Supplementary Material

Attenuated Total reflectance Infrared Spectra

S1. Infrared spectra for the gadolinium oxide (matrix) and its Dy³⁺-doped oxides. All of them show the hydrated molecules and carbonate ions on their surfaces.

Thermogravimetric analysis

The thermal stability of the Dy: Gd_2O_3 at 1% sample was studied from 25 to 1000 °C at a heating rate of 10 °C / min. The following slopes were observed corresponding to a total loss of 5% w: The first slope, which goes up to 180 °C was assigned to adsorbed water molecules losses (1.4%) on the oxide surface. The second (2.5% w) up to 418 °C and the third losses (0.6%) at 646 °C, are attributed to the hydroxide formation and its subsequent hydrolysis during the sol-gel process. The above indicates a remnant of hydroxide precursor due to a low calcination time. Finally, the

fourth loss is related to the formation of $CO_3^{2^-}$ ions on the oxide surface owing to the presence of atmospheric CO_2 during the calcination process. However, these ions are found at a trace level (0.7% in weight) making them difficult to observe by XRD measurements.

The amount of remanent OH⁻, particularly on the oxide surfaces, enhanced their silanisation process and the subsequent biomolecules binding. Previous work has also reported successful silanisation without previous surface activation, where the protein union occurs through Van der Waals interactions.

S2. Thermogram for sample Dy@Gd₂O₃ (at 5%)

Energy Dispersive Spectroscopy

Element *	Line Type	k Factor	k Factor type	Absorption Correction	Wt%	Wt% Sigma	Atomic %
0	K series	2.020	Theoretical	1.00	23.58	2.66	75.22
Gd	L series	2.111	Theoretical	1.00	73.07	3.21	23.72
Dy	L series	2.121	Theoretical	1.00	3.35	2.48	1.05
Total					100.00		100.00

S3. Atomic Composition chart for sample Dy: Gd₂O₃ (at 1%).

Photoluminescence in aqueous dispersion

Magnetisation measurements

To know if there is a new magnetic ordering upon decreasing particle size, we measured the magnetisation behaviour of the $Dy@Gd_2O_3$ (5%) and parent Gd_2O_3 samples by registering the hysteresis loops at 300 K. Results from these measurements are presented in **S 5a** and show a clear paramagnetic response in both samples. Furthermore, 1 T field cooled (FC) temperature dependent

magnetisation measurements confirmed that this paramagnetic behaviour extends down to low temperatures (see **S5 b**).

S5. Magnetisation measurements on Dy@Gd₂O₃ (5%) (green line) and Gd₂O₃ (blue line). a) Magnetic moment response vs external magnetic field (hysteresis loops) recorded at 300 K. b) 1T field cooled (FC) temperature dependent magnetization measurements (Is magnetic moment or susceptibility)

Computational details for XAS calculated spectra.

Atomic multiplet calculations for Gd³⁺ and Dy³⁺ at the M_{4,5} edges (*3d-4f* transitions) were done using the code Crispy (Retegan, Marius. 2019. "Crispy: V0.7.3." https://doi.org/10.5281/zenodo.1008184) The calculations were done for T=300 K, the Hartree-Fock integrals Fk, and Gk were scaled to 80% (0.8) of its atomic values, while the spin-orbit coupling (z) was set to 100% (1). For Dy³⁺ the values of the initial Hamiltonian were: U(*4f*,*4f*):0.0, F2(*4f*,*4f*):15.313, F4(*4f*,*4f*):9.609, F6(*4f*,*4f*):6.913, z (4f):0.246; On the other hand the values for the final Hamiltonian were: U(*4f*,*4f*):10.031, F6(*4f*,*4f*):7.221, U(*3d*,*4f*):0.0, F2(*3d*,*4f*):10.388, F4(*3d*,*4f*):4.881, G1(*3d*,*4f*):7.520, G3(*3d*,*4f*):4.411, G5(*3d*,*4f*):3.048, z (*4f*):0.278 y z (*3d*):14.441. To account for the natural broadening, the calculated spectra were broadened by Lorentzian functions with FWHM of 1.31 eV and 1.85 eV for the M_{4.5}

edges, respectively. To improve the agreement with the experimental data, the calculated Dy^{3+} spectra were also convoluted by 0.1 eV, 0.3 eV, 1.0 eV and 1.2 eV FWHM Gausian Functions, representing the instrumental broadening. The best agreement between theory and experiment was found with the Gaussian set to 1.2 eV FWHM (see **S6 c**).

For Gd³⁺ the values of the initial Hamiltonian were: U(*4f*,*4f*):0.0, F2(*4f*,*4f*):14.502, F4(*4f*,*4f*):9.101, F6(*4f*,*4f*):6.548, z (*4f*):0.197; On the other hand the values for the final Hamiltonian were: U(*4f*,*4f*):0, F2(*4f*,*4f*):15.195, F4(*4f*,*4f*):9.550, F6(*4f*,*4f*):6.875, U(*3d*,*4f*):0.0, F2(*3d*,*4f*):9.713, F4(*3d*,*4f*):4.532, G1(*3d*,*4f*):9.946, G3(*3d*,*4f*):4.072, G5(*3d*,*4f*):2.813, z (*4f*):0.226 y z (*3d*):12.358. The calculated spectra were broadened by Lorentzian functions with FWHM of 1.19 eV and 1.59 eV for the M_{4,5} edges, respectively. To account for the instrumental broadening, the calculated Gd³⁺ spectrum was also convoluted by 0.1 eV Gaussian (see **S6 b**).

Further, to compare experimental and theoretical spectra, after normalising to one the intensity of the peak at the M_5 edge, the calculated spectra of Dy^{3+} and Gd^{3+} were shifted by -8.141 eV and -16.495 eV, respectively.

S6. Calculated atomic Gd³⁺ and Dy³⁺ M_{4,5}-edge spectra. **a)** Amplification of the absorption level M₅ for the host matrix with (blue line) and without (red line) the dopant (Dy³⁺). **b)** Comparison between the calculated (red line) and experimental (blue line) XAS spectra monitoring the M_{4,5}-edge absorption in Gd³⁺. C) Calculated XAS spectra monitoring the Dy³⁺ M_{4,5}-edges absorption convoluted by 0.1 eV, 0.3 eV, 1.0 eV and 1.2 eV FWHM Gausian Functions. All calculated spectra were generated using the code Crispy (Retegan, Marius. 2019. "Crispy: V0.7.3." https://doi.org/10.5281/zenodo.1008184).