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Gradient boost regression. GBR is a flexible non-parametric statistical machine 

leaning algorithm.1,2 The method contains a large number of decision trees that are 

generated sequentially. The construction of each decision tree requires the information 

of the previously generated decision tree. Therefore, each decision tree is based on a 

modified version of the original data set. The final regression algorithm is the weighted 

sum of these weak regression algorithms obtained by each training, as 

𝐹𝑀(𝑥)=
𝑀

∑
𝑚= 1

𝑇(𝑥,𝜃𝑚) (1)

where m is the times of training, x is the input data, and θm is the distribution weight 

vector. The model is trained M times, and each time it produces a weak regression 

function T. The loss function of every weak classifier, is defined as 

�̂�= 𝑎𝑟𝑔𝜃𝑚
𝑚𝑖𝑛

𝑁

∑
𝑖= 1

𝐿(𝑦𝑖,𝐹𝑚 ‒ 1(𝑥𝑖)+ 𝑇(𝑥𝑖,𝜃𝑚)) (2)

where  is the current model.𝐹𝑚 ‒ 1(𝑥𝑖)

Generation of features. We generated 273 features using matminer software package, 

an open-source toolkit.3 These features can be divided into the following several 

categories.4,5 For details of these features, please refer to Ref 4 and 5.

Effective Coordination Number Features5

Effective coordination number of an atom is defined as:

𝐶𝑁𝑒𝑓𝑓=

(∑
𝑛
𝐴𝑛)

2

∑𝐴2𝑛
(3)

where 𝐴𝑛 is the area of face 𝑛 in its Voronoi cell. The maximum, minimum, mean, and 

mean absolute deviation in coordination number are calculated as features.

Structural Heterogeneity Features5



These features reflect variation in the shape of local bonding environments. Bond 

length is defined as the Voronoi-face-area-weighted average of the distance between 

an atom and each neighbor:

�̅�𝑙=
∑𝐴𝑛 ∗ ‖𝑟𝑛 ‒ 𝑟𝑙‖2

∑𝐴𝑛

(4)

where  are the position vector of an atom i.  and  are the area position vector of nth 𝑟𝑙 𝐴𝑛 𝑟𝑛

neighbor of atom i, respectively

The bond length variance is calculated for describing the distribution in bond lengths 

between each neighbor of an atom. 

�̂�𝑙=
∑|𝐴𝑛 ∗ ‖𝑟𝑛 ‒ 𝑟𝑙‖2 ‒ �̅�𝑙|

�̅�𝑙 ∗∑𝐴𝑛

(5)

The maximum, minimum, mean, and mean absolute deviation of  and  are calculated �̅�𝑙 �̂�𝑙

as features.

The mean absolute deviation of the volume of the Voronoi cell about each atom is 

also used as a feature. 

Chemical Ordering Features

These features are based on Warren-Cowley ordering parameters, which measure how 

the distribution of atoms on a lattice differs from purely-random.6

Maximum Packing Efficiency

The radius of the largest sphere centered on the position of the atom is equal to the 

distance between the center of the atom and the center of the nearest surface.

Local Environment Features5 

These features are to describe difference in elemental properties between an atom and 

each neighbor. The local property difference for each atom is defined as:



𝛿𝑝=
∑
𝑛
𝐴𝑛 ∗ |𝑝𝑛 ‒ 𝑝𝑖|

∑
𝑛
𝐴𝑛

(6)

where  and  are the elemental property of the central atom i and neighboring atom 𝑝𝑖 𝑝𝑛

n, respectively.  is the area of face of atom n.𝐴𝑛

Composition-Based Features4

These features are only dependent on the composition of the atoms, which include: 

Stoichiometric Features are based on the relative fractions of elements in the structure, 

no matter what the elements are actually. Elemental Property Features are based on the 

mean, maximum, minimum, mode, range, and mean absolute deviation of 22 elemental 

properties. Valence Shell Features are based on the fraction of electrons in the s, p, d, 

and f shells of the constituent elements. Ionicity Features is about judging whether it 

can to form a charge-neutral ionic compound at a certain composition. Elemental 

properties used to compute elemental-property-based features is shown in Table S1. 

The selected 21 features for ML are shown in Table S2.

Table S1. (Reproduced from Ref.4) Elemental properties used to compute elemental-property-

based attributes. s

Atomic 

Number

Mendeleev

Number

Atomic Weight Melting

Temperature

Column

Row Covalent 

Radius

Electronegativity s Valence

Electrons

p Valence

Electrons

d Valence

Electrons

f Valence

Electrons

Total Valence

Electrons

Unfilled s

States†

Unfilled p

States†

Unfilled d

States

Unfilled f

States

Total Unfilled

States

Specific Volume

of 0 K Ground

State

Band Gap Energy

of 0 K Ground

State



Magnetic Moment (per atom)

of 0 K ground state

Space Group Number of 0 K

Ground State

Table S2. 21 feature names

No Feature No Feature

1
average deviation of column in the 

periodic table (local difference)
12

mean of number of s valence electrons 

(local difference)

2 compound possible 13 average deviation of s valence electrons

3
range of Mendeleev Number (local 

difference)
14

average deviation of melting 

temperature

4
average deviation of space group 

number (local difference)
15

range local of specific volume of ground 

state (local difference)

5
average deviation of Mendeleev 

Number (local difference)
16 mean of space group number

6
range of the number of unfilled 

electrons
17

average deviation of melting 

temperature (local difference)

7
range of the number of valence electrons 

(local difference)
18

minimum of Mendeleev Number (local 

difference)

8
minimum of the number of unfilled 

electrons
19 maximum of melting temperature

9 fraction of d valence electrons 20
maximum of the number of unfilled f 

electrons

10
maximum of the number of unfilled 

electrons (local difference)
21

minimum of column in the periodic 

table (local difference)

11 mean of atomic weight





In order to analyze the hidden trends within the data, we visualize the relationship 

between the four important features and the bandgaps, as shown in Fig. S1. In Fig. S1 

(b), results show the bandgap of the materials that can be ionically bonded vary greatly. 

As seen from Fig. S1 (a), (c), and (d), no obvious trend is observed. It is worth noting 

that the three features are related to the local environment of the atoms, which means 

that different substituted sites have great influences on the bandgaps of the materials. 

Figure S1. Data visualization of predicted bandgaps with (a) average deviation of the columns of 
the constituent atoms, (b) determining whether a material is ionically bonded, (c) range of the 

Mendeleev Numbers of the constituent atoms (d) average deviation of the space group number of 
the elementary substance formed by the constituent atoms.

We select a set of systems with the same concentration as an example and looked at the 

structures with the smallest ( =13%), median ( =14%), and largest ( =15%) 𝜂𝑆𝑇𝐻 𝜂𝑆𝑇𝐻 𝜂𝑆𝑇𝐻

STH efficiency, as shown in Fig. S2 (a), (b), and (c) respectively. In this case, the value 

of  is different due to different substituted sites.𝜂𝑆𝑇𝐻



Figure S2 Schematic diagram of the configurations with (a)  of 13%, (b) 14% and (c)15%𝜂𝑆𝑇𝐻

Figure R3 Periodic Table. These good B-site atoms are marked based on Fig.4(b).
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