Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2023

Supporting Information

Luminescence-structure relationships in solids doped with Bi³⁺

Philippe Boutinaud

Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, F-63000 Clermont–Ferrand, France philippe.boutinaud@sigma-clermont.fr

We illustrate here the handmade step-by-step calculation of *he* for several representative compounds of interest in the field of spectroscopy.

A.1. CaF₂

With its single cation and anion sites, the cubic fluorine is among the simplest case to start with. Its crystal structure is represented in Fig. S1.

Figure S1. The crystal structure of CaF₂. The fluoride atoms appear in green.

Matrices I and II are reproduced below.

Matrix I – source ICSD - 2300449	Са	F
Space group $n^{\circ}225$, V = 163 Å ³ , Z =		
4		
Са		N(F-Ca) = 4
F	N(Ca-F)=8	
Total coordination	N(Ca) = 8	N(F) = 4
Site multiplicity	w(Ca) = 4	w(F) = 8
Kappa values (from Eqn. (3))	K(Ca - F) = 1	K(F-Ca) = 2

Matrix II – source ICSD - 2300449	Ca
F	d(Ca-F) = 2.365 Å
Bond Valence Parameter	1.842

The very simple CaF_2 is not decomposable into binary units. The value of *he* at Ca site is given by: $he(Ca) = [N(Ca - F)f_c(Ca - F)\alpha(Ca - F)Q(F)^2]^{1/2}$. The different steps of the calculation are detailed in Table A1.

Table A1 : The step-by-step calculation of he(Ca) in CaF₂

Compound CaF ₂	Site Ca	Eqn. number
Q(Ca)	1.943	from VESTA
Q(F)	0.971	(5)
$\Gamma_1(Ca-F)$	30.79	(7)
$\Gamma_2(Ca-F)$	11.66	(8)
$N^*(Ca-F)$	0.382	(10)
v(Ca-F)	5.090	(11)
$\Gamma_3(Ca-F)$	0.064	(9)
$f_c(Ca-F)$	0.040	(6)
$\alpha(Ca-F)$	0.278	(11)
he(Ca)	0.294	(4)

A.2. YPO₄

With two cation sites and single anion site, YPO_4 constitutes a representative member of all zircon-structured lattices (YVO4, etc...). Its crystal structure is represented in Fig. S2. Y is considered as the doping site for the luminescent activator.

Figure S2. The crystal structure of YPO₄. The oxygen atoms appear in red.

Matrices I and II for this compound are reproduced below.

Matrix I – source ICSD - 79754	Y	Р	0
Space group $n^{\circ}141$, V = 286.5 Å ³ , Z =			
4			
Y			N(O-Y) = 2
Р			N(O-P) = 1
0	N(Y-O)=8	N(P-O) = 4	
Total coordination	N(Y) = 8	N(P) = 4	N(O) = 3
Site multiplicity	w(Y) = 4	w(P) = 4	w(O) = 16
Kappa values (from Eqn. (3))	K(Y - 0) = 1	K(P-O) = 1	K(0 - Y) = 8/3
			K(0 - P) = 4/3

Matrix II – source ICSD - 79754	Y	Р
0	d(Y-O) = 2.345 Å	d(P-O) = 1.540 Å
Bond Valence Parameter	2.014	1.604

Eqn. (2) gives $\text{YPO}_4 = \text{YO}_{8/3} + \text{PO}_{4/3}$. The value of *he* at Y site is given by: $he(Y) = [N(Y - 0)f_c(Y - 0)\alpha(Y - 0)Q(0)^2]^{1/2}$. The different steps of the calculation are detailed in Table A2.

Table A2: The step-by-step calculation of he(Y) in YPO₄

Compound YPO ₄	Site Y	Eqn. number
Q(Y)	3.286	from VESTA
Q(O)	1.232	(5)
$\Gamma_1(Y-O)$	20.79	(7)
$\Gamma_2(Y-O)$	6.572	(8)
$N^{*}(Y - 0)$	1.643	(10)
v(Y-0)	7.843	(11)
$\Gamma_3(Y-O)$	0.085	(9)
$f_c(Y-0)$	0.146	(6)
$\alpha(Y-0)$	0.707	(11)
he(Y)	1.120	(4)

A.3. Y₂O₃

 Y_2O_3 is representative of sesquioxides. The corresponding crystal structure is represented in Fig. S3. Considering the presence of two sites for yttrium, Y_2O_3 should be written as $Y1_{1/2}Y2_{3/2}O_3$. Since Y1 and Y2 are both available for a luminescent activator, we will calculate he(Y1) and he(Y2).

Figure S3. The crystal structure of Y₂O₃. The oxygen atoms appear in red.

	Matrices I	and II	for this	compound	are re	produced	below.
--	------------	--------	----------	----------	--------	----------	--------

Matrix I – source ICSD - 192862	Y1	Y2	0
Space group $n^{\circ}206$, V = 1191 Å ³ , Z = 16			
Y1			N(O-Y1) = 1
Y2			N(O-Y2) = 3
0	N(Y1-O)=6	N(Y2-O) = 6	
Total coordination	N(Y1) = 6	N(Y2) = 6	N(O) = 4
Site multiplicity	w(Y1) = 8	w(Y2) = 24	w(O) = 48
Kappa values (from Eqn. (3))	K(Y1 - 0) = 1/2	K(Y2 - 0) = 3/2	K(0 - Y1) = 3/4
			$K(0 - Y^2) = 9/4$

Matrix II – source ICSD - 192862	Y1	Y2
0	d(Y1-O) = 2.279	d(Y2-O) = 2.281
	Å	Å
Bond Valence Parameter	2.014	2.014

Eqn. (2) gives $Y1_{1/2}Y2_{3/2}O_3 = Y1_{1/2}O_{3/4} + Y2_{3/2}O_{9/4}$. The value of *he* at Y1 and Y2 sites is given by: $he(Yi) = [N(Yi - 0)f_c(Yi - 0)\alpha(Yi - 0)Q(0_{Yi})^2]^{1/2}$ with I = 1 or 2, respectively. Note that the Q(O) value may depend on the nearby cation Y1 or Y2. This is noted as Q(O_{Yi}) in the above equation. In the present case, however, we have $Q(0_{Y1}) = Q(0_{Y2}) = Q(0)$. The different steps of the calculation are detailed in Table A3.

Table A3 : The step-by-step calculation of he(Y1) and he(Y2) in Y_2O_3

Compound Y ₂ O ₃	Site Y1 $(i = 1)$	Site Y2 $(i = 2)$	Eqn. number
Q(Yi)	2.933	2.933	from VESTA
$Q(O_{Yi})$	1.955	1.955	(5)
$\Gamma_1(Yi - 0)$	25.88	25.86	(7)
$\Gamma_2(Yi - 0)$	5.866	5.866	(8)
$N^{*}(Yi - 0)$	1.955	1.955	(10)
v(Yi - 0)	6.191	6.207	(11)
$\Gamma_3(Yi - 0)$	0.077	0.077	(9)
$f_c(Yi-0)$	0.162	0.162	(6)
$\alpha(Yi - 0)$	0.692	0.695	(11)
he(Yi)	1.603	1.607	(4)

A.4. Cs_2NaYX_6 (X = Cl, Br)

 Cs_2NaYCl_6 and Cs_2NaYBr_6 are representative of double halide perovskites with cubic structure. This crystal structure is represented in Fig. S4. Y is the doping site of interest. We will calculate he(Y) in both cases.

Figure S4. The crystal structure of Cs_2NaYX_6 (X = Cl, Br). The halogen atoms appear in green.

Matrices I and II for these compounds are reproduced below.

Matrix I – source ICSD - 245353 (X	Cs	Na	Y	Х
= Cl) and 65733 (X = Br). Space				
group n°225, V = 1234. 5 Å ³ (X =				
Cl) and 1444.7 Å ³ (X = Br), Z = 4				
Cs				N(X-Cs) = 4
Na				N(X-Na) = 1
Y				N(X-Y) = 1
X	N(Cs-X) = 12	N(Na-X) = 6	N(Y-X) = 6	
Total coordination	N(Cs) = 12	N(Na) = 6	N(Y) = 6	N(X) = 6
Site multiplicity	w(Cs) = 8	w(Na) = 4	w(Y) = 4	w(X) = 24
Kappa values (from Eqn. (3))	K(Cs - X) = 2	K(Na - X) = 1	K(Y - X) = 1	K(X - Cs) = 4
				K(X - Na) = 1
				K(X - Y) = 1

Matrix II – source ICSD - 245353 (X = Cl)	Cs	Na	Y
and 65733 (X = Br)			
X = Cl	d(Cs-Cl) = 3.793 Å	d(Na-Cl) = 2.744 Å	d(Y-Cl) = 2.619 Å
Bond Valence Parameter	2.79	2.15	2.40
X = Br	d(Cs-Br) = 3.997 Å	d(Na-Br) = 2.887 Å	d(Y-Br) = 2.765 Å
Bond Valence Parameter	2.95	2.33	2.55

The lattice decomposition (Eqn. (2)) gives $Cs_2NaYX_6 = Cs_2X_4 + Na_1X_1 + Y_1X_1$. We have: $he(Y) = [N(Y - X)f_c(Y - X)\alpha(Y - X)Q(X)^2]^{1/2}$. The different steps of the calculation are detailed in Table A4.

Table A4: The step-by-step calculation of he(Y) in Cs₂NaYX₆ (X = Cl, Br)

Compound	Ca NaVCl	Ca NaVDa	Ean mumban
Compound	$CS_2 INA I CI_6$	CS ₂ INA I DI ₆	Eqn. number
Q(Y)	3.31	3.35	from VESTA
Q(X)	3.31	3.35	(5)
$\Gamma_1(Y-X)$	35.18	33.33	(7)
$\Gamma_2(Y-X)$	19.86	20.1	(8)
$N^*(Y-X)$	4.413	4.473	(10)
v(Y - X)	3.598	4.232	(11)
$\Gamma_3(Y-X)$	0.0248	0.0222	(9)
$f_c(Y-X)$	0.042	0.044	(6)
$\alpha(Y-X)$	0.551	0.683	(11)
he(Y)	1.24	1.42	(4)

A.5. Y₃Al₅O₁₂

 $Y_3Al_5O_{12}$ is representative of garnets. Its input matrix is like that of double halide perovskites but here, three cation sites are potentially available for luminescent dopants; the Y site for e. g. lanthanides and the Al sites for e. g. transition metals. The compound is written as $Y_3All_2Al2_3O_{12}$. The corresponding crystal structure is represented in Fig. S5.

Figure S5. The crystal structure of Y₃Al₅O₁₂. The oxygen atoms appear in red.

We will calculate he(Y), he(Al1) and he(Al2). Matrices I and II for this compound are reproduced below.

Matrix I – source ICSD - 280104	Y	All	A12	0
Space group n°230,				
$V = 1730.7 \text{ Å}^3, Z =$				
8				
Y				N(O-Y) = 2
Al1				N(O-A11) = 1
A12				N(O-A12) = 1
0	N(Y-O) = 8	N(A11-O) = 6	N(A12-O) = 4	
Total coordination	N(Y) = 8	N(Al1) = 6	N(A12) = 4	N(O) = 4
Site multiplicity	w(Y) = 24	w(A11) = 16	w(Y2) = 24	w(O) = 96
Kappa values	K(Y-0) = 3	K(Al1 - 0) = 2	K(Al2 - 0) = 3	$\mathrm{K}(O-Y)=6$
(from Eqn.(3))				K(O - Al1) = 3
				K(O - Al2) = 3

Matrix II – source ICSD - 280104	Y	Al1	Al2
0	d(Y-O) = 2.377 Å	d(A11-O) = 1.938	d(A12-O) = 1.754
		Å	Å
Bond Valence Parameter	2.014	1.651	1.651

The lattice decomposition (Eqn. (2)) gives $Y_3All_2Al2_3O_{12} = Y_3O_6 + All_2O_3 + Al2_3O_3$. We have: $he(Y) = [N(Y - 0)f_c(Y - 0)\alpha(Y - 0)Q(0)^2]^{1/2}$ and $he(Ali) = [N(Ali - 0)f_c(Ali - 0)\alpha(Ali - 0)Q(0_{Ali})^2]^{1/2}$ with I = 1 or 2, respectively. Note that the Q(O) value may depend on the nearby cation Al1 or Al2. This is noted as Q(O_{Ali}) in the above equation. The different steps of the calculation are detailed in Table A5.

Table A5: The step-by-step calculation of he(Y), he(All) and he(Al2) in Y₃Al₅O₁₂

Compound	Site Y	Compound Y ₃ Al ₅ O ₁₂	Site Al1 $(i = 1)$	Site Al2 $(i = 2)$	Eqn. number
$Y_3Al_5O_{12}$					_
Q(Y)	3.04	Q(Ali)	2.76	3.03	from VESTA
Q(O)	1.52	Q(O _{Ali})	1.84	3.03	(5)
$\Gamma_1(Y-O)$	30.63	$\Gamma_1(Ali - 0)$	30.43	23.35	(7)
$\Gamma_2(Y-O)$	6.08	$\Gamma_2(Ali - 0)$	5.52	6.06	(8)
$N^{*}(Y-0)$	1.52	$N^{*}(Ali - 0)$	1.38	3.03	(10)

v(Y-0)	6.124	v(Ali – 0)	3.319	2.460	(11)
$\Gamma_3(Y-O)$	0.076	$\Gamma_3(Ali - 0)$	0.102	0.081	(9)
$f_c(Y-0)$	0.097	$f_c(Ali - 0)$	0.168	0.425	(6)
$\alpha(Y-0)$	0.495	$\alpha(Ali - 0)$	0.277	0.417	(11)
he(Y)	0.942	he(Ali)	0.972	2.551	(4)

A.6. YAlO₃

YAlO₃ is representative of orthorhombically-distorted perovskites (CaTiO₃, CaZrO₃, CaSnO₃, etc...). Its crystal structure is represented in Fig. S6. This is a case where the oxygen atoms occupy two different sites and cation sites are both available for luminescent dopants.

Figure S6. The crystal structure of YAlO₃. The oxygen atoms appear in red.

Matrix I – source	Y	Al	01	O2
ICSD - 191383				
Space group n°62,				
$V = 203.9 \text{ Å}^3, Z = 4$				
Y			N(O1-Y) = 2	N(O2-Y) = 3
Al			N(O1-A1) = 2	N(O2-A1) = 2
01	N(Y-O1) = 2	N(AI-O1) = 2		
O2	N(Y-O2) = 6	N(AI-O2) = 4		
Total coordination	N(Y) = 8	N(Al) = 6	N(O1) = 4	N(O2) = 5
Site multiplicity	w(Y) = 4	w(Al) = 4	w(O1) = 4	w(O2) = 8
Kappa values	K(Y - 01) = 1/4	K(Al - 01) = 1/3	$\mathrm{K}(01-Y)=1/2$	$\mathrm{K}(O2-Y)=6/5$
(from Eqn. (3))	K(Y - 02) = 3/4	K(Al - O2) = 2/3	$\mathrm{K}(01-Al)=1/2$	$\mathrm{K}(O2 - Al) = 4/5$

We will calculate he(Y) and he(Al). Matrices I and II for this compound are reproduced below.

Matrix II – source ICSD - 191383	Y	Al
01	$d(Y-O1) = 2.300 \text{ Å}^*$	d(Al-O1) = 1.893 Å
O2	d(Y-O2) = 2.444 Å*	d(Al-O2) = 1.913 Å *
Bond Valence Paramater	2.014	1.651

* Averaged values

The lattice decomposition (Eqn. (2)) gives $YAIO1_1O2_2 = Y_{1/4}O1_{1/2} + Y_{3/4}O2_{6/5} + Al_{1/3}O1_{1/2} + Al_{2/3}O2_{4/5}$. We have: $he(Y) = [N(Y - 01)f_c(Y - 01)\alpha(Y - 01)Q(01)^2 + N(Y - 02)f_c(Y - 02)\alpha(Y - 02)Q(02)^2]^{1/2}$ and $he(Al) = [N(Al - 01)f_c(Al - 01)\alpha(Al - 01)Q(01)^2 + N(Al - 02)f_c(Al - 02)\alpha(Al - 02)Q(02)^2]^{1/2}$. The different steps

of the calculation are detailed in Table A6.

Compound YAlO ₃	Site Y	Compound YAlO ₃	Site Al	Eqn. number
Q(Y)	2.895	Q(Al)	3.012	from VESTA
Q(01)	1.447	Q(O1)	2.008	(5)
Q(O2)	1.809	Q(O2)	2.510	
$\Gamma_1(Y - 01)$	31.66	$\Gamma_1(Al-O1)$	31.16	(7)
$\Gamma_1(Y - 02)$	39.67	$\Gamma_1(Al - 02)$	39.81	
$\Gamma_2(Y-01)$	5.79	$\Gamma_2(Al-O1)$	6.024	(8)
$\Gamma_2(Y-02)$	5.79	$\Gamma_2(Al-O2)$	6.024	
$N^{*}(Y - 01)$	1.447	$N^*(Al - 01)$	2.008	(10)
$N^{*}(Y - 02)$	1.447	N*(Al-02)	2.008	
v(Y - 01)	4.041	v(Al-01)	2.253	(11)
v(Y - 02)	4.848	v(Al-02)	2.325	
$\Gamma_3(Y - 01)$	0.071	$\Gamma_3(Al-O1)$	0.079	(9)
$\Gamma_3(Y - 02)$	0.065	$\Gamma_3(Al-O2)$	0.078	
$f_c(Y - 01)$	0.130	$f_{c}(Al - 01)$	0.232	(6)
$f_c(Y - 02)$	0.077	$f_{c}(Al - 02)$	0.153	
$\alpha(Y-01)$	0.440	$\alpha(Al-01)$	0.315	(11)
$\alpha(Y-O2)$	0.416	$\alpha(Al-02)$	0.271	
he(Y)	0.932	he(Al)	1.278	(4)

Table A6: The step-by-step calculation of he(Y) and he(Al) in YAlO₃

A.7. β-NaYF₄

 β -NaYF₄ is an important up-conversion crystal when doped with Er^{3+} and Yb³⁺ where the occupancy factor (occ.) of some atoms differs from unity. The corresponding crystal structure is represented in Fig. S7.

Figure S7. The crystal structure of β -NaYF₄. The fluoride atoms appear in green. The Na1 sites are occupied at 25% by Y1 atoms.

The doping sites are (Na1,Y1) and Y2. Matrices I and II for this compound are reproduced below.

Matrix I – source	Na1,Y1	Y2	F1	F2
ICSD - 51917	(occ. 0.75,0.25)	(occ. 1)	(occ. 1)	(occ. 1)
Space group n°189,				
$V = 105.9 \text{ Å}^3, Z =$				
1.5				
Y1,Na1			N(F1-Na1,Y1) = 4	N(F2-Na1,Y1) = 2
Y2			N(F1-Y2) = 1	N(F2-Y2) = 2

Na2				
F1	N(Na1,Y1-F1) = 6	N(Y2-F1) = 3		
F2	N(Na1,Y1-F2) = 3	N(Y2-F2) = 6		
Total coordination	N(Na1,Y1) = 9	N(Y2) = 9	N(F1) = 5	N(F2) = 4
Site multiplicity	w(Na1,Y1) = 2	w(Y2) = 1	w(F1) = 3	w(F2) = 3
Kappa values	K(Na1,Y1 - F1) = 2/3	K(Y2 - F1) = 1/6	K(F1 - Na1, Y1) = 6/5	K(F2 - Na1, Y1) = 3/4
(from Eqn. (3))	K(Na1,Y1 - F2) = 1/3	K(Y2 - F2) = 1/3	K(F1 - Y2) = 3/10	K(F2 - Y2) = 3/4

Matrix II – source ICSD - 51917	Nal,Yl	Y2
F1	d(Na1,Y1-F1) = 2.541	d(Y2-F1) = 2.259 Å
	Å	
F2	d(Na1,Y1-F2) = 2.366	d(Y2-F2) = 2.190 Å
	Å	
Bond Valence Parameter	1.734	1.904

* Averaged values

The compound is written as $(Na1,Y1)_1Y2_{1/2}F1_{3/2}F2_{3/2}$. The lattice decomposition (Eqn. (2)) gives $(Na1,Y1)_{1}Y2_{1/2}F1_{3/2}F2_{3/2} = (Na1,Y1)_{2/3}F1_{6/5} + (Na1,Y1)_{1/3}F2_{3/4} + Y2_{1/6}F1_{3/10} + Y2_{1/3}F2_{3/4}.$

We have:

he(Na1,Y1)

 $= [N(Na1,Y1 - F1)f_c(Na1,Y1 - F1)\alpha(Na1,Y1 - F1)Q(F1)^2 + N(Na1,Y1 - F2)f_c(Na1,Y1 - F2)\alpha(Na1,Y1 -$

steps of the calculation are detailed in Table A7.

Table A7: The step-by-step	calculation	of he(Na1,Y1)	and $he(Y2)$	in NaYF ₄
· 1 2 1				

Compound NaYF ₄	Site Na1,Y1	Compound NaYF ₄	Site Y2	Eqn. number
Q(Na1,Y1)	1.220	Q(Y2)	3.919	from VESTA
Q(F1)	0.678	Q(F1)	2.177	(5)
Q(F2)	0.542	Q(F2)	1.742	
$\Gamma_1(Na1,Y1-F1)$	41.63	$\Gamma_1(Y2 - F1)$	46.83	(7)
$\Gamma_1(Na1,Y1-F2)$	33.19	$\Gamma_1(Y2 - F2)$	35.86	
$\Gamma_2(Na1,Y1-F1)$	7.32	$\Gamma_2(Y2 - F1)$	23.51	(8)
$\Gamma_2(Na1,Y1-F2)$	7.32	$\Gamma_2(Y2 - F2)$	23.51	
$N^{*}(Na1,Y1-F1)$	1.084	$N^{*}(Y2 - F1)$	3.483	(10)
$N^{*}(Na1,Y1-F2)$	1.084	$N^{*}(Y2 - F2)$	3.483	
v(Na1,Y1 – F1)	4.646	v(Y2 – F1)	3.265	(11)
v(Na1,Y1 – F2)	3.751	v(Y2 – F2)	2.974	
$\Gamma_3(Na1,Y1-F1)$	0.066	$\Gamma_3(Y2 - F1)$	0.044	(9)
$\Gamma_3(Na1,Y1-F2)$	0.072	$\Gamma_3(Y2 - F2)$	0.046	
$f_c(Na1,Y1-F1)$	0.037	$f_c(Y2 - F1)$	0.011	(6)
$f_{c}(Na1,Y1 - F2)$	0.067	$f_c(Y2 - F2)$	0.021	
$\alpha(Na1,Y1-F1)$	0.226	$\alpha(Y2-F1)$	0.127	(11)
$\alpha(Na1,Y1-F2)$	0.257	$\alpha(Y2-F2)$	0.183	
he(Na1,Y1)	0.195	he(Y2)	0.299	(4)