Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2023

Supporting Information

A simulation study on phase transition behavior of solid nitrogen at extreme conditions

Han Qin ^a, Sheng-Hai Zhu ^{b,*}, Zhen Jiao ^c, Fu-Sheng Liu ^d, Zheng-Tang Liu ^e, Qi-Jun Liu ^{d,†}

^a School of Science, Key Laboratory of High Performance Scientific Computation,

Xihua University, Chengdu 610039, China

^b Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065,

China

^c Physics of Interfaces and Nanomaterials, MESA Institute for Nanotechnology,
University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands

^d Bond and Band Engineering Group, School of Physical Science and Technology,

Southwest Jiaotong University, Chengdu 610031, China

^e State Key Laboratory of Solidification Processing, Northwestern Polytechnical
University, Xi'an 710072, China

^{*} Corresponding author. Email: zhushenghai@hotmail.com

[†] Corresponding author. Email: qijunliu@home.swjtu.edu.cn

 α -N₂ with $Pa^{\overline{3}}$ at 0 GPa

 α -N₂ with $Pa^{\overline{3}}$ at 0.1 GPa

 α -N₂ with $Pa^{\overline{3}}$ at 0.2 GPa

 α -N₂ with $Pa^{\overline{3}}$ at 0.3 GPa

 α -N₂ with $Pa^{\overline{3}}$ at 0.4 GPa

 α -N₂ with $Pa^{\overline{3}}$ at 0.5 GPa

 α -N₂ with $Pa^{\overline{3}}$ at 0.6 GPa

 α -N₂ with $Pa^{\overline{3}}$ at 0.7 GPa

 α -N₂ with $Pa^{\overline{3}}$ at 0.8 GPa

 α -N₂ with $Pa^{\overline{3}}$ at 0.9 GPa

 α -N₂ with $P2_13$ at 0 GPa

 α -N₂ with $P2_13$ at 0.1 GPa

 α -N₂ with $P2_13$ at 0.2 GPa

 α -N₂ with P2₁3 at 0.3 GPa

 α -N₂ with $P2_13$ at 0.4 GPa

 α -N₂ with $P2_13$ at 0.5 GPa

 α -N₂ with P2₁3 at 0.6 GPa

 α -N₂ with $P2_13$ at 0.7 GPa

 α -N₂ with $P2_13$ at 0.8 GPa

 α -N₂ with $P2_13$ at 0.9 GPa

 α -N₂ with $P2_13$ at 1 GPa

Figure S1 The complete individual phonon spectra of α -N₂ with (a) $Pa^{\overline{3}}$ and (b) $P2_13$ space groups under pressure from 0 GPa to 1 GPa.

 $\gamma\text{-}N_2$ at 0 GPa

 γ - N_2 at 0.1 GPa

 $\gamma\text{-}N_2$ at 0.2 GPa

 γ -N₂ at 0.3 GPa

 $\gamma\text{-}N_2$ at 0.4 GPa

 $\gamma\text{-}N_2$ at 0.5 GPa

 γ -N₂ at 0.6 GPa

 γ - N_2 at 0.7 GPa

 $\gamma\text{-}N_2$ at 0.8 GPa

 γ -N₂ at 0.9 GPa

 γ -N₂ at 1 GPa

Figure S2 The complete individual phonon spectra of γ -N₂ under pressure from 0 GPa to 1 GPa.