Aromaticity in P₈ Allotropes and (CH)₈ Analogues: Significance of their 40 Valence Electrons?

Amr A. A. Attia,¹ Alvaro Muñoz-Castro,^{*2} Alexandru Lupan,^{*1} and R. Bruce King^{*3}

¹Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania
²Laboratorio de Química Inorgánica y Materiales Moleculares, Facultad de Ingeniería, Universidad Autonoma de Chile, El Llano Subercaseaux 2801, Santiago, C hile
³Department of Chemistry, University of Georgia, Athens, Georgia, 30602, USA

Supporting Information

Complete Gaussian09 Reference.

Table S1: Initial 8-vertex starting structures.

Table S2: Distance matrices and energy rankings for the lowest energy P₈ structures.

Table S3: Distance matrices and energy rankings for the lowest energy C₈H₈ structures.

Table S4. Orbital energies and HOMO-LUMO gaps for the lowest lying P_8 and C_8H_8 structures.

Table S5. QTAIM analysis for the lowest lying P_8 structures.

Table S6. Calculated molar magnetic susceptibility in cgs ppm units $(10^{-6} \text{ cm}^3 \text{ mol}^{-1})$ for the lowest lying P₈ and C₈H₈ structures. Figure S1. Correlation between the calculated χM and relative energy (kcal/mol) for the lowest lying P₈ and C₈H₈ structures. Complete Gaussian09 Reference.

Gaussian 09, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

16. trans-Tricyclooctadiene

Table S2: Distance table for the lowest-lying P_8 optimized structures obtained at the M11/def2-TZVP level of theory. Included are the zero-point corrected absolute energy in (a.u.) at the DLPNO-CCSD(T)/def2-QZVP level of theory with zero-point energy obtained from the M11/def2-TZVP computations, relative energy in (kcal/mol) and symmetry.

, , , , , , , , , , , , , , , , , , , ,		00		0	U	
		1	2 3	4	5	
	1 P	0.000000				
	2 P	3.548864	0.000000			
	3 P	2.180490	2.210211	0.000000		
	4 P	2.280445	3.548872	2.180495	0.000000	
	5 P	3.547119	2.180494	3.548862	4.216929	0.000000
	6 P	2.236614	3.466450	3.466445	3.164638	2.236612
	7 P	3.164660	3.466451	3.466447	2.236611	3.164649
	8 P	4.216933	2.180497	3.548865	3.547129	2.280440
		6	7 8			
	6 P	0.000000				
	7 P	2.198067	0.000000			
	8 P	3.164643	2.236608	0.000000		
1. -2727.491545 0.0 C_{2y}						
20						

		1	2 3	4	5	
	1 P	0.000000				
	2 P	2.200516	0.000000			
	3 P	4.251534	3.785499	0.000000		
	4 P	3.785499	3.928879	2.200516	0.000000	
	5 P	2.198896	2.200489	4.786511	3.785809	0.000000
	6 P	3.785809	2.231892	2.200489	3.233380	3.785499
	7 P	4.786511	3.785809	2.198896	2.200489	4.251534
	8 P	2.200489	3.233380	3.785809	2.231892	2.200516
		6	7 8			
	6 P	0.000000				
	7 P	2.200516	0.000000			
	8 P	3.928879	3.785499	0.000000		
5. $-2727.465219 + 16.5 D_{2h}$						

		1	2 3	4	5	
	1 P	0.000000				
	2 P	4.758016	0.000000			
	3 P	2.634593	3.023641	0.000000		
	4 P	2.769935	2.319466	2.165268	0.000000	
	5 P	2.159759	5.140850	2.192604	3.590039	0.000000
	6 P	2.159531	4.659117	2.192926	3.590381	2.213040
	7 P	4.923707	2.177781	2.383899	3.162833	4.338925
	8 P	4.755253	2.142426	3.022724	2.318868	4.654496
(4)		6	7 8			
	6 P	0.000000				
	7 P	4.341093	0.000000			
	8 P	5.140612	2.178133	0.000000		
6 -2727 458943 +20 5 C_{-}						
$0.2121.100010$ [20.0 $C_{\rm g}$						

		1	2 3	4	5	
	1 P	0.000000				
	2 P	2.205481	0.000000			
	3 P	3.528392	2.220962	0.000000		
	4 P	4.175671	3.528392	2.205481	0.000000	
	5 P	2.082082	3.494396	3.494396	3.685401	0.000000
	6 P	3.685401	3.494396	3.494396	2.082082	3.849128
	7 P	2.402392	2.205481	3.528392	3.415368	3.685401
	8 P	3.415368	3.528392	2.205481	2.402392	2.082082
		6	7 8			
	6 P	0.000000				
	7 P	2.082082	0.000000			
	8 P	3.685401	4.175671	0.000000		
72727.456872 +21.8 C_{2v}						

			0 0	4	~	
		1	2 3	4	5	
	1 P	0.000000				
	2 P	2.220596	0.000000			
(4)	3 P	2.889997	2.216223	0.000000		
	4 P	5.271178	5.537284	4.267233	0.000000	
6	5 P	2.239687	3.235827	2.230152	3.286289	0.000000
	6 P	4.889992	4.352020	3.327592	1.994409	3.382974
	7 P	3.498908	3.884167	3.444955	2.204164	2.238566
	8 P	2.211492	2.181740	2.221770	6.102996	3.112503
G		6	7 8			
	6 P	0.000000				
	7 P	2.211167	0.000000			
	8 P	5.393998	4.836024	0.000000		
8						
8 -2727455876 ± 224 C						
02121.400010 +22.4 01						

		1	2 3	4	5	
	1 P	0.000000				
	2 P	2.185881	0.000000			
	3 P	3.724360	3.164984	0.000000		
	4 P	4.026170	3.724365	2.185877	0.000000	
	5 P	3.588163	4.334971	3.776765	2.191425	0.000000
	6 P	2.191425	3.776735	4.334995	3.588163	2.005025
	7 P	2.185864	2.217269	2.258422	3.724350	4.334998
	8 P	3.724352	2.258424	2.217268	2.185868	3.776749
		6	7 8			
	6 P	0.000000				
	7 P	3.776778	0.000000			
2	8 P	4.334972	3.164867	0.000000		
92727.447434 +27.7 C_{2v}						

		1	2 3	8 4	5	
	1 P	0.000000				
	2 P	6.348964	0.000000			
~ 1	3 P	1.995078	6.348964	0.000000		
3	4 P	3.345527	3.142409	3.345527	0.000000	
	5 P	2.201620	5.269405	2.201620	2.212183	0.000000
	6 P	5.236080	2.081585	5.236080	2.059808	3.668588
	7 P	3.738711	3.447444	3.738711	2.067478	3.722253
	8 P	5.692078	2.094317	5.692078	3.137982	5.285058
4		6	7 8	3		
	6 P	0.000000				
0	7 P	3.589843	0.000000			
	8 P	3.437172	2.080749	0.000000		
8-0						
11. $-2727.446015 + 28.6 C_s$						

		1	2 3	4	5	
	1 P	0.000000				
	2 P	2.983291	0.000000			
	3 P	3.259089	3.144040	0.000000		
6	4 P	2.294025	2.233655	2.217858	0.000000	
	5 P	2.416815	3.773639	2.294276	3.259585	0.000000
	6 P	2.095654	4.795097	3.638465	3.638371	2.095476
5	7 P	3.772507	2.207651	2.233539	3.144112	2.983483
	8 P	2.456330	2.230730	3.284219	3.283900	2.457682
		6	7 8			
	6 P	0.000000				
	7 P	4.794730	0.000000			
7 3	8 P	3.741928	2.230800	0.000000		
122727.436978 +34.2 $C_{\rm s}$						

		1	2 3	4	5	
	1 P	0.000000				
	2 P	2.264933	0.000000			
	3 P	3.202774	2.264723	0.000000		
	4 P	2.264723	3.203127	2.264933	0.000000	
	5 P	3.203536	2.264933	3.202774	3.922858	0.000000
	6 P	3.922858	3.203127	2.264933	3.202662	2.264723
T Y	7 P	3.202774	3.922858	3.203536	2.264933	3.202774
	8 P	2.264933	3.202662	3.922858	3.203127	2.264933
		6	7 8			
	6 P	0.000000				
5	7 P	2.264933	0.000000			
	8 P	3.203127	2.264723	0.000000		
132727.432774 +36.9 $$T_{\rm d}$$						

Table S3: Distance table for the lowest-lying C_8H_8 optimized structures obtained at the M11/def2-TZVP level of theory. Included are the zero-point corrected absolute energy in (a.u.) at the DLPNO-CCSD(T)/def2-QZVP level of theory with zero-point energy obtained from the M11/def2-TZVP computations, relative energy in (kcal/mol) and symmetry. H atoms are omitted for clarity

		1	2 3	4	5	
	1 C	0.000000				
	2 C	1.328183	0.000000			
	3 C	2.499143	1.473756	0.000000		
4	4 C	1.473756	2.499144	3.067169	0.000000	
6	5 C	3.212394	2.499144	1.328182	3.342393	0.000000
	6 C	2.499143	3.212395	3.342393	1.328183	3.067168
	7 C	3.067169	3.342394	3.212394	2.499144	2.499143
	8 C	3.342393	3.067169	2.499143	3.212395	1.473756
2		6	7 8			
	6 C	0.000000				
	7 C	1.473756	0.000000			
5	8 C	2.499143	1.328182	0.000000		
-						
1308.955098 0.0 D_{2d}						

		1	2 3	4	5	
	1 C	0.000000				
	2 C	1.329682	0.000000			
	3 C	1.467354	2.446565	0.000000		
	4 C	2.446565	2.874307	1.329682	0.000000	
	5 C	2.479400	1.499065	2.908740	2.603584	0.000000
8 6 3	6 C	2.908739	2.603584	2.479400	1.499065	1.576538
T T	7 C	3.386879	2.541760	3.663375	3.206093	1.520105
	8 C	3.663374	3.206093	3.386880	2.541761	2.098840
		6	7 8			
5	6 C	0.000000				
2	7 C	2.098841	0.000000			
	8 C	1.520105	1.328488	0.000000		
2308.942539 +7.9 $C_{\rm s}$						

		1	2 3	4	5	
	1 C	0.000000				
	2 C	1.497471	0.000000			
	3 C	1.962270	1.497471	0.000000		
	4 C	2.810098	2.372350	1.384864	0.000000	
8.6	5 C	2.400566	1.547510	2.400566	2.372350	0.000000
	6 C	2.274814	2.400566	3.004211	2.810098	1.497471
	7 C	1.384864	2.372350	2.810098	3.046880	2.372350
	8 C	3.004211	2.400566	2.274814	1.384864	1.497471
		6	7 8			
3 - 1	6 C	0.000000				
	7 C	1.384864	0.000000			
3308.939379 +9.9 C_{2v}	8 C	1.962270	2.810098	0.000000		

		1	2 3	4	5	
	1 C	0.000000				
	2 C	1.505392	0.000000			
	3 C	2.436422	1.555300	0.000000		
	4 C	2.305716	2.289696	1.555193	0.000000	
2	5 C	1.332107	2.305678	2.436310	1.505335	0.000000
	6 C	2.559397	1.557199	2.090785	2.428799	2.927734
	7 C	3.368174	2.224821	1.562722	2.224702	3.368079
	8 C	2.927826	2.429045	2.090700	1.556826	2.559189
5 8		6	7 8			
4	6 C	0.000000				
	7 C	1.498437	0.000000			
4308.908832 +29.0 $C_{\rm s}$	8 C	1.517832	1.498531	0.000000		

		1	2 3	4	5	
	1 C	0.000000				
	2 C	1.471868	0.000000			
	3 C	2.286903	1.336482	0.000000		
8	4 C	2.323720	2.327516	1.506661	0.000000	
	5 C	1.336735	2.290224	2.344654	1.502090	0.000000
	6 C	3.497870	3.483221	2.531959	1.531529	2.564065
	7 C	3.826503	4.040168	3.450436	2.645334	3.034575
4	8 C	4.197218	4.600118	3.885357	2.657322	3.072970
		6	7 8			
	6 C	0.000000				
	7 C	1.496470	0.000000			
	8 C	1.497297	1.286624	0.000000		
6308.898515 +35.5 C_1						

		1	2 3	4	5	
	1 C	0.000000				
	2 C	1.515622	0.000000			
	3 C	1.505088	1.505002	0.000000		
	4 C	2.471608	2.471326	1.521581	0.000000	
7	5 C	2.945996	2.526047	2.471761	1.504944	0.000000
	6 C	2.526416	2.945913	2.471765	1.504954	1.515418
	7 C	1.544660	2.180132	2.355688	2.355485	2.180048
	8 C	2.180071	1.544384	2.355601	2.355379	1.544558
2×75		6	7 8			
3 4	6 C	0.000000				
	7 C	1.544698	0.000000			
	8 C	2.180159	1.561930	0.000000		
7308.898190 +35.7 C_{2v}						

		1	2 3	4	5	
	1 C	0.000000				
	2 C	1.463958	0.000000			
	3 C	1.505862	1.497951	0.000000		
	4 C	2.484965	2.477728	1.524467	0.000000	
	5 C	2.484965	2.477728	2.388709	1.564816	0.000000
2	6 C	1.505862	1.497951	2.161232	2.388709	1.524467
	7 C	3.661046	3.068842	3.107237	2.095286	1.520302
	8 C	3.661046	3.068842	2.604546	1.520302	2.095286
		6	7 8			
4 5	6 C	0.000000				
	7 C	2.604546	0.000000			
	8 C	3.107237	1.328530	0.000000		
8 7						
8308.895159 +37.6 $C_{\rm s}$						

	1					
		1	2 3	4	5	
	1 C	0.000000				
	2 C	1.571827	0.000000			
	3 C	1.555475	2.211366	0.000000		
5	4 C	2.211366	1.555475	1.571827	0.000000	
	5 C	1.510588	2.091031	2.554884	2.935638	0.000000
6	6 C	2.091032	1.510588	2.935639	2.554885	1.330004
3, 1, /	7 C	2.554886	2.935639	1.510589	2.091032	3.891099
	8 C	2.935639	2.554885	2.091031	1.510588	4.112123
		6	7 8			
	6 C	0.000000				
8	7 C	4.112124	0.000000			
	8 C	3.891099	1.330004	0.000000		
9308.888275 +41.9 C_{2h}						

		1	2 3	4	5	
	1 C	0.000000				
	2 C	1.557021	0.000000			
	3 C	1.582895	2.220331	0.000000		
8	4 C	2.220332	1.582895	1.557021	0.000000	
	5 C	1.507677	2.085317	2.637758	3.005531	0.000000
	6 C	2.085317	1.507678	3.005532	2.637757	1.332966
4	7 C	2.637757	3.005531	1.507677	2.085317	2.959560
	8 C	3.005532	2.637758	2.085317	1.507677	3.245889
		6	7 8			
6, 2,	6 C	0.000000				
5	7 C	3.245888	0.000000			
	8 C	2.959560	1.332966	0.000000		
10. $-308.878301 + 48.2 C_{2v}$						
		1	0 0	4		
	1.0	1	2 3	4	5	
	1 C	1 0.000000 1.408415	2 3	4	5	
	1 C 2 C 2 C	$ \begin{array}{c} 1\\ 0.000000\\ 1.498415\\ 2.587610\\ \end{array} $	2 3 0.000000 1.524080	4	5	
	1 C 2 C 3 C 4 C	1 0.000000 1.498415 2.587619 2.020028 2.020028 1 1 1 1 1 1 1	2 3 0.000000 1.524080 2.587410	4	5	
	1 C 2 C 3 C 4 C 5 C	$ \begin{array}{r} 1\\ 0.000000\\ 1.498415\\ 2.587619\\ 2.920028\\ 2.587410\\ \end{array} $	2 3 0.000000 1.524080 2.587419 2.682411	4 0.000000 1.498182 2.207276	5 0.000000 1.408415	0.000000
4 3 2 1	1 C 2 C 3 C 4 C 5 C 6 C	$ \begin{array}{r} 1\\ 0.000000\\ 1.498415\\ 2.587619\\ 2.920028\\ 2.587419\\ 1.408182 \end{array} $	2 3 0.000000 1.524080 2.587419 2.682411 2.207276	4 0.000000 1.498182 2.207376 2.682411	5 0.000000 1.498415 2.587610	0.000000
4 3 2 1	1 C 2 C 3 C 4 C 5 C 6 C 7 C	$ \begin{array}{r} 1\\ 0.000000\\ 1.498415\\ 2.587619\\ 2.920028\\ 2.587419\\ 1.498182\\ 1.498182 \end{array} $	2 3 0.000000 1.524080 2.587419 2.682411 2.207376 1.408182	4 0.000000 1.498182 2.207376 2.682411 2.587410	5 0.000000 1.498415 2.587619 2.268788	0.000000 1.524080 2.587610
43-2-1	1 C 2 C 3 C 4 C 5 C 6 C 7 C 8 C	$ \begin{array}{r} 1\\ 0.000000\\ 1.498415\\ 2.587619\\ 2.920028\\ 2.587419\\ 1.498182\\ 1.469154\\ 2.268788 \end{array} $	2 3 0.000000 1.524080 2.587419 2.682411 2.207376 1.498182 2.587610	4 0.000000 1.498182 2.207376 2.682411 2.587419 1.408415	5 0.000000 1.498415 2.587619 3.268788 1.469154	0.000000 1.524080 2.587619 1.408182
4 3 2 1 8 5 6 7	1 C 2 C 3 C 4 C 5 C 6 C 7 C 8 C	$\begin{array}{c} 1\\ 0.000000\\ 1.498415\\ 2.587619\\ 2.920028\\ 2.587419\\ 1.498182\\ 1.469154\\ 3.268788\\ 6\end{array}$	2 3 0.000000 1.524080 2.587419 2.682411 2.207376 1.498182 2.587619 7 8	4 0.000000 1.498182 2.207376 2.682411 2.587419 1.498415	5 0.000000 1.498415 2.587619 3.268788 1.469154	0.000000 1.524080 2.587619 1.498182
4 3 2 1 8 5 6 7	1 C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 6 C	$\begin{array}{c} 1\\ 0.000000\\ 1.498415\\ 2.587619\\ 2.920028\\ 2.587419\\ 1.498182\\ 1.469154\\ 3.268788\\ 6\\ 0.000000\\ \end{array}$	2 3 0.000000 1.524080 2.587419 2.682411 2.207376 1.498182 2.587619 7 8	4 0.000000 1.498182 2.207376 2.682411 2.587419 1.498415	5 0.000000 1.498415 2.587619 3.268788 1.469154	0.000000 1.524080 2.587619 1.498182
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 1\\ 0.000000\\ 1.498415\\ 2.587619\\ 2.920028\\ 2.587419\\ 1.498182\\ 1.469154\\ 3.268788\\ 6\\ 0.000000\\ 1.408415\end{array}$	2 3 0.000000 1.524080 2.587419 2.682411 2.207376 1.498182 2.587619 7 8 0.000000	4 0.000000 1.498182 2.207376 2.682411 2.587419 1.498415	5 0.000000 1.498415 2.587619 3.268788 1.469154	0.000000 1.524080 2.587619 1.498182
43 21 85 5 67 11308.865822 +56.0 D_{2h}	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 1\\ 0.000000\\ 1.498415\\ 2.587619\\ 2.920028\\ 2.587419\\ 1.498182\\ 1.469154\\ 3.268788\\ 6\\ 0.000000\\ 1.498415\\ 2.587419\end{array}$	2 3 0.000000 1.524080 2.587419 2.682411 2.207376 1.498182 2.587619 7 8 0.000000 2.020028	4 0.000000 1.498182 2.207376 2.682411 2.587419 1.498415	5 0.000000 1.498415 2.587619 3.268788 1.469154	0.000000 1.524080 2.587619 1.498182
43 3 5 6 7 11308.865822 +56.0 D_{2h}	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 1\\ 0.000000\\ 1.498415\\ 2.587619\\ 2.920028\\ 2.587419\\ 1.498182\\ 1.469154\\ 3.268788\\ 6\\ 0.000000\\ 1.498415\\ 2.587419\end{array}$	2 3 0.000000 1.524080 2.587419 2.682411 2.207376 1.498182 2.587619 7 8 0.000000 2.920028	4 0.000000 1.498182 2.207376 2.682411 2.587419 1.498415 0.000000	5 0.000000 1.498415 2.587619 3.268788 1.469154	0.000000 1.524080 2.587619 1.498182

		1	2 3	4	5	
	1 C	0.000000				
	2 C	1.515549	0.000000			
(7)	3 C	2.225978	1.542419	0.000000		
	4 C	1.514684	1.940045	1.537978	0.000000	
	5 C	1.443656	1.510522	2.227461	1.512783	0.000000
8	6 C	3.153517	3.375878	2.620689	3.022761	4.151640
T T	7 C	3.817459	3.860117	2.629118	3.146001	4.479172
	8 C	3.039370	2.611378	1.510608	2.604613	3.572877
		6	7 8			
(3)	6 C	0.000000				
	7 C	1.286072	0.000000			
	8 C	1.500823	1.501961	0.000000		
5						
13. $-308.803246 + 95.3 C_1$						

		1	2 3	4	5	
	1 C	0.000000				
	2 C	1.613817	0.000000			
	3 C	1.613817	2.130296	0.000000		
	4 C	1.614446	2.560414	1.420878	0.000000	
	5 C	1.614446	1.420878	2.560414	2.129668	0.000000
	6 C	2.377787	2.387293	2.387293	1.595754	1.595754
	7 C	3.045744	2.427714	2.427714	2.427560	2.427560
132	8 C	2.376915	1.595985	1.595985	2.387116	2.387116
8 4		6	7 8			
6	6 C	0.000000				
	7 C	1.455867	0.000000			
	8 C	2.218309	1.455802	0.000000		
14308.773692 +113.8 $C_{\rm s}$						

Structure	HOMO (a.u.)	LUMO (a.u.)	H/L gap (a.u.)	H/L gap (eV)
C8H8-1	-0.315898	0.030773	0.346671	9.43
C8H8-2	-0.309530	0.044760	0.354290	9.64
C8H8-3	-0.293892	0.079567	0.373459	10.16
C8H8-4	-0.338868	0.081737	0.420605	11.45
C8H8-5	-0.315435	0.093390	0.408825	11.12
C8H8-6	-0.316555	0.056530	0.373085	10.15
C8H8-7	-0.344320	0.110697	0.455017	12.38
C8H8-8	-0.333994	0.090825	0.424819	11.56
C8H8-9	-0.335069	0.077562	0.412631	11.23
C8H8-10	-0.341370	0.075014	0.416384	11.33
C8H8-11	-0.319572	0.110094	0.429666	11.69
C8H8-12	-0.354960	0.116205	0.471165	12.82
C8H8-13	-0.329993	0.084032	0.414025	11.27
C8H8-14	-0.201368	0.082285	0.283653	7.72
P8-1	-0.307112	-0.034318	0.272794	7.42
P8-2	-0.329071	-0.070062	0.259009	7.05
P8-3	-0.325684	-0.058883	0.266801	7.26
P8-4	-0.298353	-0.033674	0.264679	7.20
P8-5	-0.311281	-0.028855	0.282426	7.69
P8-6	-0.290550	-0.004223	0.286327	7.79
P8-7	-0.317724	-0.091970	0.225754	6.14
P8-8	-0.307449	-0.054637	0.252812	6.88
P8-9	-0.325472	-0.067391	0.258081	7.02
P8-10	-0.306154	-0.064388	0.241766	6.58
P8-11	-0.324445	-0.071090	0.253355	6.89
P8-12	-0.301829	-0.052821	0.249008	6.78
P8-13	-0.297076	-0.052037	0.245039	6.67

Table S4: HOMO-LUMO gaps for the lowest-lying structures at the M11/def2-TZVP level of theory.

Table S5: Q	QTAIM	analysis	for the	lowest-lying	\mathbf{P}_{8}	structures.
-------------	-------	----------	---------	--------------	------------------	-------------

Structure	N° P-Atom	N° P'-Atom	Distance (Å)	Nalewajski-Mrozek BO	BCP Rho	BCP-Laplacian
$P-P(P_2H_4)$	1	2	2.264	1.05	0.1037	-0.1119
$P=P(P_2H_2)$	1	2	2.046	2.05	0.1427	-0.2041
P8-1	1	3	2.180	0.99	0.1107	-0.0923
	1	4	2.280	0.96	0.0956	-0.0517
	1	6	2.237	0.97	0.1071	-0.1061
	2	3	2.210	0.99	0.1082	-0.1081
	2	5	2.180	0.99	0.1107	-0.0923
	2	8	2.180	0.99	0.1107	-0.0923
	3	4	2.180	0.99	0.1107	-0.0923
	4	7	2.237	0.97	0.1071	-0.1061
	5	6	2.237	0.97	0.1071	-0.1061
	5	8	2.280	0.96	0.0956	-0.0517
	6	7	2.198	1.02	0.1162	-0.1364
	7	8	2.237	0.97	0.1071	-0.1061
P8-2	1	4	2.015	1.84	0.1470	-0.2107
	1	6	2.206	1.02	0.1114	-0.1152
	2	3	2.241	0.92	0.1028	-0.0893
	2	5	2.187	1.00	0.1103	-0.0868
	2	8	2.224	0.98	0.1052	-0.0784
	3	4	2.206	1.02	0.1114	-0.1152
	3	7	2.195	0.99	0.1145	-0.1248
	5	6	2.242	0.92	0.1028	-0.0893
	5	8	2.224	0.98	0.1052	-0.0783
	6	7	2.195	0.99	0.1145	-0.1248
	7	8	2.296	0.92	0.0979	-0.0828
P8-3	1	3	2.198	0.96	0.1084	-0.0833
	1	6	2.210	0.95	0.1030	-0.0461
	1	8	2.198	0.96	0.1084	-0.0833
	2	5	2.220	1.01	0.1100	-0.1149
	2	7	2.024	1.82	0.1477	-0.2162
	3	5	2.190	1.00	0.1129	-0.1184
	3	6	2.203	0.98	0.1078	-0.0837
	4	5	2.207	0.96	0.1120	-0.1222
	4	7	2.220	1.01	0.1100	-0.1149
	4	8	2.190	1.00	0.1129	-0.1184
	6	8	2.203	0.98	0.1078	-0.0837
P8-4	1	4	2.226	0.90	0.1046	-0.0770
	1	5	2.392	0.53	0.0760	0.0220
	1	6	2.226	0.90	0.1046	-0.0770
	1	7	2.392	0.53	0.0760	0.0220
	2	3	2.128	1.22	0.1221	-0.1371
	2	5	2.226	0.87	0.1036	-0.0781
	2	7	2.226	0.87	0.1036	-0.0781
	3	8	2.103	1.24	0.1273	-0.1537
	4	5	2.161	1.02	0.1154	-0.1053
	4	8	2.248	0.88	0.1039	-0.0935
	6	7	2.161	1.02	0.1154	-0.1053
	6	8	2.248	0.88	0.1039	-0.0935
P8-5	1	2	2.201	0.98	0.1076	-0.0807
	1	5	2.199	0.95	0.1052	-0.0541
	1	8	2.200	0.98	0.1076	-0.0807
	2	5	2.200	0.98	0.1076	-0.0807
	2	6	2.232	0.98	0.1059	-0.0977
	3	4	2.201	0.98	0.1076	-0.0807
	3	6	2.200	0.98	0.1076	-0.0807
	3	7	2.199	0.95	0.1052	-0.0541
	4	7	2.200	0.98	0.1076	-0.0807

	4	8	2.232	0.98	0.1059	-0.0977
	5	8	$2\ 201$	0.98	0.1076	-0.0807
	6	7	2.201	0.08	0.1076	0.0807
Do d	0	1	2.201	0.98	0.1070	-0.0807
P8-0	1	4	2.770	0.34	0.0433	0.0371
	1	5	2.160	1.05	0.1130	-0.0856
	1	6	2.160	1.05	0.1130	-0.0857
	2	4	2.319	0.81	0.0885	-0.0284
	2	7	2.178	1.04	0.1112	-0.0824
	2	8	2 142	1 02	0 1153	-0.0839
	2	4	2.112 2.165	0.04	0.1100	0.1515
	ມ າ	4	2.100 2.102	0.94	0.1220	-0.1515
	3	5	2.195	0.88	0.1085	-0.0770
	3	6	2.193	0.88	0.1082	-0.0773
	3	7	2.384	0.60	0.0821	-0.0298
	4	8	2.319	0.81	0.0886	-0.0287
	5	6	2.213	0.98	0.1037	-0.0503
	7	8	2.178	1.04	0.1112	-0.0822
P8_7	1	2	2 205	0.96	0 1079	_0.0031
101	1	5	2.200	1.27	0.1015	0.1792
	1	5 7	2.082	0.61	0.1527	-0.1725
	1	(2.402	0.01	0.0710	0.0170
	2	3	2.221	0.97	0.1078	-0.1060
	2	7	2.205	0.96	0.1079	-0.0931
	3	4	2.205	0.96	0.1079	-0.0931
	3	8	2.205	0.96	0.1079	-0.0931
	4	6	2.082	1.37	0.1327	-0.1723
	4	8	2.402	0.61	0.0716	0.0176
	5	8	2.082	1.37	0.1327	-0 1723
	6	7	2.082	1.37	0.1327	-0.1723
D0 0	1		2.002	0.00	0.1027	0.0925
1 0-0	1	ے ۲	2.221	0.99	0.1005	-0.0823
	1	0	2.240	0.97	0.1078	-0.1110
	1	8	2.211	0.99	0.1072	-0.0827
	2	3	2.216	0.98	0.1079	-0.0875
	2	8	2.182	1.00	0.1071	-0.0598
	3	5	2.230	0.99	0.1100	-0.1180
	3	8	2.222	0.95	0.1047	-0.0757
	4	6	1.994	1.86	0.1491	-0.1943
	4	7	2.204	1.01	0.1069	-0.0695
	5	7	2 239	0.95	0 1090	-0 1112
	6	7	2 211	1.01	0.1052	-0.0625
D8 0	1		2.211	0.05	0.1062	0.0020
1 0-9	1	2 C	2.100	0.95	0.1007	-0.0750
	1	0	2.191	1.00	0.1104	-0.1007
	1	7	2.186	0.95	0.1067	-0.0730
	2	7	2.217	1.00	0.1073	-0.0842
	2	8	2.258	0.95	0.1016	-0.0867
	3	4	2.186	0.95	0.1067	-0.0730
	3	7	2.258	0.95	0.1016	-0.0867
	3	8	2.217	1.00	0.1073	-0.0842
	4	5	2.191	1.06	0.1104	-0.1067
	4	8	2 186	0.95	0 1067	-0.0730
	5	6	2.100 2.005	1 78	0.1484	-0.2158
D9 10	1	6	2.000	1.70	0.1404	0.1071
P 8-10	1	0	2.025	1.00	0.1450	-0.1971
	1	7	2.229	0.96	0.1024	-0.0843
	2	4	2.326	0.74	0.0908	-0.0573
	2	5	2.182	1.04	0.1119	-0.0924
	2	7	2.184	1.01	0.1100	-0.0844
	3	4	2.251	0.78	0.0963	-0.0224
	3	5	2.327	0.74	0.0907	-0.0572
	3	6	2.305	0.65	0.0887	-0.0308
	3	8	2 116	1 10	0 1176	-0.0874
	4	õ	2 304	0.65	0.0888	-0.0310
		Q	2.004 9.116	1 10	0.0000	0.0975
	4	0	2.110	1.10	0.11/0	-0.0010

	5	7	2.184	1.01	0.1100	-0.0846
P8-11	1	3	1.995	1.86	0.1492	-0.1936
	1	5	2.202	1.01	0.1072	-0.0671
	2	6	2.082	1.43	0.1319	-0.1674
	2	8	2.094	1.42	0.1295	-0.1605
	3	5	2.202	1.01	0.1072	-0.0671
	4	5	2.212	0.92	0.1105	-0.1159
	4	6	2.060	1.30	0.1343	-0.1765
	4	7	2.067	1.25	0.1323	-0.1691
	7	8	2.081	1.43	0.1318	-0.1666
P8-12	1	4	2.294	0.80	0.0976	-0.0749
	1	6	2.096	1.18	0.1249	-0.1220
	1	8	2.456	0.51	0.0706	-0.0025
	2	4	2.234	0.97	0.1085	-0.1087
	2	7	2.208	1.00	0.1078	-0.0889
	2	8	2.231	0.87	0.1048	-0.0743
	3	4	2.218	1.01	0.1117	-0.1173
	3	5	2.294	0.80	0.0976	-0.0748
	3	7	2.234	0.97	0.1085	-0.1087
	5	6	2.095	1.18	0.1250	-0.1223
	5	8	2.458	0.51	0.0705	-0.0022
	7	8	2.231	0.87	0.1048	-0.0743
P8-13	1	2	2.265	1.00	0.1053	-0.1083
	1	4	2.265	1.00	0.1053	-0.1084
	1	8	2.265	1.00	0.1053	-0.1084
	2	3	2.265	1.00	0.1053	-0.1084
	2	5	2.265	1.00	0.1053	-0.1084
	3	4	2.265	1.00	0.1053	-0.1084
	3	6	2.265	1.00	0.1053	-0.1084
	4	7	2.265	1.00	0.1053	-0.1084
	5	6	2.265	1.00	0.1053	-0.1084
	5	8	2.265	1.00	0.1053	-0.1084
	6	7	2.265	1.00	0.1053	-0.1084
	7	8	2.265	1.00	0.1053	-0.1084

Table S6: Calculated molar magnetic susceptibility in cgs ppm units (10⁻⁶ cm³ mol⁻¹) at the (M11/def2-TZVP) level of theory, where for benzene (C₆H₆) the experimental value is found to be -54.4 (10⁻⁶ cm³ mol⁻¹)^a

Structure	Calculated $\chi M (10^{-6} \text{ cm}^3 \text{ mol}^{-1})$
C6H6	-52.4448
P8-1	-119.9984
P8-2	-121.0013
P8-3	-107.6571
P8-4	-189.8174
P8-5	-136.2405
P8-6	-182.8385
P8-7	-111.5833
P8-8	-109.6991
P8-9	-152.4464
P8-10	-156.8422
P8-11	-112.8774
P8-12	-118.7701
P8-13	-2.0460
C8H8-1	-38.8016
C8H8-2	-51.6034
C8H8-3	-84.0608
C8H8-4	-68.5624
C8H8-5	-76.2359
C8H8-6	-60.5651
C8H8-7	-77.2472
C8H8-8	-74.5895
C8H8-9	-55.8549
C8H8-10	-57.9932
C8H8-11	-80.2488
C8H8-12	-46.6025
C8H8-13	-71.7029
C8H8-14	-88.0765

^aJ. Dauben, J. D. Wilson and J. L. Laity, Diamagnetic Susceptibility Exaltation in Hydrocarbons. J. Am. Chem. Soc. 1969, 91, 8, 1991–1998.

Figure S1. Correlation between the calculated χM and relative energy (kcal/mol) for the P_8 and $C_8 H_8$ structures.