Electronic Supplementary Information (ESI)

Disaggregation-induced resurgence of quenched emission of a selfassembled bis-indole system: Photophysics, energetics, and dynamics

Provakar Paul,^a Saikat Samanta,^a Arunavo Chatterjee,^b Arabinda Mallick^{*c} and Tapas Majumdar^{*a}

^aDepartment of Chemistry, University of Kalyani, Nadia, West Bengal, India – 741235

^bDepartment of Chemical Sciences, Indian Institute of Science Education and Research (IISER)–Kolkata, Mohanpur, West Bengal, India – 741246

^cDepartment of Chemistry, Kazi Nazrul University, Asansol, West Bengal, India – 713340

E-mail: ^campcju@yahoo.co.in; ^atapasmju@gmail.com

Fig. S1 (a) Change in the absorption spectrum of BIPM with gradual addition of β -CD and (b) absorption spectrum of only β -CD with its increasing concentration; in pure water, Temp. 298 K.

Fig. S2 Shift in the emission maximum of BIPM with gradual addition of β -CD in pure water; λ_{ex} = 280 nm, [BIPM] = 22.4 μ M, Temp. 298 K.

Fig. S3 Change in the absorbance of (a1) BIPM in pure DiOx and (a2) BIPM– β -CD in pure water on interaction with Cu(OAc)₂ quencher; Change in the fluorescence of (b1) BIPM in pure DiOx and (b2) BIPM– β -CD in pure water on interaction with Cu(OAc)₂ quencher; λ_{ex} = 280 nm, [BIPM] = 22.4 μ M, [β -CD] = 4.75 mM, Temp. 298 K.

Table S1 Time-resolved decay parameters of BIPM at different β -CD concentration on excitation at 280 nm and monitoring at emission maxima. χ^2 represents the goodness of fitting and the data are within ±5% error limit.

[β-CD] <i>,</i> mM	T ₁ , ns	A1	T ₂ , ns	A ₂	T _{av} , ns	χ²
0.00	0.25	70.27	1.36	29.73	1.03	1.27
0.61	0.85	45.09	2.90	54.91	2.49	1.20
1.71	0.89	24.79	2.85	75.21	2.66	1.17
2.58	1.21	21.35	2.92	78.65	2.75	1.18
3.60	1.31	20.15	2.93	79.85	2.77	1.16
4.81	0.94	12.16	2.79	87.84	2.71	1.15