Electronic supplementary information (ESI)

Single-photon ionization induced C-C or C-N bonds formation in pyrrole clusters

Chengcheng Wei, ${ }^{a}$ Xujian Chen, ${ }^{a}$ Yi Wang, ${ }^{a}$ Yujian Li, ${ }^{a}$ Jiao Gao, ${ }^{\text {b }}$ Min Xie, ${ }^{\text {a }}$ Yongjun $\mathrm{Hu}^{* a}$

AFFILIATIONS

${ }^{\text {a }}$ MOE Key Laboratory of Laser Life Science \& Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
${ }^{\mathrm{b}}$ State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

AUTHOR INFORMATION
*Corresponding Author
E-mail: xiemin@m.scnu.edu.cn (M.X.); yjhu@scnu.edu.cn (Y.J.H.)
Telephone: (+86-20)8521-1920 EXT 8713. Fax: (+86-20) 8521-6052.

Table of Contents
Figure S1. Comparison of the (a) experimental and (b) calculated IR spectra of (py) ${ }_{2}$ in the $\mathrm{C}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ stretch range.

Figure S2. Comparison of the (a) experimental and (b-c) calculated IR spectra of (py) ${ }_{3}$ in the $\mathrm{C}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ stretch range.

Figure S3. Geometric of eighteen stable ce type structures of $(\mathrm{py})_{2}{ }^{+}$predicted with B3LYP-D3(BJ)/6-311++G(d,p) level.

Figure S4. Geometric of eleven stable en type structures of $(\mathrm{py})_{2}{ }^{+}$predicted with B3LYP-D3(BJ)/6-311++G(d,p) level.

Figure S5. Geometric of two stable pp type structures of $(\mathrm{py})_{2}{ }^{+}$predicted with B3LYP-D3(BJ)/6-311++G(d,p) level.

Figure S6. Geometric of five stable $\mathbf{n} \boldsymbol{\pi}$ type structures of $(\mathrm{py})_{2}{ }^{+}$predicted with B3LYP-D3(BJ)/6-311++G(d,p) level.

Figure S7. The left panel shows the mass spectra of $(\mathrm{py})_{2}{ }^{+}$and the right panel compares the IR spectra of $(\mathrm{py})_{2}{ }^{+}, \mathrm{H}^{+}(\mathrm{py})_{2}$ and their fragments.

Figure S8. The calculated RRKM isomerization rate constants of R_{1} and R_{2} as a function of the photon energy.

Figure S9. The left panel shows the mass spectra of $(\mathrm{py})_{3}{ }^{+}$and the right panel compares the IR spectra of $(\mathrm{py})_{3}{ }^{+}, \mathrm{H}^{+}(\mathrm{py})_{3}$ and their fragments.

Table S1. Assignments of the bands in the observed IR spectra of $(\mathrm{py})_{2}{ }^{+}$.

Table S2. Assignments of the bands in the observed IR spectra of $(\mathrm{py})_{3}{ }^{+}$.

Table S3. The frequency and intensity of anharmonic spectra of the three isomers for $(\mathrm{py})_{2}{ }^{+}$.

Figure S1. (a) Observed and (b) calculated IR spectra of $(\mathrm{py})_{2}$ in the C-H and N-H stretch range. Frequencies of $\mathbf{n} 1$ were scaled by a factor of 0.943 at B3LYP-D3(BJ)/6-311++G(d,p) level, and the convoluted spectra were obtained by a Lorentzian linewidth function with a width of $20 \mathrm{~cm}^{-1}$.

Figure S2. (a) Observed and (b-c) calculated IR spectra of $(\mathrm{py})_{3}$. Frequencies of the two structures were scaled by a factor of 0.943 at B3LYP-D3(BJ)/6-311++G(d,p) level, and the convoluted spectra were obtained by a Lorentzian linewidth function with a width of $20 \mathrm{~cm}^{-1}$. The predicted structures and relative energy at the zero point vibrational level (the number in parentheses in kJ mol^{-1}) of the cluster are also shown.

Figure S3. Geometric of eighteen stable cc type structures of (py) ${ }_{2}{ }^{+}$predicted with B3LYP-D3(BJ)/6-311++G(d,p) level.

Figure S4. Geometric of eleven stable en type structures of $(\mathrm{py})_{2}{ }^{+}$predicted with B3LYP-D3(BJ)/6-311++G(d,p) level.

Figure S5. Geometric of two stable pp type structures of $(\mathrm{py})_{2}{ }^{+}$predicted with B3LYP-D3(BJ)/6-311++G(d,p) level.

Figure S6. Geometric of five stable $\mathbf{n} \boldsymbol{\pi}$ type structures of $(\mathrm{py})_{2}{ }^{+}$predicted with B3LYP-D3(BJ)/6-311++G(d,p) level.

Figure S7. (Left panel) Expanded mass spectrum near the (py) ${ }^{+}$region with the IR laser off (black trace) and on (red trace) at $3480 \mathrm{~cm}^{-1}$. (Right panel) IR spectra of $(\mathrm{py})_{2}{ }^{+}, \mathrm{H}^{+}(\mathrm{py})_{2}$ and peak A labeled in the mass spectrum. The infrared light is introduced 300 ns later than that of VUV light in the ionization region.

gure S8. The calculated RRKM isomerization rate constants for the production of $\mathbf{c c} \mathbf{(}\left(\mathrm{R}_{1}\right)$ and $\mathbf{~ c n} 1$ $\left(R_{2}\right)$ after ionization as a function of the photon energy.

Computational details of the kinetics stimulation

The internal energy-dependent isomerization rate constants $R(E)$ of two paths to form covalent bonds were calculated using Rice-Ramsperger-Kassel-Marcus (RRKM) theory. ${ }^{52,53}$ The isomerization rate constant with an internal energy E can be calculated as follows:

$$
R(E)=\frac{\sigma N^{*}\left(E-E_{0}\right)}{h \rho(E)}
$$

where σ is the reaction degeneracy, $N^{*}\left(E-E_{0}\right)$ represents the total number of states for the activated complex, E depicts the energy deposited after vertical ionization and $E 0$ is the energy difference between the transition states and AIE ($\left.E_{0}=A E-A I E\right), h$ is

Planck's constant and $\rho(E)$ denotes the density of energized reactant molecule. $N^{*}(E-$ $\left.E_{0}\right)$ and $\rho(E)$ are calculated at the harmonic vibrational frequencies using the BeyerSwinehart algorithm program. The pre-exponential factor is A, which can be preset in the Masskinetics program ${ }^{45}$, and $\log A=15$ is employed in this work. In the following isomerization, the rate constant can be calculated without considering the kinetic energy of the electrons by applying the maximum value of the internal energy of the parent ion ($E=h v-A I E)$.

Figure S9. (Left panel) Expanded mass spectrum near the (py) ${ }_{2}{ }^{+}$region with the IR laser off (black trace) and on (red trace) at $3480 \mathrm{~cm}^{-1}$. (Right panel) IR spectra of $(\mathrm{py})_{3}{ }^{+}, \mathrm{H}^{+}(\mathrm{py})_{3}$ and peak A labeled in the mass spectrum. The infrared light is introduced 300 ns later than that of VUV light in the ionization region.

Table S1. Comparison of observed and scaled harmonic frequencies of $(\mathrm{py})_{2}{ }^{+}$and their assignments.

Experiment	Calculation ${ }^{[a]}$				Assignments
Bands ($\left.\mathrm{cm}^{-1}\right)^{[b]}$	cc1	cn1	pp1	n /1	
2887	2881 (3.2) ${ }^{[\mathrm{c}]}$	2886 (5.6)		2891(3.3)	s-CH2-stretch
		2873 (5.5)			
	2911 (1.5)	2920 (0.4)			$\mathrm{a}-\mathrm{CH}_{2}$-stretch
3011	3077 (18.4)	2904 (0.6)			
		3082 (1.5)	3100 (15.7)	3071 (2.5)	a-CH-stretch
		3080 (19.9)	3090 (0.8)	3090 (1.1)	
3129	3095 (4.8)			3093(1.1)	s-CH-stretch
				3101 (9.2)	
		3108 (6.9)	3114 (0.5)	3121 (1.8)	
		3106 (14.1)	3108 (18.7)	3109 (11.1)	
		3095 (4.9)			
3470	3473 (607.4)	3479 (296.1)	3470 (297.5)	3465 (144.7)	free NH -stretch
a] calculated at wavenumbers of in $\mathrm{km} \mathrm{mol}^{-1}$.	B3LYP-D3(B. he bands in the	$) / 6-311++\mathrm{G}(\mathrm{~d},$ R spectra of (p	level and $)_{2}{ }^{\left[{ }^{[c]}\right.}$ the valu	caled by a in the parenth	tor of 0.954 . es is IR intensi

Table S2. Comparison of observed and scaled harmonic frequencies of $(\mathrm{py})_{3}{ }^{+}$and their assignments.

Experiment	Calculation ${ }^{[a]}$				Assignments
$\begin{aligned} & \hline \text { Bands } \\ & \left(\mathrm{cm}^{-1}\right)^{[b]} \end{aligned}$	$(\mathrm{cc} 1)^{+} \mathrm{py}$	$(\mathrm{cn1})^{+} \mathrm{py}$	$(\mathrm{pp1})^{+} \mathrm{py}$	$(\mathrm{n} \pi 1)^{+} \mathrm{py}$	
2793	2881	2882 (7.0)		2889 (2.5)	s-CH2-stretch
	(1.9) ${ }^{[\mathrm{c}]}$	2880 (10.0)			
2943	2876 (4.0)				
	2911 (1.0)	2912 (2.0)			$\mathrm{a}-\mathrm{CH}_{2}$-stretch
	2905 (2.0)				
	3079 (3.0)	3095 (4.5)	3108 (7.0)	3099 (4.6)	a-CH-stretch
	3079 (1.0)	3081 (2.1)	3106 (2.4)	3027 (4.2)	
	3077 (11.1)	3076 (9.3)	3101 (5.1)	3091 (0.8)	
			3099 (2.2)		
			3093 (0.5)		
broad	3095	3107 (10.1)	3116 (3.6)	3129 (1.6)	s-CH-stretch
feature	(1.4)	3107 (5.3)	3115 (0.4)	3109 (8.2)	
	3095 (1.3)				
	3104 (0.7)	3104 (0.9)	3098 (2.9)	3078 (1.1)	H-bonded a-CH-
	3089 (0.2)	3089 (0.3)	3085 (1.2)	3104 (1.4)	stretch of third $\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}$
		3079 (0.8)	3073 (0.5)		
	3109 (0.1)	3108 (0.1)	3104 (1.2)	3109 (0.4)	H-bonded s-CHstretch of third $\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}$
3488	3484 (92.3)	3482 (97.9)	3476	3480 (106)	free NH -stretch
	3481		(102.1)		
	(288.9)	3231	3309		H-bonded NH-stretch
	3249	(1775.9)	(1249.7)	3210	
	(1908.1)		3281	(1073.7)	
			(131.8)		

${ }^{[a]}$ calculated at B3LYP-D3(BJ)/6-311++G(d,p) level and scaled by a factor of 0.954 . ${ }^{\text {[b] }}$ wavenumbers of the bands in the IR spectra of $(\mathrm{py})_{2}{ }^{+}$. ${ }^{[\mathrm{c}]}$ the value in the parentheses is IR intensities in $\mathrm{km} \mathrm{mol}^{-1}$.

Table S3. The simulated spectra of the three isomers for $(\mathrm{py})_{2}{ }^{+}$were calculated at B3LYP-D3(BJ)/6$311++G(d, p)$ level and their assignments.

Isomers	Fundamental Freq. $\left(\mathrm{cm}^{-1}\right)$	Intensity $\begin{gathered} \left(\mathrm{Km}^{-1}\right. \\ \left.\mathrm{mol}^{-1}\right) \end{gathered}$	Assignments	Overtones Freq. $\left(\mathrm{cm}^{-1}\right)$	Intensity $\left(\mathrm{Km} \mathrm{mol}^{-1}\right)$	Assignments
pp1	3117	1.3	Fund (45)	2671	0.0	Over (37^{2})
	3118	0.0	Fund (46)	2703	0.0	Over (38^{2})
	3126	0.6	Fund (47)	2707	0.0	Over (392)
	3127	11.4	Fund (48)	2802	0.0	Over (402)
	3133	0.3	Fund (49)	2950	0.0	Over (41^{2})
	3134	11.7	Fund (50)	2965	0.0	Over (42^{2})
	3140	0.0	Fund (51)	2961	0.0	Over (432)
	3141	0.0	Fund (52)	2982	0.0	Over (442)
ce1	2901	0.0	Fund (45)	2829	0.0	Over ($38{ }^{2}$)
	2909	2.0	Fund (46)	2849	0.0	Over (392)
	2904	2.2	Fund (47)	2952	0.0	Over (402)
	2905	1.1	Fund (48)	2963	0.0	Over (41^{2})
	3107	11.1	Fund (49)	2978	0.0	Over (42 ${ }^{2}$)
	3109	1.4	Fund (50)	3001	0.0	Over (432)
	3127	4.7	Fund (51)	3141	0.0	Over (442)
	3128	0.3	Fund (52)			
cn1	2891	2.3	Fund (45)	2728	0.1	Over (37^{2})
	2909	2.1	Fund (46)	2793	0.8	Over (38^{2})
	2898	1.5	Fund (47)	2833	0.0	Over (392)
	2916	1.1	Fund (48)	2848	0.7	Over (40^{2})
	3109	4.4	Fund (49)	2944	0.6	Over (41^{2})
	3094	1.7	Fund (50)	2970	2.1	Over (42^{2})
				2992	0.4	Over (43^{2})
				3084	9.8	Over (442)

