Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2023

SUPPORTING INFORMATION

Local and Global Aromaticity under Rotation. Analysis of Two- and Three-Dimensional Representative Carbon Nanostructures

Rafael Lingas,^a Nickolas D. Charistos,^{a,*} Alvaro Muñoz-Castro^{b,*}

^a Aristotle University of Thessaloniki, Department of Chemistry, Laboratory of Quantum and Computational Chemistry, Thessaloniki, Greece, 54 124 *E-mail: nicharis@chem.auth.gr

^bFacultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Santiago, 8420524, Chile *Email: alvaro.munozc@uss.cl

Contents		Pages
Figures S1-S9	Total and π , σ +core contributions to the z component of the induced magnetic field, B_{z}^{ind} , [8]CPP ^{0/2+} , [10]CPP ^{0/2+} and C ₆₀ ^{0/6-/12-} at tilt angles of 0°, 18°, 36°, 54°, 72° and 90°.	S1-S9
Table S1	Central Nucleus-Independent Chemical Shift tensor for the studied species, which remain under rotation, as given by their principal-axis-system (PAS) for the shielding tensor (σ), denoting the average, the NICS(0) value (NICS(0) = -1/3*(σ_{11} + σ_{22} + σ_{33}) and the anisotropic term (NICS _{aniso} = -(σ_{33} - 1/2*(σ_{11} + σ_{22})).	S10

Figure S1. Contour maps of total and π , σ +core contributions to the z component of the induced magnetic field, B_{z}^{ind} , and 3D isosurfaces (5ppm) of pseudo- π contributions, of [8]CPP at tilt angles of 0°, 18°, 36°, 54°, 72° and 90°.

Figure S2. Contour maps of total and π , σ +core contributions to the z component of the induced magnetic field, B_{z}^{ind} , and 3D isosurfaces (5ppm) of pseudo- π contributions, of [8]CPP²⁺ at tilt angles of 0°, 18°, 36°, 54°, 72° and 90°.

Figure S3. Contour maps of total and π , σ +core contributions to the z component of the induced magnetic field, B_{z}^{ind} , and 3D isosurfaces (5ppm) of pseudo- π contributions, of [10]CPP at tilt angles of 0°, 18°, 36°, 54°, 72° and 90°.

Figure S4. Contour maps of total and π , σ +core contributions to the z component of the induced magnetic field, B_{z}^{ind} , and 3D isosurfaces (5ppm) of pseudo- π contributions, of [10]CPP²⁺ at tilt angles of 0°, 18°, 36°, 54°, 72° and 90°.

Figure S5. Contour maps of total and π , σ +core contributions to the z component of the induced magnetic field, B_{z}^{ind} , and 3D isosurfaces (5ppm) of pseudo- π contributions, of CNB at tilt angles of 0°, 18°, 36°, 54°, 72° and 90°.

Figure S6. Contour maps of total and π , σ +core contributions to the z component of the induced magnetic field, B_{z}^{ind} , and 3D isosurfaces (5ppm) of pseudo- π contributions, of CNB²⁺ at tilt angles of 0°, 18°, 36°, 54°, 72° and 90°.

Figure S7. Contour maps of total and π , σ +core contributions to the z component of the induced magnetic field, B_{z}^{ind} , and 3D isosurfaces (5ppm) of pseudo- π contributions, of C₆₀ at tilt angles of 0°, 18°, 36°, 54°, 72° and 90°.

Figure S8. Contour maps of total and π , σ +core contributions to the z component of the induced magnetic field, B_{z}^{ind} , and 3D isosurfaces (5ppm) of pseudo- π contributions, of C₆₀⁶⁻ at tilt angles of 0°, 18°, 36°, 54°, 72° and 90°.

Figure S9. Contour maps of total and π , σ +core contributions to the z component of the induced magnetic field, B_{z}^{ind} , and 3D isosurfaces (5ppm) of pseudo- π contributions, of C_{60}^{12-} at tilt angles of 0°, 18°, 36°, 54°, 72° and 90°.

Table S1. Central Nucleus-Independent Chemical Shift tensor for the studied species calculated at the PBE/TZ2P level, which remain under rotation, as given by their principal-axis-system (PAS) for the shielding tensor (σ), denoting the average, the NICS(0) value NICS(0) = -1/3*(σ_{11} + σ_{22} + σ_{33}) and the anisotropic term NICS_{aniso} = -(σ_{33} - 1/2*(σ_{11} + σ_{22})). Values are given in ppm.

		PAS components	5			
	σ ₁₁	σ ₂₂	σ ₃₃	Average	NICS(0)	NICS _{Aniso}
[10]CPP	-1.6	3.1	3.1	1.6	-1.6	-2.4
[10]CPP ²⁺	2.7	2.7	25.9	10.4	-10.4	-23.2
[8]CPP	-2.7	4.7	4.7	2.2	-2.2	-3.7
[8]CPP ²⁺	4.4	4.4	31.9	13.5	-13.5	-27.5
CNB	-11.6	11.5	11.5	3.8	-3.8	-11.5
CNB ²⁺	7.0	7.0	35.3	16.4	-16.4	-28.3
C ₆₀	1.0	1.0	1.0	1.0	-1.0	0.0
C ₆₀ ⁶⁻	51.8	51.8	51.8	51.8	-51.8	0.0
C ₆₀ ¹²⁻	-35.8	-35.8	-35.8	-35.8	35.8	0.0