Supporting Information

First-principles Study on the Catalytic Performance of Transition

Metal Atom doped CrSe₂ for Oxygen Reduction Reaction

Long Lin^{a,b}, Yadan Sun^a, Kun Xie^a, Pei Shi^a, Xinyu Yang^a, Dongbin Wang^{*c}

^a Cultivating Base for Key Laboratory of Environment-Friendly Inorganic Materials in Henan Province, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China

^b School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo 454000, China

*c School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China. Email: wdbyxr@163.com

Corresponding author: wdbyxr@163.com

Table S1. The parameters of the adsorption energy (E_{ads}), adsorption height and the difference of the distance of O-O (Δd) of O₂ after its adsorption on the surface of intrinsic CrSe₂, where site I, II, III, IV represents the top site of Cr, the top of Se from the top layer, the bridge site of Cr-Se, the top of Se from the bottom layer, respectively.

Configuration		$-E(c\mathbf{V})$	Usisht (Å)	A 1 (8)	
Orientation	Site	$- E_{ads} (ev)$	Height (A)	Δa (A)	
	Ι	0.483	2.859	0.019	
	II	0.046	2.491	0.020	
End-on	III	-0.122	2.647	0.011	
	IV	-0.112	2.498	0.013	
Side-on	Ι	-0.494	3.019	0.006	
	II	-0.133	2.758	0.014	
	III	-0.110	2.788	0.013	
	IV	-0.100	2.683	0.014	

Doped TM	$E_{\rm f}({\rm eV})$
Rh	-1.098
Pd	-0.372
Ag	0.650
Ir	-2.196
Pt	-1.867
Au	-0.201

Table S2. The formation energy $(E_{\rm f})$ of different TM atom.

System -	Configuration		$E_{-}(\mathbf{J} \mathbf{V})$	1 (8)	$\Delta Q\left(e ight)$			
	Orientation	Site	- $E_{\rm ads}$ (eV)	$a_{0-0}(A)$	ТМ	O ₂	Substrate	
Rh-CrSe ₂	Side-on	В	-1.505	1.292	-0.142	0.399	-0.256	
		Т	-2.008	1.399	-0.292	0.645	-0.353	
	End-on	В	-1.394	1.296	-0.129	0.353	-0.223	
		Т	-1.661	1.294	-0.138	0.405	-0.267	
Pd-CrSe ₂	Side-on	В	-0.422	1.275	-0.041	0.207	-0.166	
		Т	-0.336	1.266	-0.061	0.227	-0.166	
	End-on	В	-0.431	1.285	-0.043	0.314	-0.271	
		Т	-0.117	1.259	-0.017	0.216	-0.199	
Ir-CrSe ₂	Side-on	В	-1.249	1.300	-0.020	0.439	-0.418	
		Т	-1.754	1.449	-0.239	0.706	-0.467	
	End-on	В	-1.203	1.303	0.027	0.408	-0.435	
		Т	-1.246	1.301	-0.017	0.443	-0.426	
Pt-CrSe ₂	Side-on	В	-0.692	1.295	0.144	0.368	-0.513	
		Т	-0.198	1.294	0.139	0.363	-0.502	
	End-on	В	0.385	1.238	0.461	0.120	-0.580	
		Т	-0.140	1.294	0.139	0.359	-0.498	

Table S3. The adsorption energy (E_{ads}) of O₂ on different sites of TM-doped CrSe₂ systems, the distance between O-O (d_{O-O}) , and the Bader charge transfer (ΔQ) .

System	$\Delta G_{\rm OOH^*}$	ΔG_{O^*}	$\Delta G_{\mathrm{OH}*}$	ΔG_1	ΔG_2	ΔG_3	ΔG_4	$\eta^{ORR}(V)$
	(eV)	(eV)	(eV)	(eV)	(eV)	(eV)	(eV)	
Rh _{S_T} -CrSe ₂	2.483	0.445	-0.562	-2.437	-2.038	-1.007	0.562	1.79
Ir_{S_T} -CrSe ₂	3.120	0.256	-0.134	-1.800	-2.864	-0.390	0.134	1.36
Pt_{S_B} - $CrSe_2$	4.006	1.666	0.937	-0.914	-2.340	-0.729	-0.937	0.50
Pd_{E_B} -CrSe ₂	3.808	2.617	0.799	-1.112	-1.190	-1.819	-0.799	0.43

Table S4. ΔG of intermediates adsorption and the four reaction steps, as well as the overpotentials (η) of ORR on TM-doped CrSe₂.

Fig. S1. The cutoff energy test results from 200 to 500 eV, with an interval of 30 eV.

Fig. S2. The total energy variation and the configuration of Pd-CrSe₂ at 300 K under AIMD simulation.

Fig. S3. The optimized structure, the adsorption sites, and the density of states (DOS) of the intrinsic CrSe₂.

Fig. S4. (a)-(e) The optimized structure of Rh-CrSe₂, Pd-CrSe₂, Ag-CrSe₂, Ir-CrSe₂, Au-CrSe₂, respectively.

Fig. S5. Top and side views of O₂ adsorbed on the different sites of Rh-CrSe₂, (a) S_B (b) S_T, (c)

E_B, (d) E_T, respectively.

Fig. S6. Top and side views of O₂ adsorbed on the different sites of Pd-CrSe₂, (a) S_B (b) S_T, (c) E_B,(d) E_T, respectively.

Fig. S7. Top and side views of O₂ adsorbed on the different sites of Ir-CrSe₂, (a) S_B (b) S_T, (c)

Fig. S8. Top and side views of O₂ adsorbed on the different sites of Pt-CrSe₂, (a) S_B (b) S_T, (c) E_B, (d) E_T, respectively.

Fig. S9. The optimized structures of H_2O_2 adsorbed on the surface of (a) Rh_{S_T} -CrSe₂, (b)Pd_{E_B}-CrSe₂, (c) Ir_{S_T} -CrSe₂, (d) Pt_{S_B} -CrSe₂, respectively.

Fig. S10. The ORR intermediates adsorbed on Rh_{S_T} -CrSe₂.

Fig. S11. The ORR intermediates adsorbed on Pd_{E_B} -CrSe₂.

Fig. S12. The ORR intermediates adsorbed on $Ir_{S_T}\mbox{-}CrSe_2.$