Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2023

Supporting Information

Two Janus Ga₂STe monolayers: Electronic, optical, and

photocatalytic properties

Huabing Shu*

School of Science, Jiangsu University of Science and Technology, Zhenjiang 212001,

China

**E-mail:* <u>shuhuabing@just.edu.cn.</u>

Fig. S1 Top and side views of Janus Ga_2STe monolayer with type-1 configuration at 0 ps and 6 ps at the temperature of 400 K.

Fig. S2 Top and side views of Janus Ga_2STe monolayer with type-12 configuration at

0 ps and 6 ps at the temperature of 400 K.

Fig. S3 Band structures of Janus Ga_2STe (a-b), GaS (c), and GaTe (d) monolayers at

the PBE level.

Fig. S4 (a)-(c) Imaginary parts of the dielectric functions of Janus Ga₂STe monolayers with the type-1 and type-2 configurations at the G_0W_0 +RPA and G_0W_0 +BSE methods. The *a*-polarized lights are applied in these calculations.

Fig. S5 Light absorption coefficient α (ω) of two Janus Ga₂STe monolayers under different photon energy $\hbar \omega$ along three different polarized directions: (a) Type-1, (b) Type-2. The electron-hole interaction has been included in two Janus Ga₂STe monolayers by the G_0W_0 +BSE method.

Fig. S6 Band edge alignments of the GaS and GaTe monolayers with respect to the water redox potentials at different pH values according to the G_0W_0 method.