Supporting Information

Hierarchical $V_4C_3T_X$ @NiO-reduced graphene oxide heterostructure hydrogel and defective reduced graphene oxide hydrogel as free-standing anode and cathode for high-performance asymmetric supercapacitor

Ziyu Geng^a, Weiwen Chen^{a,b,} Zenghui Qiu^{a,b,*}, Haijun Xu^{a,b,*}, Dingjie Pan^c, and Shaowei Chen^{c,*}

^aCollege of Mathematics & Physics, Beijing University of Chemical Technology, Beijing 100029, China ^bBeijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing 100029, China ^cDepartment of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA, 95064, United States

**These authors contributed equally to the work.*

*E-mail: zhqiu@buct.edu.cn (Z.H.Q.), hjxu@buct.edu.cn (H.J.X.), and shaowei@ucsc.edu (S.W.C.)

List of Contents

• 2 tables

Materials	Electrolyte	Specific	Current density or	Ref.
		capacitance	Scan rate	
Ti ₃ C ₂ T _X /CNF/PC	1 M KOH	143 mF cm ⁻²	0.1 mA cm ⁻²	[1]
N,O co-doped C@Ti ₃ C ₂ T _X	6 M KOH	250.6 F g ⁻¹	1 A g ⁻¹	[2]
$Ti_3C_2T_X/ZIF-67/CoV_2O_6$	1 M KOH	285.5 F g⁻¹	1 A g ⁻¹	[3]
1T-MoS ₂ /Ti ₃ C ₂ T _X	1 M H ₂ SO ₄	386.7 F g⁻¹	1 A g ⁻¹	[4]
MnO ₂ /Ti ₃ C ₂ T _X /CC	1 M LiCI	411.5 F g⁻¹	1 A g ⁻¹	[5]
PPy/Ti ₃ C ₂ T _X	$1 \text{ M H}_2 \text{SO}_4$	458 F g ⁻¹	2 mV s ⁻¹	[6]
Ti ₃ C ₂ T _X @PDA/NiCo ₂ S ₄	3 М КОН	495 F g⁻¹	2 mV s ⁻¹	[7]
400-KOH-Ti ₃ C ₂ T _X	1 M H ₂ SO ₄	517 F g⁻¹	1 A g ⁻¹	[8]
$Ti_3C_2T_X/NF$	6 M KOH	654 F g ⁻¹	1 A g ⁻¹	[9]
MXene/rGO	$3 \text{ M H}_2 \text{SO}_4$	1040 F cm⁻³	2 mV s ⁻¹	[10]
$Co_2NiO_4/Ti_3C_2T_X$	3 М КОН	719.5 F g⁻¹	0.5 A g⁻¹	[11]
Ti ₃ C ₂ /Ni-Co-Al-LDH	1 M KOH	748.2 F g ⁻¹	1 A g ⁻¹	[12]
Ti ₃ C ₂ T _X @NiO-RGO	1 M KOH	966 F g ^{−1}	1 A g ⁻¹	[13]
V ₄ C ₃ T _X @NiO-RGO	1 M KOH	1014.5 F g⁻¹	1 A g ⁻¹	This work

Material	Electrolyte	Specific capacitance (F g ⁻¹)	Current density (A g ⁻ ¹)	Ref.
NG-900 aNG TsG AC800NH ₃ LSG HPCFs C-900 PANecoal- AC ₅ AC800	6 M KOH 1 M KOH 6 M KOH 6 M KOH 1 M H₃PO₄ 6 M KOH 6 M KOH 7 M KOH	130 132.4 180 196 202 206 210 230 232 235	') 0.5 0.1 0.5 1 1 1 1 1 1 1 0.05 0.1	[14] [15] [16] [17] [18] [19] [20] [21] [22]
N-HPCs PCPs DRGO	6 M KOH 1 M KOH 1 M KOH	335 245 258	0.1 1 1	[23] [24] This work

Table S2 Comparison of specific capacitance for various carbon materials in aqueous electrolytes reported in the literature.

References

- [1] Chen, W. M.; Zhang, D. T.; Yang, K.; Luo, M.; Yang, P.; Zhou, X. Y. MXene (Ti₃C₂T_X)/cellulose nanofiber/porous carbon film as free-standing electrode for ultrathin and flexible supercapacitors. *Chemical Engineering Journal.* **2021**, 413, 127524.
- [2] Pan, Z. H.; Ji, X. H. Facile synthesis of nitrogen and oxygen co-doped C@Ti₃C₂ MXene for high performance symmetric supercapacitors. *Journal of Power Sources*. **2019**, 439, 227068.
- [3] Liu, C. L.; Bai, Y.; Li, W. T.; Yang, F. Y.; Zhang, G. X.; Pang, H. In Situ Growth of Three-Dimensional MXene/Metal–Organic Framework Composites for High-Performance Supercapacitors. *Angew Chem Int Ed Engl.* 2022, 61, e202116282.
- [4] Wang, X.; Li, H.; Li, H.; Lin, S.; Ding, W.; Zhu, X. G.; Sheng, Z. G.; Wang, H.; Zhu, X. B.; Sun, Y. P.
 2D/2D 1T-MoS₂/Ti₃C₂ MXene Heterostructure with Excellent Supercapacitor Performance.
 Advanced Functional Materials. 2020, 30, 0190302.
- [5] Chen, X. H.; Liu, Y.; Zhou, Q.; Su, F. H. Facile Synthesis of MnO₂/Ti₃C₂T_x/CC as Positive Electrode of All-Solid-State Flexible Asymmetric Supercapacitor. *ChemistrySelect.* **2020**, 5, 14768-14775.
- [6] Wei, D.; Wu, W. L.; Zhu, J. F.; Wang, C. W.; Zhao, C. H.; Wang, L. A facile strategy of polypyrrole nanospheres grown on Ti₃C₂-MXene nanosheets as advanced supercapacitor electrodes. *Journal* of *Electroanalytical Chemistry*. **2020**, 877, 114538.
- [7] Wu, W. L.; Niu, D. J.; Zhu, J. F.; Gao, Y.; Wei, D.; Zhao, C. H.; Wang, C. W.; Wang, F.; Wang, L.;Yang, L. Q. Hierarchical architecture of Ti₃C₂@PDA/NiCo₂S₄ composite electrode as high-performance supercapacitors. *Ceramics International.* **2019**, 45, 16261-16269.
- [8] Li, J.; Yuan, X. T.; Lin, C.; Yang, Y. Q.; Xu, L.; Du, X.; Xie, J. L.; Lin, J. H.; Sun, J. L. Achieving High Pseudocapacitance of 2D Titanium Carbide (MXene) by Cation Intercalation and Surface Modification. *Advanced Energy Materials*. **2017**, 7, 1-6.
- [9] Guo, J.; Zhao, Y. Y.; liu, A. N.; Ma, T. L. Electrostatic self-assembly of 2D delaminated MXene (Ti₃C₂) onto Ni foam with superior electrochemical performance for supercapacitor. *Electrochimica Acta*. 2019, 305, 164-174.
- Yan, J.; Ren, C. E.; Maleski, K.; Hatter, C. B.; Anasori, B.; Urbankowski, P.; Sarycheva, A.; Gogotsi,
 Y. Flexible MXene/Graphene Films for Ultrafast Supercapacitors with Outstanding Volumetric Capacitance. *Advanced Functional Materials*. 2017, 27, 1701264.
- [10] Song, J. R.; Hu, P. F.; Liu, Y.; Song, W. X.; Wu, X. Enhanced Electrochemical Performance of Co₂NiO₄/Ti₃C₂T_X Structures through Coupled Synergistic Effects. *ChemistrySelect.* 2019, 4, 12886-12890.
- [11] Zhao, R. Z.; Wang, M. Q.; Zhao, D. Y.; Li, H.; Wang, C. X.; Yin, L. W. Molecular-Level Heterostructures Assembled from Titanium Carbide MXene and Ni-Co-Al Layered Double Hydroxide Nanosheets for All-solid-state Flexible Asymmetric High-Energy Supercapacitors. ACS Energy Letters. 2017, 3, 132-140.

- [12] Chen, W. W.; Peng, Y.; Qiu, Z. H.; Zhang, X.; Xu, H. J. 3D hierarchical Ti₃C₂T_x@NiO-reduced graphene oxide heterostructure hydrogel as free-standing electrodes for high performance supercapacitor. *Journal of Alloys and Compounds.* **2022**, 901, 163614.
 - [13] Lee, K. H.; Oh, J.; Son, J. G.; Kim, H.; Lee, S. S. Nitrogen-Doped Graphene Nanosheets from Bulk Graphite using Microwave Irradiation. ACS Appl Mater Interfaces. 2014, 6, 6361-6368.
 - [14] Zheng, B.; Chen, T. W.; Xiao, F. N.; Bao, W. J.; Xia, X. H. KOH-activated nitrogen-doped graphene by means of thermal annealing for supercapacitor. *Journal of Solid State Electrochemistry*. **2013**, 17, 1809-1814.
 - [15] Wen, P.; Gong, P. W.; Mi, Y. J.; Wang, J. Q.; Yang, S. R. Scalable fabrication of high quality graphene by exfoliation of edge sulfonated graphite for supercapacitor application. *RSC Advances*. **2014**, 4, 35914-35918.
 - [16] Benedetti, M.; Girelli, C. R.; Antonucci, D.; De Pascali, S. A.; Fanizzi, F. P. New method for the synthesis of [PtCl{ŋ¹-CH₂C(O)R}(N-N)] ketonyl derivatives starting from the Zeise's salt. *Inorganica Chimica Acta*. **2014**, 413, 109-114.
 - [17] Guo, J. R.; Xu, X. T.; Hill, J. P.; Wang, L. P.; Dang, J. J.; Kang, Y. Q.; Li, Y. L.; Guan, Y. S.; Yamauchi,
 Y. Graphene–carbon 2D heterostructures with hierarchically-porous P, N-doped layered architecture for capacitive deionization. *Chem Sci.* 2021,12,10334-10340.
 - [18] Lv, Y.; Gan, L. H.; Liu, M. X.; Xiong, W.; Xu, Z. J.; Zhu, D. Z.; Wright, D. S. A self-template synthesis of hierarchical porous carbon foams based on banana peel for supercapacitor electrodes. *Journal* of Power Sources. **2012**, 209, 152-157.
 - [19] Qiu, B.; Pan, C. T.; Qian, W. J.; Peng, Y. J.; Qiu, L. H.; Yan, F. Nitrogen-doped mesoporous carbons originated from ionic liquids as electrode materials for supercapacitors. *Journal of Materials Chemistry A.* 2013, 1, 6373-6378.
 - [20] Zhao, H. Y.; Wang, L. X.; Jia, D. Z.; Xia, W.; Li, J.; Guo, Z. P. Coal based activated carbon nanofibers prepared by electrospinning. J. Mater. Chem. A. 2014, 2, 9338-9344.
 - [21] Shang, T. X.; Zhang, M. Y.; Jin, X. J. Easy procedure to prepare nitrogen-containing activated carbons for supercapacitors. *RSC Adv.* 2014, 4, 39037-39044.
- Yang, X. W.; Zhuang, X. D.; Huang, Y. J.; Jiang, J. Z.; Tian, H.; Wu, D. Q.; Zhang, F.; Mai, Y. Y.; Feng, X.
 L. Nitrogen-Enriched Hierarchically Porous Carbons Fabricated by Graphene Aerogel Templated Schiffbase Chemistry for High Performance Electrochemical Capacitors. *Polymer Chemistry*. 2015, 6, 1088-1095.
- [23] Yi, H.; Wang, H. W.; Jing, Y. T.; Peng, T. Q.; Wang, X. F. Asymmetric supercapacitors based on carbon nanotubes@NiO ultrathin nanosheets core-shell composites and MOF-derived porous carbon polyhedrons with super-long cycle life. Journal of Power Sources. 2015, 285, 281-290.