Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2023

Supporting Information

Multifunctional Anthraquinone-Sulfonic Potassium Salts Passivates the Buried Interface for Efficient and Stable Planar Perovskite Solar Cells

Yanqiang Hu^{a,b}, Zong Xu^a, Zhi Wang^a, Yifan Zhou^a, Wenwu Song^a, Yushuang Gao^b, Guangping Sun^a, Tongming Sun^a, Shufang Zhang^{b,*}, Yanfeng Tang^{a,*}

^aCollege of Chemistry and Chemical Engineer, Nantong University, Nantong 226001, Jiangsu, China.

^bSchool of Physics and Photoelectronic Engineering, Ludong University, Yantai 264025, Shandong, China.

This file includes Figure S1-S12 and Table S1-S3:

Figure S1. (a) Molecular structure, (b) electrostatic surface potential map, and (c) calculated frontier molecular orbitals of ASPS molecule.

Figure S2. XRD patterns of SnO₂ film without and with ASPS modification.

Figure S3. AFM images of (a) ASPS, (b) SnO₂ and (c) ASPS-modified SnO₂ on glass substrates, respectively.

Figure S4. (a) K 2p, and (c) S 2p XPS spectra of SnO₂ and SnO₂/ASPS substrates, respectively.

Figure S5. Top-view SEM and corresponding energy dispersive spectroscopy (EDS) mapping of SnO₂/ASPS substrate, respectively.

Figure S6. (a) Optical absorbance and (d) corresponding Tauc plots of SnO₂ film without or with ASPS modification.

Figure S7. Region amplified XRD pattern of PVK films deposited on SnO₂ and SnO₂/ASPS substrates.

Figure S8. Elemental scanning in a liner mode through the cross-section of SnO₂/ASPS/PVK. Scale bar: 500 nm.

Figure S9. Liquid-state ¹H NMR spectra of pure ASPS and PbI₂@ASPS dissolving in DMSO- d_6 , respectively.

Figure S10. FTIR spectra of PVK, pure ASPS powder, and PVK@ASPS, respectively.

Figure S11. The steady-state PL spectra of PVK films deposited on SnO₂ and SnO₂/ASPS substrates.

Figure S12. Statistical distribution of PCE of the controlled and optimized PSCs. The statistical data were collected from 16 cells for each case.

Table S1. The photovoltaic parameters of the champion devices with different concentrations of ASPS.

ASPS (mg/mL)	Voc (V)	Jsc (mA/cm ²)	FF (%)	PCE (%)
0.0	1.10	24.47	79.37	21.36
0.25	1.13	24.51	80.83	22.39
0.5	1.16	24.57	81.98	23.36
0.75	1.17	24.76	82.70	23.96
1.0	1.15	24.43	79.83	22.43

Table S2. The photovoltaic parameters of the champion devices with AD, ADA, and ASPS, respectively.

	Sample		Voc (V)	Jsc (mA/cm²)	FF (%)	PCE (%)
	AD	FS	1.12	24.59	78.83	21.71
		RS	1.16	24.61	81.32	23.21
	ADA	FS	1.13	24.67	80.03	22.31
		RS	1.16	24.70	82.86	23.74
	ASPS	FS	1.16	24.75	80.16	23.01
		RS	1.17	24.76	82.70	23.96
	Ů					o
Anthracenedione (AD): ¹ , 1,8-Anthracenedisulfonic acid (ADA): ¹ .						

Table S3. Initial photovoltaic parameters of the stability test device under reverse scanning.

		Voc (V)	Jsc (mA/cm ²)	FF (%)	PCE (%)
Storage stability	0.0	1.09	24.45	78.56	20.94
	0.75	1.16	24.74	80.96	23.23
Thermal stability	0.0	1.08	24.46	78.43	20.72
	0.75	1.15	24.70	81.12	23.04

Light stability	0.0	1.08	24.45	78.34	20.69
	0.75	1.14	24.73	80.70	22.75