g} 1--\mathrm{C} 1}$	-	-	$3.5592(16)$	8.1

Symmetry transformations used to generate equivalent atoms: \#1 $1-\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z}$
Table S19. Selected noncovalent interactions - such as hydrogen bonding, and $\pi-\pi$ stacking interactions - were observed in (15). $\mathrm{C}_{\mathrm{g} 2}=$ centroid formed from ring containing atoms $\mathrm{N}_{41}, \mathrm{C}_{41}$, $\mathrm{C}_{42}, \mathrm{C}_{43}, \mathrm{C}_{45}, \mathrm{C}_{46} ; \mathrm{C}_{83}=$ centroid formed from ring containing atoms $\mathrm{N}_{51}, \mathrm{C}_{51}, \mathrm{C}_{52}, \mathrm{C}_{53}, \mathrm{C}_{54}, \mathrm{C}_{55}$.

Interaction	Distance (\AA), $\mathrm{D}-\mathrm{H}---\mathrm{A}$	Angle $\left({ }^{\circ}\right)$, $\angle \mathrm{D}-\mathrm{H}---\mathrm{A}$	Distance (\AA), $\mathrm{Cg}_{\mathrm{g}}--\mathrm{C}_{\mathrm{g}}$	$\beta\left({ }^{\circ}\right)$
$\mathrm{N}(41)-\mathrm{H}---\mathrm{O}(51)$	$2.735(3)$	$157(3)$	-	-
$\mathrm{O}(51)-\mathrm{H}--\mathrm{O}(21)$	$2.924(2)$	$165(3)$	-	-
$\mathrm{O}(51)-\mathrm{H}--\mathrm{O}(13) \# 1$	$2.986(3)$	$163(3)$	-	-
$\mathrm{C}_{\mathrm{g} 2---\mathrm{C}_{\mathrm{g} 3}}$	-	-	$3.7087(12)$	23.6

Symmetry transformations used to generate equivalent atoms: \#1 1/2-x,-1/2+y,3/2-z

8. COMPUTATIONAL METHODS.

Electron Rich Electron Poor
Figure S61. ESP surfaces of cationic organic units found in 1-15. Maximum and minimum potential values are highlighted.

Additional Details of Computational Methods

The geometries were optimized at the density functional theory (DFT) level ${ }^{5}$ with the hybrid B3LYP exchange-correlation functional ${ }^{6,7}$ in a self-consistent reaction field (SCRF) 16^{8} model for water. The DZVP2 basis set was used for the H, N, and O atoms, ${ }^{7}$ and the cc-pVDZ-PP basis sets were used for Th. ${ }^{9}$ This combination of basis sets is abbreviated as DZVP2. Vibrational frequencies were calculated to show that the structures were minima. These calculations were performed using the Gaussian 16 program system. ${ }^{10}$ The quasi-harmonic approximation from Truhlar and co-workers ${ }^{11}$ was used to correct the entropy associated with low-frequency vibrational modes. Thus, all harmonic frequencies below $100 \mathrm{~cm}^{-1}$ were raised to $100 \mathrm{~cm}^{-1}$ before evaluation of the vibrational component to the entropy.

Single point calculations were performed at the $\operatorname{CCSD}(T)$ level ${ }^{12-15}$ with the aug-cc-pVDZ basis sets for H, N and O and the cc-pVDZ-PP for Th using the optimized geometries in water. The single point MP2 energies ${ }^{16}$ were extracted from the $\operatorname{CCSD}(\mathrm{T})$ calculations. All of the $\operatorname{CCSD}(\mathrm{T})$ calculations were performed with the MOLPRO 2020 program package. ${ }^{17,18}$

The solvation free energies in water at 298 K were calculated at the B3LYP/aD level using the with the COSMO (B3LYP/aD) parameters ${ }^{19,20}$ as implemented in Gaussian 16. The aqueous Gibbs free energy (free energy in aqueous solution), $\Delta G_{a q}$, was calculated from Equation 1.

$$
\begin{equation*}
\Delta G_{a q}=\Delta G_{g a s}+\Delta \Delta G_{\text {solv }} \tag{1}
\end{equation*}
$$

where $\Delta G_{g a s}$ is the gas phase free energy and $\Delta \Delta G_{\text {solv }}$ is the aqueous solvation free energy. A dielectric constant of 78.39 corresponding to that of bulk water was used in the COSMO calculations. The reaction free energies in aqueous solution include a correction of $+4.3 \mathrm{kcal} / \mathrm{mol}$ for each $\mathrm{H}_{2} \mathrm{O}$ molecule produced in aqueous solution due to the definition of the standard state.

Table S20. Total energies at the B3LYP/DZVP2/Th(-PP) level in water (COSMO). Energies in Hartree. Free energies were calculated with quasi-harmonic treatment for the entropy with a frequency cut-off value of $100.0 \mathrm{~cm}^{-1}$.

Cluster	ZPE	H0K	H 298 K	G 298 K
$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{9}{ }^{4+}$	0.215786	-1094.575621	-1094.545580	-1094.629581
$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8} \mathrm{NO}_{3}{ }^{3+}$	0.209910	-1298.682277	-1298.652285	-1298.736535
$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{7} \mathrm{NO}_{3}{ }^{3+}$	0.185287	-1222.220376	-1222.192499	-1222.273490
$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6} \mathrm{NO}_{3}{ }^{3+}$	0.160368	-1145.761393	-1145.737099	-1145.810706
$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{7}\left(\mathrm{NO}_{3}\right)_{2}{ }^{2+}$	0.202434	-1502.790938	-1502.759548	-1502.847342
$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\left(\mathrm{NO}_{3}\right)_{2}{ }^{2+}$	0.177282	-1426.333606	-1426.304778	-1426.388094
$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\left(\mathrm{NO}_{3}\right)_{3}{ }^{1+}$	0.194663	-1706.891942	-1706.859978	-1706.950109
$\left.\mathrm{Th}_{\mathrm{H}} \mathrm{H}_{2} \mathrm{O}\right)_{5}\left(\mathrm{NO}_{3}\right)_{3}{ }^{1+}$	0.168560	-1630.439484	-1630.409832	-1630.495516
$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\left(\mathrm{NO}_{3}\right)_{4}$	0.186034	-1910.988584	-1910.956634	-1911.047446
$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{NO}_{3}\right)_{4}$	0.158848	-1834.536920	-1834.507687	-1834.594349
$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\left(\mathrm{NO}_{3}\right)_{5}{ }^{1-}$	0.152361	-2038.643676	-2038.612228	-2038.702769
$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{NO}_{3}\right)_{5}^{1-}$	0.125795	-1962.190676	-1962.161189	-1962.249039
$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{1}\left(\mathrm{NO}_{3}\right)_{6}{ }^{2-}$	0.117209	-2166.283938	-2166.252351	-2166.343986

$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{1}\left(\mathrm{NO}_{3}\right)_{6}{ }^{2-} 5 \mathrm{bi}$	0.119106	-2166.293908	-2166.263711	-2166.351609
$\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}{ }^{2-} 4 \mathrm{bi}$	0.091686	-2089.834231	-2089.805036	-2089.892937
$\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}{ }^{2-} \mathrm{bi}$	0.093925	-2089.850666	-2089.822903	-2089.906159
$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{NO}_{3}\right)_{5}{ }^{1-} \mathrm{bi}$	0.128035	-1962.198700	-1962.169673	-1962.254400
$\mathrm{H}_{2} \mathrm{O}$	0.021000	-76.447971	-76.444191	-76.465639
$\mathrm{NO}_{3}{ }^{1-}$	0.013523	-280.536069	-280.531936	-280.561603

Table S21. Total energies at the B3LYP /aD-pp aqueous single point level in water (COSMO)/gas phase. The ZPE, thermal, entropic corrections from B3LYPdDZVP2 level. Energies in Hartrees except for $\Delta \mathrm{G}_{\text {solv }}(298 \mathrm{~K})$ in $\mathrm{kcal} / \mathrm{mol}$.

Cluster	H 0K	H 298 K	G 298 K	E(COSMO) single point	$\mathrm{E}_{\text {elec }}$ gas	$\begin{array}{\|l} \hline \Delta \mathrm{G}_{\text {solv }}(298 \mathrm{~K}) \\ \mathrm{kcal} / \mathrm{mol} \\ \hline \end{array}$
$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{9}{ }^{4+}$	-1093.365548	-1093.335507	-1093.419508	-1094.667699	-1093.581334	-681.704483
$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8} \mathrm{NO}_{3}{ }^{3+}$	-1297.867651	-1297.837659	-1297.921909	-1298.748510	-1298.077561	-421.026307
$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{7} \mathrm{NO}_{3}{ }^{3+}$	-1221.409329	-1221.381452	-1221.462443	-1222.275961	-1221.594616	-427.550711
$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6} \mathrm{NO}_{3}{ }^{3+}$	-1144.960464	-1144.936170	-1145.009777	-1145.807980	-1145.120832	-431.191772
$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{7}\left(\mathrm{NO}_{3}\right)_{2}{ }^{2+}$	-1502.280024	-1502.248634	-1502.336428	-1502.830300	-1502.482458	-218.274222
$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\left(\mathrm{NO}_{3}\right)_{2}{ }^{2+}$	-1425.831439	-1425.802611	-1425.885927	-1426.363158	-1426.008721	-222.413087
$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\left(\mathrm{NO}_{3}\right)_{3}{ }^{1+}$	-1706.548086	-1706.516122	-1706.606253	-1706.904595	-1706.742749	-101.559903
$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\left(\mathrm{NO}_{3}\right)_{3}{ }^{1+}$	-1630.112065	-1630.082413	-1630.168097	-1630.441770	-1630.280625	-101.119893
$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\left(\mathrm{NO}_{3}\right)_{4}$	-1910.718971	-1910.687021	-1910.777833	-1910.975078	-1910.905005	-43.971599
$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{NO}_{3}\right)_{4}$	-1834.287883	-1834.258650	-1834.345312	-1834.510206	-1834.446731	-39.831354
$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\left(\mathrm{NO}_{3}\right)_{5}{ }^{1-}$	-2038.337651	-2038.306203	-2038.396744	-2038.592268	-2038.490012	-64.166862
$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{NO}_{3}\right)_{5}{ }^{1-}$	-1961.918706	-1961.889219	-1961.977069	-1962.128194	-1962.044501	-52.518655
$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{1}\left(\mathrm{NO}_{3}\right)_{6}{ }^{2-}$	-2165.835838	-2165.804251	-2165.895886	-2166.193675	-2165.953047	-150.995979
$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{1}\left(\mathrm{NO}_{3}\right)_{6}{ }^{2-} 5 \mathrm{bi}$	-2165.856524	-2165.826327	-2165.914225	-2166.205711	-2165.975630	-144.377762
$\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}{ }^{2-} 4 \mathrm{bi}$	-2089.421005	-2089.391810	-2089.479711	-2089.734487	-2089.512691	-139.178783
$\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}{ }^{2-}$ bi	-2089.435508	-2089.407745	-2089.491001	-2089.753046	-2089.529433	-140.319031
$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{NO}_{3}\right)_{5}{ }^{1-} \mathrm{bi}$	-1961.912304	-1961.883277	-1961.968004	-1962.138358	-1962.040339	-61.507603
$\mathrm{H}_{2} \mathrm{O}$	-76.423598	-76.419818	-76.441266	-76.455020	-76.444598	-6.539779
$\mathrm{NO}_{3}{ }^{1-}$	-280.404126	-280.399993	-280.429660	-280.520295	-280.417649	-64.411528

Table S22. Total energies at the MP2 and $\operatorname{CCSD}(\mathrm{T}) / \mathrm{aD}(-\mathrm{PP})$ levesl with aqueous cluster geometry. Energies in Hartrees.

Cluster	CCSD(T)	MP2
$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{9}{ }^{4+}$	-1090.846845	-1090.713591
$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8} \mathrm{NO}_{3}{ }^{3+}$	-1294.889886	-1294.743260
$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{7} \mathrm{NO}_{3}{ }^{3+}$	-1218.566273	-1218.432839
$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6} \mathrm{NO}_{3}{ }^{3+}$	-1142.261815	-1142.139976
$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{7}\left(\mathrm{NO}_{3}\right)_{2}{ }^{2+}$	-1498.849649	-1498.689773
$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\left(\mathrm{NO}_{3}\right)_{2}{ }^{2+}$	-1422.535484	-1422.388534
$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\left(\mathrm{NO}_{3}\right)_{3}{ }^{1+}$	-1702.655659	-1702.483377
$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\left(\mathrm{NO}_{3}\right)_{3}{ }^{1+}$	-1626.352910	-1626.193805
$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\left(\mathrm{NO}_{3}\right)_{4}$	-1906.359221	-1906.174394
$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{NO}_{3}\right)_{4}$	-1830.055611	-1829.885136
$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\left(\mathrm{NO}_{3}\right)_{5} 5^{1-}$	-2033.660920	-2033.477589
$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{NO}_{3}\right)_{5} 5^{1-}$	-1957.373375	-1957.202906
$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{1}\left(\mathrm{NO}_{3}\right)_{6}{ }^{2-}$	-2160.847618	-2160.665881
$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{1}\left(\mathrm{NO}_{3}\right)_{6}{ }^{2-} 5 \mathrm{bi}$	-2160.874759	-2160.693752
$\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}{ }^{2-} 4 \mathrm{bbi}^{2-}$	-2084.564599	-2084.395650
$\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}{ }^{2-} \mathrm{bi}^{\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{NO}_{3}\right)_{5}{ }^{1-} \mathrm{bi}}$	-2084.595116	-2084.427272
$\mathrm{H}_{2} \mathrm{O}$	-1957.396690	-1957.226615
$\mathrm{NO}_{3}{ }^{1-}$	-76.273872	-76.260868

Table S23. Calculated Reaction Energies, $\Delta \mathrm{G}_{\mathrm{aq}}$, for the Stepwise Addition of Nitrate to 9-Coordinate Thorium(IV)-Nitrate Complexes in $\mathrm{kcal} / \mathrm{mol}$. ${ }^{\text {a }}$

Reaction	B3LYP/DZVP2	B3LYP/aD	CCSD(T)/aD	MP2/aD
$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{9}{ }^{4+}+\mathrm{NO}_{3}{ }^{-} \rightarrow \mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8} \mathrm{NO}_{3}{ }^{3+}+\mathrm{H}_{2} \mathrm{O}$	-2.6	0.3	-1.8	-0.6
$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8} \mathrm{NO}_{3}{ }^{3+}+\mathrm{NO}_{3}{ }^{-} \rightarrow \mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{7}\left(\mathrm{NO}_{3}\right)_{2}{ }^{2+}+\mathrm{H}_{2} \mathrm{O}$	-5.0	-2.5	-12.2	-11.2
$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{7}\left(\mathrm{NO}_{3}\right)_{2}{ }^{2+}+\mathrm{NO}_{3}{ }^{-} \rightarrow \mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\left(\mathrm{NO}_{3}\right)_{3}{ }^{1+}+\mathrm{H}_{2} \mathrm{O}$	0.0	2.3	-1.7	-1.2
$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\left(\mathrm{NO}_{3}\right)_{3}{ }^{1+}+\mathrm{NO}_{3}{ }^{-} \rightarrow \mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\left(\mathrm{NO}_{3}\right)_{4}+\mathrm{H}_{2} \mathrm{O}$	3.4	4.8	3.6	4.2
$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\left(\mathrm{NO}_{3}\right)_{4}+\mathrm{NO}_{3}{ }^{-} \rightarrow \mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{NO}_{3}\right)_{5}{ }^{1-}+3 \mathrm{H}_{2} \mathrm{O}$	-13.6	-12.7	-26.2	-26.3
$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{NO}_{3}\right)_{5}{ }^{1-}+\mathrm{NO}_{3}{ }^{-} \rightarrow \mathrm{ThH}_{2} \mathrm{O}\left(\mathrm{NO}_{3}\right)_{6} 6^{2-}+\mathrm{H}_{2} \mathrm{O}$	3.5	5.8	3.6	3.2
$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{NO}_{3}\right)_{5}{ }^{1-}+\mathrm{NO}_{3}{ }^{-} \rightarrow \mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}{ }^{2-}+2 \mathrm{H}_{2} \mathrm{O}$	-4.9	-3.8	-3.3	-3.8

${ }^{a}$ Optimized at the B3LYP/aD/COSMO(aq) level.
Table S24. Calculated Reaction Energies, $\Delta \mathrm{G}_{\mathrm{aq}}$, for 9-Coordinate Thorium(IV)-Nitrate Structures at $298 \mathrm{~K} \mathrm{in} \mathrm{kcal} / \mathrm{mol} .^{\text {a }}$

Reaction	B3LYP/DZVP2	B3LYP/aD	CCSD $(\mathrm{T}) / \mathrm{aD}$	MP2/aD
$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8} \mathrm{NO}_{3}{ }^{3+} \rightarrow \mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{7} \mathrm{NO}_{3}{ }^{3+}+\mathrm{H}_{2} \mathrm{O}$	2.7	2.7	9.8	9.7
$\operatorname{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{7}\left(\mathrm{NO}_{3}\right)_{2}{ }^{2+} \rightarrow \mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\left(\mathrm{NO}_{3}\right)_{2}{ }^{2+}+\mathrm{H}_{2} \mathrm{O}$	0.3	-0.6	6.4	6.5
$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\left(\mathrm{NO}_{3}\right)_{3}{ }^{1+} \rightarrow \mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\left(\mathrm{NO}_{3}\right)_{3}{ }^{1+}+\mathrm{H}_{2} \mathrm{O}$	-2.6	-3.8	3.4	3.3
$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\left(\mathrm{NO}_{3}\right)_{4} \rightarrow \mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{NO}_{3}\right)_{4}+\mathrm{H}_{2} \mathrm{O}$	-3.6	-3.6	6.5	5.6
$\left.\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\left(\mathrm{NO}_{3}\right)_{5}{ }^{1-} \rightarrow \mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{NO}_{3}\right)_{5}\right)^{1-}+\mathrm{H}_{2} \mathrm{O}$	-6.5	-7.4	-16.7	-16.8
$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{1}\left(\mathrm{NO}_{3}\right)_{6}{ }^{2-} \rightarrow \mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6} 6^{-2}+\mathrm{H}_{2} \mathrm{O}$	-8.4	-9.5	-6.9	-7.0

${ }^{\text {a }}$ Optimized at the B3LYP/aD/COSMO(aq) level.
Table S25. Relative Energies, in $\mathrm{kcal} / \mathrm{mol}$, for Selected Thorium(IV)-Nitrate Structures at 298 K in $\mathrm{kcal} / \mathrm{mol}^{\text {a }}{ }^{\text {a }}$

Molecules	$\mathrm{NO}_{3}{ }^{-}$coordination	B3LYP/DZVP2	B3LYP/aD	CCSD $(\mathrm{T}) / \mathrm{aD}$	MP2/aD	Gas phase B3LYP/aD
$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{NO}_{3}\right)_{5}{ }^{1-}$	5 bidentate	0	0	0	0	0
	3 monodentate, 2 bidentate	3.4	6.4	11.6	11.8	-2.6
$\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}{ }^{2-}$	6 bidentate	0	0	0	0	0
	2 monodentate, 4 bidentate	8.3	14.7	15.8	16.4	10.5
$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{1}\left(\mathrm{NO}_{3}\right)_{6} 6^{2-}$	5 bidentate, 1 monodentate	0	0	0	0	0
	4 bidentate, 2 monodentate	4.8	7.6	14.4	14.8	14.2

Table S26. Frequencies (cm^{-1}), IR Intensities ($\mathrm{km} / \mathrm{mole}$) and Raman Activities (\AA^{4} / amu) at B3LYP/DZVP2(H,O,N))/cc-pVDZ-PP(Th) level in water.

| $\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8} \mathrm{NO}_{3}{ }^{3+}$ | $\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{7} \mathrm{NO}_{3}{ }^{3+}$ | | | $\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{7}\left(\mathrm{NO}_{3}\right)_{2}{ }^{2+}$ | | $\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\left(\mathrm{NO}_{3}\right)_{2}{ }^{2+}$ | | $\mathrm{Th}_{(}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\left(\mathrm{NO}_{3}\right)_{3}{ }^{1+}$ | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Freq | IR | Ram |
| 35.5 | 1.2 | 3.0 | 32.0 | 0.1 | 2.4 | 29.6 | 12.9 | 2.0 | 27.9 | 18.1 | 4.2 | 15.3 | 5.8 | 3.2 |
| 43.7 | 0.6 | 5.3 | 39.1 | 4.3 | 2.1 | 38.2 | 0.2 | 5.1 | 49.5 | 1.4 | 5.0 | 23.3 | 3.1 | 2.7 |
| 64.5 | 4.6 | 0.5 | 47.0 | 21.3 | 1.0 | 47.0 | 14.1 | 0.4 | 56.6 | 5.2 | 2.7 | 30.4 | 3.4 | 5.5 |
| 69.3 | 2.2 | 0.9 | 57.7 | 0.8 | 4.1 | 56.0 | 12.0 | 3.4 | 58.7 | 19.9 | 1.3 | 39.5 | 3.5 | 1.8 |
| 79.7 | 8.0 | 0.6 | 78.9 | 21.5 | 0.3 | 75.6 | 14.1 | 4.3 | 72.5 | 0.6 | 1.2 | 46.8 | 0.7 | 6.2 |
| 90.4 | 7.5 | 0.3 | 94.4 | 14.0 | 0.2 | 79.5 | 22.5 | 1.2 | 80.4 | 42.8 | 1.5 | 58.9 | 12.2 | 2.1 |
| 110.9 | 12.3 | 0.6 | 95.2 | 13.9 | 0.1 | 96.9 | 7.2 | 0.4 | 86.1 | 26.5 | 0.7 | 66.3 | 16.4 | 2.7 |
| 115.1 | 17.3 | 0.8 | 98.7 | 50.4 | 0.8 | 101.4 | 4.9 | 0.1 | 94.2 | 34.2 | 1.3 | 72.5 | 21.0 | 1.0 |
| 121.6 | 22.6 | 0.4 | 105.8 | 74.0 | 0.2 | 109.4 | 9.8 | 1.5 | 100.8 | 17.2 | 1.7 | 91.0 | 89.2 | 0.7 |
| 122.6 | 7.8 | 0.1 | 116.5 | 50.3 | 0.1 | 112.0 | 37.7 | 0.3 | 104.5 | 18.0 | 0.7 | 96.2 | 24.2 | 1.5 |
| 127.5 | 42.7 | 0.1 | 119.5 | 35.4 | 0.9 | 119.7 | 22.3 | 0.4 | 110.4 | 224.0 | 0.6 | 105.8 | 25.3 | 0.3 |
| 136.3 | 9.6 | 0.4 | 126.1 | 102.1 | 0.7 | 127.1 | 44.5 | 1.2 | 118.8 | 19.7 | 0.4 | 117.9 | 91.2 | 1.1 |
| 143.5 | 17.1 | 0.1 | 131.2 | 96.7 | 0.3 | 136.5 | 59.8 | 0.5 | 129.1 | 52.1 | 2.2 | 123.8 | 61.6 | 0.9 |
| 144.9 | 82.7 | 0.9 | 142.3 | 162.1 | 0.5 | 140.4 | 73.6 | 0.2 | 135.1 | 62.0 | 0.8 | 132.2 | 24.5 | 0.5 |
| 151.7 | 8.5 | 0.4 | 146.3 | 125.9 | 0.2 | 144.2 | 63.1 | 0.8 | 137.2 | 389.2 | 0.3 | 137.4 | 9.2 | 3.3 |
| 157.5 | 113.6 | 0.4 | 149.5 | 101.1 | 0.4 | 147.7 | 47.9 | 0.5 | 150.4 | 102.5 | 0.8 | 147.8 | 27.0 | 0.6 |
| 164.1 | 201.2 | 0.3 | 153.6 | 99.5 | 0.5 | 149.6 | 308.3 | 1.2 | 155.8 | 46.3 | 0.6 | 152.5 | 13.9 | 0.9 |
| 168.1 | 50.8 | 0.1 | 155.5 | 178.0 | 0.3 | 157.4 | 110.2 | 0.5 | 158.0 | 25.5 | 0.3 | 158.0 | 11.5 | 0.3 |
| 174.6 | 44.5 | 0.2 | 168.6 | 310.9 | 1.0 | 163.1 | 43.7 | 0.5 | 162.0 | 98.8 | 0.3 | 162.6 | 74.0 | 0.5 |
| 186.5 | 227.2 | 0.5 | 177.1 | 30.2 | 0.7 | 166.7 | 1.2 | 0.5 | 167.6 | 14.9 | 0.7 | 166.4 | 4.1 | 1.1 |
| 187.3 | 327.0 | 0.7 | 178.0 | 189.9 | 0.7 | 183.4 | 1.0 | 0.8 | 179.4 | 21.8 | 1.0 | 169.1 | 28.5 | 0.9 |
| 199.0 | 443.8 | 0.2 | 183.2 | 5.3 | 0.1 | 185.9 | 148.9 | 0.8 | 182.9 | 33.3 | 1.0 | 175.9 | 0.6 | 0.3 |
| 205.6 | 262.1 | 0.4 | 200.5 | 223.0 | 0.9 | 192.6 | 127.2 | 0.3 | 188.8 | 87.6 | 0.3 | 183.0 | 36.8 | 1.2 |
| 211.4 | 84.4 | 0.4 | 207.7 | 25.0 | 0.6 | 201.6 | 307.8 | 0.4 | 206.5 | 292.6 | 1.5 | 184.5 | 46.0 | 0.9 |

223.6	133.6	0.5	224.4	375.6	0.9	204.2	213.7	1.0	209.0	81.6	0.4	192.2	180.7	0.7
227.7	164.2	0.9	237.9	175.2	1.2	206.6	357.5	0.8	216.3	102.4	0.9	199.2	43.2	0.5
239.2	54.1	1.1	240.0	137.3	0.9	209.3	75.7	2.2	225.1	362.7	1.1	208.3	75.4	0.9
246.7	31.4	0.9	250.5	90.3	0.9	221.4	31.3	0.4	243.9	52.5	0.9	221.4	164.1	0.4
250.8	135.8	0.5	260.6	163.5	0.7	225.6	337.1	0.9	257.4	31.4	0.4	229.7	72.9	0.2
257.1	322.4	0.4	282.2	125.5	0.3	234.5	135.5	0.2	258.5	134.3	1.2	233.0	34.4	0.8
266.1	138.9	1.0	292.5	10.0	0.3	241.0	33.1	0.9	263.7	52.0	1.0	237.7	162.8	1.0
267.3	389.1	0.5	307.2	57.5	0.5	250.9	83.7	0.1	288.6	48.9	0.3	256.9	77.5	0.9
276.9	43.0	0.5	312.5	121.6	0.6	256.2	124.9	0.8	294.3	136.6	0.7	259.6	123.0	0.3
284.4	20.8	1.4	319.6	94.0	0.1	270.4	58.3	0.9	296.8	46.2	0.1	263.5	111.5	0.2
293.0	165.8	0.6	324.9	132.1	0.7	275.2	52.9	1.0	307.1	40.8	0.6	275.1	153.2	1.1
297.0	44.3	0.6	349.3	69.9	1.4	280.1	69.1	0.5	321.1	243.7	0.7	286.1	16.5	1.2
298.8	62.0	0.3	383.0	5.0	7.7	281.7	4.1	0.5	345.6	120.1	5.8	289.8	202.2	1.0
304.4	30.3	0.5	507.7	166.1	0.5	292.0	162.9	0.9	369.5	6.8	4.8	298.9	59.5	0.9
308.2	65.7	0.4	516.0	143.0	0.5	298.6	154.7	1.1	497.6	104.2	0.2	313.4	225.8	0.7
320.3	200.3	0.4	521.5	137.1	0.5	301.8	54.6	0.3	510.7	105.6	0.7	337.9	176.0	10.0
342.5	88.5	1.5	548.1	168.7	0.4	326.8	17.3	3.9	519.5	134.2	0.7	358.1	392.7	0.3
377.6	5.2	8.3	553.5	56.7	0.6	339.3	251.5	0.7	549.8	138.2	1.1	364.6	104.2	1.0
514.6	85.7	0.6	572.9	197.0	0.2	361.1	4.5	7.3	566.3	295.3	0.3	442.4	382.0	0.4
525.8	79.7	0.7	593.4	94.4	0.4	528.4	49.3	0.9	631.7	81.5	1.3	521.7	78.2	2.3
535.2	192.6	1.0	653.1	105.8	6.9	533.8	24.1	1.0	664.0	84.8	7.7	542.8	88.5	1.7
537.3	85.2	1.0	716.1	63.4	6.1	537.7	279.7	1.2	690.0	0.1	4.6	554.3	93.1	0.9
555.6	86.2	0.4	751.1	131.3	2.9	551.6	61.3	0.7	727.5	42.2	8.8	565.8	155.2	1.2
575.5	112.1	1.2	779.9	31.9	0.2	552.4	264.9	1.0	739.3	66.7	8.5	590.0	212.4	0.6
579.4	191.2	0.7	1013.3	725.2	46.8	564.4	98.5	1.3	781.6	27.3	0.1	638.5	124.5	2.0
606.8	154.1	0.3	1280.3	786.9	34.1	597.5	144.2	0.5	786.9	38.2	0.2	667.3	56.3	7.2
663.8	64.5	7.3	1512.7	1097.2	8.4	669.3	62.6	6.7	801.1	203.6	0.7	673.6	48.7	7.5
726.1	26.8	7.1	1607.3	236.5	0.8	692.3	0.2	5.2	1037.6	603.5	39.6	692.4	0.3	5.4
780.7	31.8	0.3	1608.1	90.8	2.0	725.2	10.4	6.9	1045.7	84.8	70.9	721.8	17.8	7.5
787.3	174.2	0.6	1611.0	173.2	0.9	737.8	69.1	6.9	1259.2	644.5	4.3	727.6	22.4	11.6

1047.1	437.9	63.1	1616.2	103.6	11.4	785.9	18.5	0.1	1281.2	902.5	25.9	739.0	54.4	9.2
1281.5	922.4	20.4	1617.0	139.8	1.6	788.7	29.7	0.1	1499.9	1074.0	10.7	785.4	22.1	0.1
1487.4	1111.0	8.8	1618.8	194.3	0.8	824.8	224.3	1.0	1560.3	1104.2	28.2	788.9	23.1	0.2
1598.1	161.5	1.6	1631.5	160.3	1.7	1054.3	140.6	35.7	1601.5	194.0	1.6	792.5	16.3	0.1
1603.4	132.8	2.3	3381.9	1086.0	182.4	1062.1	225.8	87.3	1607.2	151.0	1.7	839.1	298.9	1.1
1607.6	218.5	1.3	3748.4	95.7	56.2	1280.0	557.1	4.2	1609.0	159.8	1.2	843.0	153.6	0.8
1611.9	77.2	1.1	3749.5	319.9	33.8	1290.0	1099.4	13.4	1618.1	227.7	1.3	1052.8	406.4	27.1
1614.5	75.3	1.1	3751.0	486.3	15.8	1468.3	1134.6	9.5	1626.2	166.2	7.4	1057.6	287.7	27.1
1616.3	82.4	7.2	3752.1	74.6	227.3	1547.3	1087.6	26.3	1649.2	118.0	1.1	1065.6	95.4	170.2
1618.1	481.3	1.2	3755.2	215.7	54.4	1586.4	209.0	2.2	3312.8	1319.8	200.9	1280.9	1730.5	1.5
1621.3	71.9	2.8	3759.4	273.2	752.7	1600.8	222.2	1.0	3756.2	143.2	68.3	1293.1	1070.3	33.4
3263.1	1406.1	189.3	3809.3	382.6	149.4	1603.4	164.7	1.4	3758.0	171.1	91.3	1296.0	120.5	5.2
3756.1	118.1	61.5	3830.0	347.8	57.7	1607.7	201.5	1.4	3761.8	363.3	194.5	1471.5	955.1	10.4
3756.4	152.4	43.2	3830.9	354.3	60.6	1608.9	111.7	1.0	3764.4	198.0	91.0	1474.5	1024.1	10.5
3757.9	175.0	50.4	3833.6	586.6	44.3	1619.6	302.2	1.4	3767.6	224.2	511.7	1529.7	1157.2	20.9
3758.6	405.8	29.7	3833.6	142.6	75.1	1620.3	11.1	8.4	3803.6	316.8	136.8	1581.0	207.7	2.9
3759.4	151.1	88.5	3838.8	336.1	61.5	3234.7	1604.8	222.1	3837.2	317.6	64.8	1593.3	230.9	0.4
3761.3	333.2	41.9	3839.8	370.4	59.1	3762.8	43.5	38.3	3840.3	347.3	59.8	1604.2	194.8	2.0
3764.9	155.9	1012.0				3763.6	158.2	69.0	3843.6	323.4	62.1	1609.0	132.2	5.8
3814.4	351.6	153.0				3764.2	131.2	41.8	3850.0	338.0	59.1	1611.8	97.1	1.8
3838.8	330.3	60.1				3766.9	470.9	39.5	3851.2	331.1	58.4	1617.1	137.8	5.1
3839.8	305.2	54.0				3768.7	233.6	407.8				3289.9	1778.5	98.1
3841.1	346.5	69.2				3771.9	84.8	563.8				3297.7	923.7	298.7
3842.2	300.1	65.2				3815.7	308.5	136.0				3760.1	191.5	136.8
3842.6	339.1	67.7				3846.8	268.5	61.6				3765.7	174.0	139.0
3844.3	336.3	54.8				3848.9	319.8	65.3				3768.1	153.6	233.0
3844.7	362.9	51.8				3851.7	311.8	62.6				3773.3	156.0	224.3
						3853.5	380.9	62.1				3808.7	278.7	143.4
						3853.9	273.1	61.9				3814.0	275.8	117.0
						3857.6	315.6	53.8				3844.2	297.7	58.9

													3851.8	301.4	61.6
												3855.7	305.1	53.6	
												3860.8	314.9	53.1	

$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\left(\mathrm{NO}_{3}\right)_{3}{ }^{1+}$			$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\left(\mathrm{NO}_{3}\right)_{4}$			$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{NO}_{3}\right)_{4}$			$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\left(\mathrm{NO}_{3}\right)_{5}{ }^{-1}$			$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{NO}_{3}\right)_{5}{ }^{-1}$		
Freq	IR	Ram												
26.0	8.7	1.9	14.6	4.9	6.9	25.8	1.8	0.9	21.7	1.2	4.8	47.8	2.1	1.9
40.3	5.3	6.4	21.3	2.6	5.7	34.4	18.7	1.0	25.5	6.2	3.8	52.9	0.3	2.9
41.4	4.5	3.8	28.6	7.0	2.0	46.8	5.7	1.1	33.5	1.0	6.9	58.9	14.2	1.4
46.2	3.9	2.9	35.8	5.3	3.7	48.0	3.8	1.5	35.0	6.9	1.2	59.2	15.7	1.3
49.3	4.7	4.8	45.6	1.2	9.7	56.1	11.3	0.8	43.1	1.9	3.8	68.1	0.7	9.1
57.3	2.3	2.5	47.5	11.2	2.6	71.1	8.6	0.5	49.0	0.6	4.4	69.2	0.2	8.0
80.5	11.6	4.0	53.7	1.6	0.1	79.0	0.2	6.2	50.3	4.8	1.8	75.6	34.7	0.0
89.5	10.4	1.0	62.0	7.8	5.7	91.3	9.7	0.8	53.7	0.5	7.7	116.3	1.9	1.8
92.6	0.8	1.5	71.2	28.7	2.5	109.0	3.0	8.4	59.7	3.1	3.1	122.2	29.7	0.2
95.4	0.5	1.9	82.1	1.7	6.0	112.7	2.4	3.0	62.5	7.4	2.1	126.1	26.5	0.9
105.0	27.1	0.2	91.2	7.1	0.4	114.3	0.3	2.7	70.1	15.9	1.9	129.9	5.9	3.5
108.7	8.0	0.4	98.6	6.4	1.3	117.6	7.2	2.4	89.2	5.9	0.3	136.3	4.8	3.9
114.5	27.0	0.5	107.6	4.6	1.0	117.9	0.7	3.2	101.6	17.9	2.2	140.0	42.5	1.7
126.3	1.9	0.3	118.0	10.5	2.0	120.7	32.1	4.2	112.8	14.7	1.7	146.4	1.1	3.7
132.2	41.9	0.4	128.9	7.7	0.7	122.7	1.6	0.8	114.9	11.4	2.4	151.8	8.7	1.6
141.0	6.6	0.5	133.3	24.7	1.1	125.4	8.6	1.1	122.7	36.0	3.2	155.1	4.3	0.8
152.8	15.3	1.3	136.1	48.2	0.3	143.2	6.7	2.6	127.6	33.6	0.9	158.7	8.2	2.5
154.8	2.2	1.1	140.2	27.3	0.4	153.1	11.5	0.3	138.3	1.3	1.9	161.1	18.6	1.7
163.7	48.4	0.6	142.3	7.3	0.8	157.6	70.9	0.6	148.1	50.7	0.5	164.3	6.7	0.9
170.9	31.2	1.4	147.8	4.6	2.0	160.3	65.0	0.5	152.0	8.4	0.4	165.2	17.4	0.9
177.8	112.4	1.1	150.9	9.7	1.6	164.2	8.3	1.8	158.9	42.3	1.3	170.0	8.6	2.6
182.7	148.8	2.0	151.6	22.8	0.5	175.6	15.2	1.2	164.2	61.9	1.5	177.8	5.4	0.0
185.3	394.7	0.7	161.1	31.8	0.3	180.6	5.1	1.6	169.3	14.6	3.3	189.0	66.2	1.7

197.9	66.1	0.9	164.8	43.0	1.2	184.4	8.3	0.8	171.8	16.8	0.8	190.8	86.1	1.5
203.6	21.0	1.7	166.1	0.2	0.5	188.4	5.7	1.5	181.7	14.8	2.3	193.0	13.2	0.2
207.6	184.8	0.2	182.3	50.6	0.4	220.2	146.3	0.4	185.6	20.1	1.1	194.3	15.9	0.4
213.7	169.5	1.2	193.8	17.5	0.2	224.5	170.4	0.9	193.5	66.7	0.7	196.9	49.6	0.8
219.6	52.9	0.5	203.6	40.4	1.7	227.7	106.0	0.9	202.4	20.3	2.7	198.6	144.1	0.3
231.3	50.2	0.9	207.1	162.9	0.5	237.8	11.0	3.4	213.4	47.1	1.7	203.1	7.7	4.2
246.4	262.4	1.4	236.7	90.6	1.0	279.3	149.0	0.1	216.8	67.2	2.2	204.6	113.5	0.5
248.0	105.7	0.3	247.7	18.9	0.5	283.3	221.5	0.1	229.0	57.1	1.2	205.2	80.4	0.2
256.6	261.0	1.6	250.3	32.3	0.6	297.6	419.8	0.5	237.0	132.0	0.6	224.7	0.5	6.8
276.1	356.2	0.7	271.1	43.9	0.1	318.7	2.1	11.6	254.5	50.5	3.3	227.0	4.3	7.6
294.6	102.5	0.3	285.9	373.6	0.7	353.5	178.0	0.8	272.9	404.3	0.4	256.7	215.4	0.1
304.9	18.9	0.2	286.9	46.9	0.5	360.7	203.1	0.8	290.9	49.2	1.0	284.6	0.6	12.4
318.1	74.2	3.6	305.1	54.4	0.3	361.8	169.9	1.1	307.9	152.5	7.7	338.4	504.2	0.2
334.3	85.7	0.9	319.5	125.5	12.8	371.7	49.2	3.7	348.2	141.2	0.2	341.4	302.6	0.2
360.1	10.4	6.6	333.6	164.7	1.2	554.1	204.0	0.4	364.2	23.4	2.2	555.4	70.4	1.3
527.5	131.7	1.0	362.4	90.5	1.4	571.9	123.4	0.7	385.5	157.7	1.1	567.9	126.4	0.7
530.6	165.5	0.5	404.4	227.5	0.2	574.0	295.3	0.2	573.4	396.5	0.6	691.4	0.1	3.2
560.8	109.4	0.9	472.5	67.7	0.9	581.3	199.5	0.3	592.5	288.7	1.2	691.7	0.1	3.1
566.7	413.8	0.6	492.4	945.0	2.2	664.0	198.2	2.0	601.3	93.1	0.6	694.2	1.0	1.2
600.4	86.1	0.2	514.0	124.4	0.9	664.3	12.9	5.9	672.6	48.1	6.2	694.5	0.3	8.8
666.9	58.0	6.2	548.6	21.2	0.8	666.1	14.4	5.6	673.4	45.5	8.4	695.2	0.3	9.4
668.6	54.9	7.4	576.0	720.5	3.2	666.5	31.7	9.3	678.3	22.4	6.7	731.7	115.1	3.0
690.5	0.3	4.2	589.3	250.5	0.8	717.3	19.4	16.5	691.0	1.1	1.9	732.4	43.4	5.9
719.0	14.3	3.6	613.8	229.1	4.1	722.4	143.1	6.2	693.7	1.4	10.2	733.5	42.8	6.2
721.1	86.7	13.7	645.4	181.4	8.6	723.1	2.9	3.4	720.0	28.9	6.2	733.9	96.0	3.6
737.8	43.5	8.7	652.1	79.9	11.2	726.6	2.2	6.8	721.7	3.3	14.1	747.3	0.0	13.0
756.8	116.1	1.9	666.6	58.3	5.9	767.9	177.7	0.7	724.1	25.9	7.3	787.0	7.5	0.0
760.3	134.8	1.4	669.5	69.6	6.7	773.2	181.9	0.6	733.8	77.9	15.1	788.2	36.7	0.1
785.6	31.4	0.1	688.6	14.0	5.7	776.5	179.1	0.3	740.6	26.6	4.5	789.3	35.7	0.1
788.6	39.8	0.1	700.9	15.9	2.9	778.4	225.0	0.4	786.9	25.6	0.1	790.8	2.2	0.3

790.4	18.7	0.2	713.2	33.1	7.4	809.4	26.5	0.0	787.6	53.2	0.9	791.0	4.9	0.3
1043.4	871.4	16.5	721.9	19.1	10.7	809.9	15.6	0.1	788.0	17.1	0.1	1056.7	32.4	18.6
1043.7	147.1	27.4	723.1	76.1	2.8	810.4	52.9	0.0	789.2	39.9	0.4	1057.3	11.5	16.2
1054.7	47.9	151.8	726.1	19.1	10.3	810.5	4.2	0.1	790.0	39.8	0.1	1059.3	162.3	9.9
1264.3	702.9	5.9	734.4	91.8	0.7	1001.4	826.8	23.0	791.9	16.9	0.3	1060.7	164.2	11.1
1278.9	1338.2	4.2	784.6	22.9	0.1	1003.0	861.6	26.7	816.7	183.8	1.0	1063.3	1.0	213.4
1286.2	658.3	39.0	792.9	177.7	0.3	1005.9	611.5	42.0	819.6	263.1	1.6	1286.2	83.3	1.6
1478.7	911.8	9.8	794.6	21.0	0.2	1025.6	2.1	187.8	1053.1	99.0	26.9	1287.4	12.9	1.7
1480.7	1172.6	6.4	795.8	45.2	0.1	1223.8	2281.0	6.2	1053.3	60.3	23.5	1300.9	375.1	6.3
1551.2	1212.1	28.4	799.4	5.5	0.3	1225.6	1018.4	22.2	1055.3	487.8	32.7	1304.6	393.7	6.4
1602.0	65.9	11.1	1047.7	245.6	70.6	1229.7	53.0	1.0	1058.2	474.8	20.2	1308.7	2412.3	0.0
1606.8	54.4	9.8	1048.4	676.8	9.6	1243.9	0.6	109.3	1067.7	14.6	261.0	1505.2	81.6	15.3
1616.0	257.9	1.7	1051.5	517.3	14.7	1422.9	338.7	3.4	1276.8	1334.4	2.6	1505.9	85.0	15.4
1617.5	287.4	1.4	1063.7	55.2	205.4	1424.3	3493.0	4.2	1284.1	887.4	15.0	1519.4	2847.0	1.5
1618.1	45.5	1.3	1269.7	699.8	3.7	1424.8	201.1	9.4	1294.2	425.9	3.1	1524.4	2901.8	1.0
3327.8	1602.2	124.1	1272.8	1408.4	2.3	1426.9	208.2	47.9	1296.1	584.1	10.0	1550.7	0.0	95.3
3339.8	841.9	266.5	1278.8	1961.7	8.3	1578.2	61.3	6.7	1300.9	1449.5	29.0	1621.1	196.5	3.0
3759.9	273.6	109.9	1296.5	30.3	50.1	1584.7	69.6	7.9	1461.3	751.1	9.8	1630.1	164.8	4.1
3762.1	165.1	69.3	1476.0	1577.9	9.8	1588.7	60.0	4.3	1466.4	1057.7	10.0	3768.3	249.6	119.0
3764.1	159.1	385.2	1479.4	728.5	12.2	1590.4	129.7	6.1	1469.0	1237.2	7.9	3771.6	103.8	284.8
3815.5	333.2	145.8	1484.6	1172.1	16.2	3329.9	710.0	39.5	1521.5	1613.2	16.2	3850.1	298.3	60.0
3822.3	352.7	156.6	1487.2	419.1	13.0	3331.3	2016.9	277.0	1532.1	930.8	29.6	3852.6	277.3	65.2
3843.5	317.8	63.1	1571.5	139.1	14.1	3336.2	573.2	147.1	1611.0	39.5	3.4			
3846.3	332.0	63.5	1605.9	177.3	8.1	3338.2	1066.6	386.2	1617.6	130.4	13.8			
3847.1	311.2	58.6	1614.3	83.1	7.7	3749.1	363.7	48.7	1638.8	113.5	5.3			
			1614.9	297.3	6.3	3749.3	324.0	93.0	3310.3	1296.7	180.4			
			1662.4	102.2	3.9	3749.9	216.0	194.4	3331.7	1408.3	217.4			
			3340.7	1281.8	221.9	3751.8	222.9	177.3	3374.4	1015.9	229.5			
			3585.9	507.3	166.4				3811.9	291.0	120.5			
			3614.9	177.7	49.8				3821.5	278.8	116.8			

| | | | 3621.0 | 264.0 | 270.0 | | | | 3826.3 | 266.4 | 138.2 | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | 3638.1 | 625.0 | 351.8 | | | | | | | | |
| | | | 3716.5 | 608.3 | 86.8 | | | | | | | | |
| | | 3734.4 | 582.3 | 90.7 | | | | | | | | | |
| | | 3802.4 | 314.8 | 81.2 | | | | | | | | | |
| | | | 3811.0 | 353.2 | 111.7 | | | | | | | | |
| | | | 3820.2 | 281.9 | 128.3 | | | | | | | | |

$\mathrm{ThH}_{2} \mathrm{O}\left(\mathrm{NO}_{3}\right)_{6}{ }^{2-}$			$\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}{ }^{2-}$ (all bidentate)		Th(NO 33$)_{6}{ }^{2-}$ mono/bidentat)		(mixed	
Freq	IR	Ram	Freq	IR	Ram	Freq	IR	Ram
31.1	3.9	3.7	50.2	4.0	0.0	10.6	4.2	0.2
49.8	1.4	3.3	52.5	3.8	0.0	22.0	4.4	1.0
53.4	6.8	0.1	53.9	3.3	0.0	29.1	1.4	7.2
57	4.5	1.8	60.3	0.0	11.1	33.8	0.8	6.8
59.7	4.9	9.3	61.6	0.0	10.6	37.1	0.8	3.4
62.5	3.9	6.7	64.2	0.0	10.9	43.8	11.2	0.8
64.1	7.9	8.3	71.7	15.8	0.0	45.4	0.3	3.6
66.9	14.4	0.8	73.0	15.6	0.0	49.1	1.8	0.1
70.9	15.7	0.7	73.4	14.9	0.0	55.9	1.4	2.4
78.1	10.1	6.1	110.8	0.0	0.0	57.8	9.7	2.9
92.9	14.3	1.1	111.7	0.0	0.0	59.2	5.9	5.9
97.2	31.3	0.2	120.5	0.0	15.6	60.0	4.7	4.9
112.6	0.1	6.2	121.1	0.0	15.2	82.9	6.0	2.0
118.7	12.6	9.3	121.6	0.0	15.4	93.2	1.2	2.9
122	0.2	6.4	164.9	0.6	0.0	95.6	0.8	7.8
140.6	7.7	6.5	168.9	66.1	0.0	124.4	4.0	5.6
157.3	3.2	1.5	169.7	70.5	0.0	128.2	11.6	1.6
160.3	56.5	0.7	170.3	0.0	0.2	134.7	3.9	3.5
160.7	16.4	2	170.4	71.2	0.0	136.0	15.0	9.3

165.9	13.9	0.8	170.6	0.0	0.2	143.3	14.3	0.4
167.8	21.2	2.3	173.2	0.7	0.0	156.9	5.9	1.0
173.6	37.8	0.8	173.9	1.1	0.0	162.5	6.4	0.2
175.4	62.8	1.1	174.1	2.1	0.0	169.0	8.5	1.0
181.2	60.1	3.2	176.3	0.0	1.7	176.9	9.9	5.3
187.3	25	0.4	177.5	0.0	1.6	185.1	7.0	0.4
188.7	2.7	1	178.0	0.0	1.8	185.8	59.0	2.6
192	21.3	0.8	194.0	0.0	2.7	194.4	124.1	0.8
193.1	18.7	2.9	195.2	0.0	2.7	198.0	8.9	1.0
196.4	63.8	0.6	195.3	0.0	2.8	202.5	68.3	0.2
199.7	37.4	0.9	205.1	184.6	0.0	206.1	119.5	0.4
205.4	19.3	0.9	205.7	186.9	0.0	207.0	246.2	0.2
208.5	86.6	0.8	206.0	185.0	0.0	211.0	188.7	0.9
213.5	103.4	2.1	227.8	0.0	11.4	235.9	2.0	11.2
215.4	23.9	4.4	692.8	0.0	0.0	668.2	26.1	4.7
259.5	38.9	6.5	692.9	0.0	0.0	669.7	8.4	12.9
307.4	170.6	1.5	693.1	0.0	0.0	689.9	0.0	2.1
350.9	79	0.6	695.1	0.0	12.4	690.3	0.1	5.2
614.6	184	1.3	695.2	0.0	12.3	692.2	0.4	5.8
682.9	50	6.5	695.4	0.0	12.5	694.7	0.2	10.3
691.5	0.2	2.7	733.0	126.2	0.0	716.8	78.9	1.5
693.4	0	0.7	733.2	126.3	0.0	719.7	4.8	19.6
695.3	0.3	9.8	733.4	126.6	0.0	731.8	116.6	3.1
695.6	0.4	8.6	737.4	0.0	29.9	734.9	116.5	8.1
695.8	0.1	10.7	737.7	0.0	30.1	736.7	34.3	21.0
719.6	11.9	8.2	748.1	0.0	1.4	748.2	0.1	8.0
732	100.7	0.8	788.1	0.0	0.0	786.4	41.8	0.2
733.4	133.3	0.1	788.1	50.1	0.0	786.5	5.4	0.2
736.7	2.2	26.5	789.0	0.0	0.0	788.5	22.9	0.1
738.5	43.6	18.6	789.1	50.0	0.0	789.2	20.1	0.1

745.7	14.2	2.6	789.7	0.0	0.0	789.6	15.2	0.1
787.2	28.1	0.1	789.7	49.7	0.0	790.8	20.9	0.1
789.4	21.8	0	1059.0	0.0	41.3	1017.1	1068.0	9.5
789.7	26.9	0	1059.2	0.0	41.5	1027.9	94.0	85.1
790	23	0	1059.7	162.2	0.0	1049.6	62.8	21.1
790.4	25.2	0	1059.7	164.1	0.0	1052.4	131.0	50.6
792	23.1	0.2	1059.8	162.1	0.0	1053.3	139.1	4.5
920.6	303.1	1	1063.9	0.0	318.8	1058.7	25.0	201.7
1056.5	107.9	32.9	1293.4	1558.1	0.0	1274.5	236.4	3.8
1058.4	63.8	40.6	1293.5	1561.9	0.0	1275.6	657.9	1.5
1062.1	112	34.7	1293.6	1559.8	0.0	1283.2	2105.9	3.2
1063.7	25.2	91.8	1296.5	0.0	4.4	1286.4	889.7	2.6
1070.8	97.3	61.2	1296.7	0.0	4.4	1294.2	772.5	1.2
1074.8	88.6	165.8	1296.9	0.0	4.4	1300.4	40.0	52.5
1289.3	2160.9	2.8	1513.2	0.0	29.0	1491.2	967.4	15.3
1294.1	53.9	4.2	1513.4	0.0	29.1	1492.9	1182.3	13.0
1303.2	1561	2	1518.1	2408.7	0.0	1520.7	299.7	21.3
1305.3	159.3	4.5	1518.3	2409.6	0.0	1528.7	2168.3	4.8
1308.4	386.6	8.7	1518.5	2414.5	0.0	1530.7	2093.9	7.8
1313.4	728.3	2.7	1551.3	0.0	60.5	1551.2	60.9	68.7
1443.5	949.1	7.5						
1505.5	600.9	20.0						
1510.1	2025.0	7.5						
1511.8	903.9	18.4						
1520.6	2384.0	0.0						
1543.7	151.8	54.9						
1644.2	134.7	2.7						
3209.1	1726.1	253.2						
3821.6	221.8	123.3						

Table S27. Cartesian coordinates in \AA for aqueous optimized geometries of Th complexes at the B3LYP/DZVP2(H,O,N)/cc-pVDZ-PP(Th) level.

$\mathbf{T h}\left(\mathrm{H}_{2} \mathrm{O}\right) 9^{4+}$

TH	-0.000837	0.000058	0.001153
O	0.103924	-2.108597	-1.327959
H	-0.406381	-2.316765	-2.129774
O	-0.089336	2.181276	-1.200258
H	-0.639318	2.947633	-0.959508
O	-0.001697	-0.085565	2.486442
H	-0.529174	-0.688975	3.039410
H	0.476377	0.515995	3.084108
H	0.662439	-2.879962	-1.125967
H	0.437770	2.436108	-1.977086
O	-1.839453	1.405932	0.897185
H	-2.628449	1.710812	0.414957
O	-1.698791	-1.610550	0.814310
H	-1.771596	-2.533639	0.515780
O	-1.790760	-0.026167	-1.719658
H	-2.536830	-0.648716	-1.775943
H	-1.962000	1.633460	1.834941
H	-1.937841	0.669473	-2.384122
H	-2.491198	-1.405693	1.342241
O	1.688844	1.556891	0.929618
H	2.472931	1.321237	1.456394
O	1.798329	0.142155	-1.708120
H	2.556160	0.752594	-1.706527
O	1.835183	-1.461331	0.815547
H	2.631622	-1.730534	0.324452
H	1.964255	-1.717882	1.745327
H	1.962030	-0.522527	-2.399975
H	1.764618	2.499807	0.700642

$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8} \mathrm{NO}_{3}{ }^{3+}$

O	2.048168	-1.111413	-1.545205
O	0.029627	-2.474740	-0.115590
O	1.877261	1.668241	-1.137366
O	2.304988	-1.047542	1.259991
O	-0.414758	0.096665	-2.358206
O	1.420359	1.625770	1.614820
O	-0.448388	-0.443085	2.306019
TH	0.408945	-0.004085	0.000364
H	2.342292	-1.238216	2.213470
H	3.012287	-1.561581	0.833358
H	0.009978	-0.236049	3.138626
H	-1.113552	-1.125020	2.504747
H	2.193199	1.468337	2.184648

H	0.924737	2.371484	1.996130
H	2.272055	2.418852	-0.660281
H	1.870656	1.896538	-2.083527
H	0.648138	-3.169843	0.168785
H	-0.859493	-2.869054	-0.143828
H	0.143632	0.076456	-3.154694
H	-1.260747	0.505112	-2.611681
H	1.904693	-1.970356	-1.979253
H	2.770670	-0.663499	-2.018435
O	-4.086138	-0.917645	-0.031454
O	-3.329096	1.137542	0.030737
N	-3.154410	-0.109374	-0.017464
O	-1.929370	-0.574568	-0.055857
O	-0.859834	2.085382	0.043029
H	-1.847219	1.951371	0.013626
H	-0.638060	2.921849	-0.399513
Th(H2O)7NO3			
O+			
O	2.749911	-0.819566	-0.148650
O	0.610004	-2.136477	1.284505
O	1.394469	0.839542	-2.091730
O	0.109360	-1.736661	-1.707200
O	1.843403	1.798795	0.889914
O	-0.272929	0.424907	2.353155
Th	0.414764	-0.012997	0.024436
H	0.269707	0.863446	3.032092
H	-1.065777	0.072623	2.794932
H	2.804107	1.747933	1.040251
H	1.558731	2.699940	1.124877
H	1.857857	1.693525	-2.161364
H	1.037506	0.634866	-2.974344
H	0.556387	-2.237830	2.250885
H	0.749978	-3.021312	0.903708
H	0.818675	-2.194561	-2.192799
H	-0.719753	-2.217428	-1.878361
H	3.189936	-1.414472	0.483941
H	3.423911	-0.516163	-0.782162
O	-3.995758	-0.937899	-0.059540
O	-3.295903	1.121090	-0.339490
N	-3.100273	-0.098781	-0.133954
O	-1.850343	-0.513544	0.015257
O	-0.773829	2.077466	-0.386274
H	-1.759278	1.982548	-0.442274
H	-0.495930	2.826832	-0.940519

$\mathbf{T h}\left(\mathbf{H}_{2} \mathbf{O}\right)_{7}\left(\mathbf{N O}_{3}\right)_{2} \mathbf{2}^{+}$			
H	-1.004576	1.466714	-2.740941
H	-2.258614	1.673970	-1.832236
H	0.606560	3.110115	-1.061136
H	1.952870	2.299415	-0.989322
H	-0.700373	3.015020	1.319622
H	-2.121994	2.526995	0.885819
H	0.266364	-2.862506	0.582372
H	1.676134	-2.105888	0.691686
H	0.974864	1.156625	2.801226
H	2.104957	1.575588	1.795890
H	-1.804514	-0.136500	2.730630
H	-0.748069	-1.294742	2.733784
H	-0.279869	-1.312601	-2.772743
H	1.231442	-1.337289	-2.362055
O	-1.458422	1.133454	-1.947739
O	0.983902	2.219726	-0.964147
O	-1.202870	2.238694	1.018941
O	0.686051	-2.006793	0.771085
O	1.305236	1.031559	1.895478
O	-0.972470	-0.439444	2.329678
O	0.381052	-0.898281	-2.191922
Th	-0.146739	0.189249	0.015673
O	2.304800	0.007476	-0.499701
O	3.286204	-1.731393	0.456072
N	3.386738	-0.633433	-0.163152
O	4.483240	-0.149272	-0.472260
O	-4.006803	-1.560903	-0.250792
O	-2.733525	0.174395	0.232079
N	-2.905038	-1.036443	-0.170626
O	-1.813970	-1.658988	-0.483857

$\mathbf{T h}\left(\mathbf{H}_{\mathbf{2}} \mathbf{O}\right)_{\mathbf{6}}\left(\mathbf{N O}_{3}\right)_{2}{ }^{\mathbf{2 +}}$			
H	0.512722	-0.869850	-2.840262
H	-1.044795	-0.727445	-2.864335
H	0.523958	2.478796	-2.188737
H	1.846576	1.671334	-1.983097
H	-1.463328	3.133307	-0.406483
H	-2.543939	2.153619	-0.980213
H	0.308599	-1.397748	2.584297
H	1.704015	-1.067672	1.890678
H	1.005267	2.237873	2.201440
H	1.545978	2.797253	0.834893

H	-2.433494	1.236891	1.959940
H	-1.438052	0.496907	2.916422
O	-0.271638	-0.762154	-2.274312
O	0.999850	1.904557	-1.563900
O	-1.669148	2.193760	-0.556026
O	0.768912	-0.753955	2.018652
O	0.963270	2.129732	1.235728
O	-1.595750	0.743110	1.989153
Th	-0.162784	0.291415	-0.003709
O	2.007530	-0.517951	-0.535080
O	3.215775	-1.345625	1.119893
N	3.137241	-1.025928	-0.093288
O	4.064979	-1.165847	-0.892425
O	-3.334447	-2.460631	-0.193108
O	-2.508597	-0.454158	-0.600008
N	-2.412591	-1.664114	-0.146760
O	-1.258924	-1.953374	0.362635

$\mathbf{T h}\left(\mathbf{H}_{2} \mathrm{O}\right){ }_{6}\left(\mathrm{NO}_{3}\right)_{3} \mathbf{3}^{\mathbf{1 +}}$

H	-2.094261	1.206258	2.289429
H	-0.698163	1.667762	2.816940
H	0.905421	-2.614568	1.683155
H	2.194217	-1.950526	1.020194
H	-0.799345	0.769847	-2.714142
H	0.756690	0.587777	-2.736634
H	-1.530173	-1.579213	2.483850
H	2.134654	0.234936	2.580530
H	-2.231131	-1.892614	1.097265
H	2.121707	1.662145	1.930150
O	-1.149514	0.973067	2.306762
O	-1.353750	-1.738687	1.541055
O	1.601305	0.849657	2.048949
O	1.325381	-1.764862	1.468583
O	-0.052719	0.353000	-2.251316
Th	-0.006169	-0.013874	0.266474
O	-0.198301	-2.149842	-1.058913
H	-0.054326	-3.055059	-0.736355
H	-0.112775	-2.163461	-2.027066
O	2.193453	-0.208530	-0.801674
O	4.043889	-0.697672	-1.853079
N	3.270097	-0.931516	-0.914983
O	3.496090	-1.836802	-0.063854
O	1.073755	2.287070	-0.163284

N	-0.003139	2.974101	-0.362958
O	-1.093494	2.299788	-0.285512
O	0.022336	4.175190	-0.612778
O	-4.076268	-0.619241	-1.758615
O	-2.314925	-0.053987	-0.594732
N	-3.313476	-0.862482	-0.814067
O	-3.481191	-1.853823	-0.049830

$\mathbf{T h}\left(\mathbf{H}_{\mathbf{2}} \mathbf{O}\right) \mathbf{5}\left(\mathbf{N O}_{3}\right) \mathbf{3}^{\mathbf{1 +}}$			
H	-2.542022	0.742142	1.957107
H	-1.522224	1.922764	2.084440
H	0.519133	-3.247192	0.098696
H	1.890665	-2.447372	-0.140128
H	-0.541610	-0.477527	-2.878040
H	1.002252	-0.699199	-2.741164
H	-1.635555	-2.289172	1.897026
H	1.566364	-1.134606	2.706017
H	-2.583242	-1.718681	0.738796
H	0.656367	0.010588	3.269400
O	-1.618924	1.000238	1.792228
O	-1.642716	-1.857978	1.025819
O	0.800123	-0.570798	2.502801
O	0.971613	-2.398334	0.234236
O	0.166114	-0.687391	-2.244175
Th	-0.058385	-0.165754	0.196131
O	2.289380	0.011046	-0.333887
O	4.360098	0.087730	-1.028866
N	3.386071	-0.598955	-0.703790
O	3.405278	-1.859016	-0.707814
O	0.841776	2.045716	1.088299
N	0.664507	2.739173	0.010095
O	0.112412	2.090794	-0.963251
O	0.995286	3.911509	-0.080830
O	-4.149573	0.491532	-1.735269
O	-2.135394	0.038092	-1.016960
N	-3.429399	-0.157765	-0.970426
O	-3.883438	-1.005768	-0.156716

$\mathbf{T h}\left(\mathrm{H}_{2} \mathrm{O}\right) 5\left(\mathrm{NO}_{3}\right)_{4}$

H	2.159607	0.836626	-2.195479
H	1.105672	1.987340	-2.306873
H	-1.238294	-2.825656	-0.948224
H	-2.399220	-1.806169	-1.283255

H	0.536362	0.050509	2.833551
H	0.128621	1.516701	2.360556
H	1.216877	-2.616876	-1.228635
H	-1.242204	0.738257	-3.028778
H	2.282864	-1.500295	-1.567352
H	-2.468052	0.546639	-2.056222
O	1.198994	1.028564	-2.165804
O	1.322311	-1.685024	-1.515053
O	-1.523923	0.810098	-2.100555
O	-1.430132	-1.905822	-1.215531
O	-0.008479	0.546496	2.200097
Th	-0.061058	-0.022915	-0.228172
O	2.270724	0.300935	0.506280
N	3.475460	0.249443	0.013387
O	3.622324	-0.082322	-1.200938
O	4.431307	0.524481	0.747716
O	0.209359	-1.964683	1.250114
N	0.342589	-3.260572	1.166636
O	0.287632	-3.803331	0.024863
O	0.513859	-3.906482	2.205954
O	-2.349098	0.252191	0.603484
N	-3.587385	0.074907	0.232976
O	-3.817250	-0.288205	-0.957570
O	-4.486670	0.264917	1.058822
O	-0.159476	2.386232	0.024917
N	0.067518	3.410408	0.804362
O	0.229491	3.210524	2.038354
O	0.104737	4.538433	0.299185

$\mathbf{T h}\left(\mathbf{H}_{2} \mathrm{O}\right)_{4}\left(\mathbf{N O}_{3}\right)_{4}$			
H	-1.551039	1.611547	-2.215586
H	0.011006	1.629979	-2.534121
H	1.759827	-1.869368	-1.804523
H	0.235849	-1.971647	-2.249196
H	-1.857477	-1.476502	2.051206
H	-0.342810	-1.581736	2.520365
H	0.100954	1.959636	2.272458
H	1.648969	1.848435	1.922814
O	-0.722546	1.113777	-2.113336
O	0.921333	-1.379518	-1.847267
O	-0.997895	-1.023107	2.030353
O	0.807311	1.362502	1.917453
Th	-0.002836	0.008716	-0.004481

O	1.684550	-1.395758	0.941581
N	2.087005	-2.006466	2.030621
O	1.243808	-2.250215	2.931915
O	3.276611	-2.329092	2.115389
O	-1.782680	-1.392840	-0.760346
N	-2.207997	-2.176854	-1.722121
O	-1.378032	-2.600425	-2.566950
O	-3.406999	-2.472981	-1.748428
O	1.863664	1.287041	-0.777344
N	2.403615	1.881376	-1.814579
O	1.670654	2.168017	-2.795995
O	3.610588	2.142585	-1.775480
O	-1.773736	1.515569	0.562886
N	-2.276135	2.252817	1.525382
O	-1.520423	2.619112	2.461741
O	-3.470635	2.561466	1.461925

$\mathbf{T h}\left(\mathbf{H}_{\mathbf{2}} \mathbf{O}\right)_{\mathbf{3}}\left(\mathbf{N O}_{3}\right) \mathbf{5}^{\mathbf{1 -}}$			
Th	-0.043652	0.078886	-0.018929
O	-1.161002	1.972103	1.212254
H	-0.775721	2.863249	1.236249
O	1.437057	-0.020480	-2.048987
H	1.056986	-0.115149	-2.937958
O	-0.888189	1.615890	-1.796196
H	-1.807844	1.931573	-1.801928
H	-2.121170	2.053840	0.980386
H	-0.294839	2.411863	-1.845513
H	2.144598	-0.712273	-1.948035
O	0.995380	0.556870	2.333704
O	-0.475933	-1.042467	2.231938
N	0.336139	-0.346846	2.961926
O	0.459301	-0.543843	4.167880
O	1.102478	3.408031	-1.633418
O	1.488998	2.003660	0.033429
N	1.856933	3.013916	-0.699982
O	2.938295	3.565495	-0.448342
O	-1.142350	-1.233921	-2.008161
O	-1.517574	-3.407457	-1.989168
N	-1.082494	-2.390941	-1.455616
O	-0.529396	-2.412155	-0.285251
O	3.135795	-1.931835	-1.280731
O	2.015340	-1.189998	0.473109
N	2.851673	-2.037055	-0.054071

O	3.358515	-2.904419	0.670831
O	-3.690721	1.547477	0.415012
O	-4.626697	-0.360796	-0.124429
N	-3.626835	0.307873	0.176549
O	-2.476953	-0.292343	0.266368

$\mathbf{T h}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{NO}_{3}\right)_{5}{ }^{\mathbf{1 -}} \mathbf{5}$ bidentate

H	-0.273118	-0.786364	3.041936
H	-0.341467	0.767936	3.031236

H $\quad-0.341467 \quad 0.7679363 .031236$

H	0.251109	-0.792517	-3.046161

| H | 0.343502 | 0.759053 | -3.043480 |
| :--- | :--- | :--- | :--- | :--- |

N $\quad 2.150759 \quad 2.173375 \quad 0.017299$
$\mathrm{N} \quad 2.739556-1.377228 \quad 0.011286$
$\mathrm{N} \quad-0.462963-3.010059-0.000964$
$\mathrm{N} \quad-3.028936-0.495177-0.013111$
$\mathrm{N} \quad-1.400025 \quad 2.711593-0.012208$
O $1.988587 \quad 1.369213-0.975646$

O	1.340878	1.997874	1.001855

O $\quad 3.017376$ 3.045342 0.024039

| O | 1.923481 | -1.473689 | -0.979444 |
| :--- | :--- | :--- | :--- | :--- |

O $\quad 2.320458-0.666764 \quad 0.998511$
O $\quad 3.840993-1.925644 \quad 0.013094$

O $\quad 0.075271$-2.395454 0.995385
O $\quad-0.787547-2.260606-0.997182$
O $-0.652669-4.223484-0.000738$
$\begin{array}{llll}\text { O } & -2.279075 & -0.832587 & 0.976707\end{array}$
O $\quad-2.417516 \quad 0.062355-0.997843$
O
O
$\begin{array}{llll}\text { O } & -0.682746 & 2.302324 & -0.999829\end{array}$
$\begin{array}{llll}\text { O } & -1.964624 & 3.802898 & -0.015712\end{array}$
$\begin{array}{lllll}\text { O } & 0.002821 & 0.000883 & 2.542394\end{array}$
$\begin{array}{lllll}\text { O } & -0.002595 & 0.000253 & -2.543541\end{array}$
TH 0.000798 -0.000033 -0.000467
$\left.\mathbf{T h}\left(\mathrm{H}_{2} \mathrm{O}\right)\right)_{2}\left(\mathrm{NO}_{3}\right) 5^{\mathbf{1 -}} \mathbf{2}$ bidentate $\mathbf{3}$ monodentate

TH	-0.046601	0.017871	0.149013
O	-1.601708	1.811418	-0.445419
H	-2.539471	1.537729	-0.579828
H	-1.300875	2.422394	-1.158667
O	0.213766	-1.824809	1.796669
H	1.081776	-2.293499	1.685030
H	-0.468879	-2.488054	1.994045

O	-0.329707	-2.169934	-1.159895
N	-0.485547	-1.630589	-2.320944
O	-0.429782	-0.335723	-2.331895
O	-0.671900	-2.286748	-3.336514
O	-0.716847	1.078527	2.372534
N	0.475985	1.337336	2.796027
O	1.424758	0.991621	1.988418
O	0.692003	1.867172	3.877903
O	-2.270198	-0.753039	0.619439
N	-3.538756	-0.627853	0.315897
O	-3.913054	0.389039	-0.321349
O	-4.316358	-1.519165	0.679330
O	0.013387	3.193849	-2.136154
O	1.195654	1.791496	-0.901620
N	1.138678	2.747394	-1.796646
O	2.201702	3.175979	-2.262853
O	2.189405	-0.878164	-0.178965
O	2.677261	-2.632686	1.076253
N	2.997604	-1.854148	0.137377
O	4.054846	-1.972826	-0.495094

$\mathbf{T h}\left(\mathrm{H}_{2} \mathrm{O}\right)_{1}\left(\mathrm{NO}_{3}\right)_{6} \mathbf{6}^{\mathbf{2 - 5}} 5$ bidentate, 1 monodentate

N	-3.46687200	0.35368600	-1.00023200
N	2.47691400	-0.74166400	1.79595100
N	0.68271800	-2.46177000	-1.72535700
N	-0.41641800	2.47865600	1.63086800
N	2.20788700	1.59412800	-1.65184300
N	-1.59673900	-1.65858000	1.83710800
O	2.61390900	-0.00244700	0.75285300
O	-2.45066300	-0.25756700	-0.50431500
O	-3.28754300	1.30341700	-1.82829000
O	1.28032400	-1.14662900	2.02017400
O	-4.61395300	-0.00241600	-0.66969900
O	3.42516600	-1.03676300	2.52428300
O	-0.27499700	-1.63294100	-1.97892300
O	0.53181000	1.66285100	1.92317500
N	-3.46687200	0.35368600	-1.00023201
N	2.47691400	-0.74166400	1.79595101
N	0.68271800	-2.46177000	-1.72535701
N	-0.41641800	2.47865600	1.63086801
N	2.20788700	1.59412800	-1.65184301
N	-1.59673900	-1.65858000	1.83710801
O	2.61390900	-0.00244700	0.75285301

O	-2.45066300	-0.25756700	-0.50431501
O	-3.28754300	1.30341700	-1.82829001
O	1.28032400	-1.14662900	2.02017401
O	-4.61395300	-0.00241600	-0.66969901
O	3.42516600	-1.03676300	2.52428301
O	-0.27499700	-1.63294100	-1.97892301
O	0.53181000	1.66285100	1.92317501

$\mathrm{Th}\left(\mathrm{H}_{2} \mathrm{O}\right)_{1}\left(\mathrm{NO}_{3}\right)_{6}{ }^{\mathbf{2 -}} 4$ bidentate, 2 monodentate

Th	0.069608	0.205975	0.093204
O	-2.026933	-2.714030	-2.220690
O	-0.762449	-2.228156	-0.480307
N	-1.411881	-1.899951	-1.535136
O	-1.372043	-0.642991	-1.836227
O	-1.901742	-0.506634	1.453724
N	-3.142300	-0.893061	1.336483
O	-3.623883	-1.087539	0.200174
O	-3.798579	-1.055128	2.388403
O	0.779301	-1.564774	1.783923
O	2.689566	-1.631332	2.884761
N	1.944760	-1.091164	2.072304
O	2.265643	-0.014415	1.445887
O	0.924446	2.609772	0.588022
N	1.925760	2.637539	-0.227382
O	2.107418	1.560854	-0.898095
O	2.645860	3.627908	-0.344899
O	-1.900142	1.850430	-0.098629
O	-0.521629	1.931492	-1.778830
N	-1.596839	2.381214	-1.235694
O	-2.286955	3.253525	-1.757674
O	1.579193	-0.981541	-1.385262
N	2.155229	-2.150010	-1.528490
O	2.608130	-2.727798	-0.519619
O	2.241558	-2.616264	-2.682104
O	-0.194578	1.134537	2.484685
H	-1.049220	0.938983	2.905690
H	0.043921	2.047964	2.713434

$\mathbf{T h}\left(\mathrm{NO}_{3}\right) \mathbf{)}^{\mathbf{2 -}} \mathbf{6}$ bidentate

N	1.864434	1.257391	-2.050932
N	-1.864434	-1.257391	2.050931
N	2.117959	0.377120	2.153304

N	-2.117960	-0.377119	-2.153303
N	-1.145089	2.745141	0.643489
N	1.145087	-2.745142	-0.643488
O	-1.848430	0.008597	1.815903
O	1.848430	-0.008597	-1.815903
O	1.032571	1.952421	-1.355966
O	-1.032571	-1.952421	1.355966
O	2.618137	1.764997	-2.877952
O	-2.618137	-1.764997	2.877952
O	2.301545	0.741014	0.931801
O	-2.301545	-0.741014	-0.931800
O	0.972338	-0.157338	2.397619
O	-0.972338	0.157338	-2.397619
O	2.973432	0.529106	3.022110
O	-2.973432	-0.529107	-3.022109
O	-0.129281	2.257109	1.266346
O	0.129281	-2.257109	-1.266346
O	-1.640676	1.986826	-0.271595
O	1.640676	-1.986826	0.271595
O	-1.607663	3.853424	0.903279
O	1.607663	-3.853424	-0.903280
Th	0.000000	0.000000	0.000000

$\mathbf{T h}\left(\mathrm{NO}_{3}\right)_{6}{ }^{\mathbf{2 -}} \mathbf{4}$ bidentate 2 monodentate

Th	-0.001615	0.049956	0.008421
O	1.779473	-2.314309	3.059012
O	0.838817	-2.126571	1.071806
N	1.266366	-1.628900	2.182366
O	1.109354	-0.353787	2.300553
O	1.709981	-0.548232	-1.553086
N	2.972763	-0.928530	-1.512339
O	3.502974	-1.132579	-0.403644
O	3.563395	-1.064932	-2.597948
O	-0.864337	-2.153008	-0.981541
O	-1.862663	-2.387278	-2.935597
N	-1.329886	-1.680343	-2.087804
O	-1.189002	-0.406742	-2.234312
O	-0.128873	2.109850	-1.511804
N	-1.348105	2.445210	-1.245257
O	-1.949304	1.685143	-0.395686
O	-1.889523	3.416275	-1.762467
O	2.044220	1.575211	0.355950

O	0.247670	2.173356	1.430587
N	1.488767	2.412307	1.163512
O	2.090940	3.367889	1.641439
O	-1.766072	-0.448047	1.546439
N	-3.044707	-0.768511	1.474661
O	-3.554666	-0.952875	0.352827
O	-3.668767	-0.871205	2.544493

9. REFERENCES.

(1) Spek, A. L. Single-Crystal Structure Validation with the Program PLATON. J. Appl. Crystallogr. 2003, 36 (1), 7-13. https://doi.org/10.1107/S0021889802022112.
(2) Janiak, C. A Critical Account on N-n Stacking in Metal Complexes with Aromatic Nitrogen-Containing Ligands. J. Chem. Soc. Dalt. Trans. 2000, No. 21, 3885-3896. https://doi.org/10.1039/b003010o.
(3) Steiner, T. C-H - O Hydrogen Bonding in Crystals; 1996; Vol. 6. https://doi.org/10.1080/08893119608035394.
(4) Thomas, S. The Hydrogen Bond in the Solid State. Angew. Chemie Int. Ed. 2002, 41, 4876.
(5) A Parr, R. G.; Yang, W. Density Functional Theory of Atoms and Molecules.; 1989.
(6) Becke, A. D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98 (7), 5648-5652. https://doi.org/10.1063/1.464913.
(7) Godbout, N.; Salahub, D. R.; Andzelm, J.; Wimmer, E. Optimization of Gaussian-Type Basis Sets for Local Spin Density Functional Calculations. Part I. Boron through Neon, Optimization Technique and Validation. Can. J. Chem. 1992, 70 (2), 560-571. https://doi.org/10.1139/v92-079.
(8) B. Tomasi, J.; Mennucci, B.; Cammi, R. Quantum Mechanical Continuum Solvation Models. Chem. Rev. 2005.
(9) Peterson, K. A. Correlation Consistent Basis Sets for Actinides. I. the Th and U Atoms. J. Chem. Phys. 2015, 142 (7). https://doi.org/10.1063/1.4907596.
(10) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratch, D. J. Gaussian 16, Revision A.03. Gaussian Inc.: Wallingford, CT, USA. 2016.
(11) Ribeiro, R. F.; Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Use of Solution-Phase Vibrational Frequencies in Continuum Models for the Free Energy of Solvation. J. Phys. Chem. B 2011, 115 (49), 14556-14562. https://doi.org/10.1021/jp205508z.
(12) Purvis, G. D.; Bartlett, R. J. A Full Coupled-Cluster Singles and Doubles Model: The Inclusion of Disconnected Triples. J. Chem. Phys. 1982, 76 (4), 1910-1918. https://doi.org/10.1063/1.443164.
(13) Raghavachari, K.; Trucks, G. W.; Pople, J. A.; Head-gordon, M. Krishnan RAGHAVACHARI, Gary W. TRUCKS. Chem. Phys. Lett. 1989, 157 (6), 479-483.
(14) Watts, J. D.; Gauss, J.; Bartlett, R. J. Coupled-Cluster Methods with Noniterative Triple Excitations for Restricted Open-Shell Hartree-Fock and Other General Single Determinant Reference Functions. Energies and Analytical Gradients. J. Chem. Phys. 1993, 98 (11), 8718-8733. https://doi.org/10.1063/1.464480.
(15) Bartlett, R. J.; Musiał, M. Coupled-Cluster Theory in Quantum Chemistry. Rev. Mod. Phys. 2007, 79 (1), 291-352. https://doi.org/10.1103/RevModPhys.79.291.
(16) Pople, J. A.; Binkley, J. S.; Seeger, R. Theoretical Models Incorporating Electron Correlation. Int. J. Quantum Chem. 1976, 10 (10 S), 1-19. https://doi.org/10.1002/qua.560100802.
(17) Werner, H.-J.; Knowles, P. J.; Knizia, G.; Manby, F. R.; Schütz, M.; Celani, P.; Györffy, W.; Kats, D.; Korona, T.; Lindh, R. . et al. MOLPRO, version 2020.1, a package of ab initio
programs.
(18) Werner, H. J.; Knowles, P. J.; Manby, F. R.; Black, J. A.; Doll, K.; Heßelmann, A.; Kats, D.; Köhn, A.; Korona, T.; Kreplin, D. A.; et al. The Molpro Quantum Chemistry Package. J. Chem. Phys. 2020, 152 (14). https://doi.org/10.1063/5.0005081.
(19) Klamt, A. COSMO-RS: From Quantum Chemistry to Fluid Phase Thermodynamics and Drug Design. 2005.
(20) Klamt, A.; Schüürmann, G. COSMO: A New Approach to Dielectric Screening in Solvents with Explicit Expressions for the Screening Energy and Its Gradient. J. Chem. Soc. Perkin Trans. 2 1993, No. 5, 799-805. https://doi.org/10.1039/P29930000799.

