## **Supplementary Materials**

## Nitrogen-doped carbocatalysts activated persulfate (PS) for oxidation polymerization of bisphenol A (BPA): Importance of nonradical activation of PS

Caihong Wang<sup>a</sup>, Yong Liu<sup>a,b\*</sup>, Fengshen Han<sup>a</sup>, Yongzhe Han<sup>a</sup>, Tianyu Liu<sup>a</sup>, Haitao

Ren<sup>c</sup>, , and Xu Han<sup>d\*</sup>

<sup>a</sup> School of Chemistry and Chemical Engineering, Tianjin University of Technology,

Tianjin, 300384, P.R. China

<sup>b</sup> Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion,

Tianjin, 300384, P.R. China

<sup>c</sup> School of Textile Science and Engineering, Tiangong University, Tianjin, 300387,

P.R. China

<sup>d</sup> School of Chemical Engineering and Technology, Tianjin University, Tianjin,

300350, P.R. China

Corresponding author:

Dr. Yong Liu

Dr. Xu Han

Tel: +86-13920202859; +86-15222072695

E-mail: tjutliuyong@163.com; xuhan@tju.edu.cn

## Contents

| Figure S1 XRD, SEM analysis of the synthesized CN1                  |
|---------------------------------------------------------------------|
| Figure S2 Oxidation of BPA by PS and CN-800 at pH 9.01              |
| Table S1 Rate constants in the CN-800/PS/BPA system                 |
| <b>Table S2</b> Rate constants in the oxidation of BPA by CN and PS |
| Figure S3 TOC variations in solution in the CN-800/PS/BPA system    |
| Table S3 Tafel parameters of before and after CN-8003               |
| Figure S4 Recycle use of CN-800 in the oxidation of BPA by PS4      |
| Figure S5 Oxidation of BPA in the presence of 50 mM BHT4            |
| Figure S6 Chronoamperometric analysis5                              |
| <b>Table S4</b> XPS analysis of the CN-T samples                    |
| Figure S7 XPS N 1s analysis of before and after CN catalyst         |
| Figure S8 Adsorption of BPA by normal/poisoned CN-                  |
| 8007                                                                |



Figure S1. (a) and (b) XRD patterns of g-C<sub>3</sub>N<sub>4</sub>, CN-800, CN-600 and CN-1000; (c) SEM image of



Figure S2. Oxidation of BPA by PS and CN-800 at pH 9.0. Conditions: [BPA] = 20

mg L<sup>-1</sup>, [PS] = 1.0 mM and [CN-800] = 0.2 g L<sup>-1</sup> at 25  $\pm$  1 °C.

CN-800.

| pH conditions | Scavengers | $k ({ m min}^{-1})$ | R <sup>2</sup> |
|---------------|------------|---------------------|----------------|
| 7.0           | -          | 2.964               | 0.933          |
| 8.0           | -          | 3.932               | 0.916          |
| 9.0           | -          | 4.140               | 0.915          |
| 10.0          | -          | 3.422               | 0.969          |
| 9.0           | 50 mM BHT  | 0.060               | 0.710          |

**Table S1.** Rate constants in the oxidation of BPA by  $0.2 \text{ g L}^{-1}$  CN-800 and 1mM PS under different conditions.

Table S2. Rate constants in the oxidation of BPA by 0.2 g  $L^{-1}$  CN-T and 1mM PS.

| temperature | pH conditions | $k (\min^{-1})$ | $R^2$ |
|-------------|---------------|-----------------|-------|
| 600         | 9.0           | 0.151           | 0.645 |
| 800         | 9.0           | 4.140           | 0.915 |
| 1000        | 9.0           | 5.055           | 0.940 |



Figure S3. (a) TOC in solution in the CN-800/BPA/PS system. Conditions:  $[BPA] = 20 \text{ mg } L^{-1}$ , [PS] = 1.0 mM and  $[CN-800] = 0.2 \text{ g } L^{-1} \text{ at } 25 \pm 1 \text{ °C}$ ; (b) Molar ration of consumed PS and removed BPA in the CN-800/BPA/PS system.

Table S3. Tafel parameters of CN-800, CN-800/BPA, CN-800/PS and CN-800 after reaction

|                                     |        |            | CD 1 000/DC | CN-800 after |  |
|-------------------------------------|--------|------------|-------------|--------------|--|
| parameters                          | CN-800 | CN-800/BPA | CN-800/PS   | reaction     |  |
| Corrosion potential                 | 0.492  | 0.547      | 0.547       | 0.547        |  |
| (E <sub>corr</sub> , V)             | 0.482  | 0.347      | 0.547       | 0.347        |  |
| Corrosion current                   | 56.08  | 22.29      | 00.26       | 0.000        |  |
| $(J_{corr}, \mu A \text{ cm}^{-2})$ | 36.08  | 32.28      | 90.36       | 0.9088       |  |



Figure S4. Recycle use of CN-800 in the oxidation of BPA by PS. Conditions: (a)  $[BPA] = 20 \text{ mg } L^{-1}, [PS] = 1.0 \text{ mM} \text{ and } [CN-800] = 0.2 \text{ g } L^{-1}; (b) [BPA] = 200 \text{ mg}$  $L^{-1}, [PS] = 1.5 \text{ mM} \text{ and } [CN-800] = 0.2 \text{ g } L^{-1} \text{ at } 25 \pm 1 \text{ °C}, \text{ pH} = 9.0.$ 



Figure S5. Oxidation of BPA in the presence of 50 mM BHT. Conditions: [BPA] =

 $20 \text{ mg } L^{-1}$ , [PS] = 1.0 mM and [CN-800] = 0.2 g L<sup>-1</sup> at  $25 \pm 1$  °C, pH = 9.0.



**Figure S6.** Chronoamperometric analysis at 0.00 V vs. SCE using  $0.1 \text{ M Na}_2\text{SO}_4$  as electrolyte.

| Samples               | XPS (at. %) |       |       | Fraction of     | Fraction of different configuration nitrogen |                 |             |  |
|-----------------------|-------------|-------|-------|-----------------|----------------------------------------------|-----------------|-------------|--|
| Sumpres               | С           | N     | 0     | Pyridinic-<br>N | Pyrrolic-<br>N                               | Graphitic-<br>N | Oxide-<br>N |  |
| Before<br>CN-600      | 62.72       | 31.44 | 5.84  | 44.78           | 43.28                                        | 11.94           | 0.00        |  |
| Before<br>CN-800      | 83.34       | 8.59  | 8.07  | 41.44           | 27.62                                        | 27.07           | 3.87        |  |
| Before<br>CN-<br>1000 | 88.22       | 3.03  | 8.75  | 29.06           | 17.95                                        | 46.15           | 6.84        |  |
| After<br>CN-600       | 65.38       | 26.02 | 8.60  | 35.10           | 38.37                                        | 18.17           | 8.16        |  |
| After<br>CN-800       | 81.93       | 8.07  | 10.55 | 37.14           | 40.48                                        | 19.05           | 3.33        |  |
| After<br>CN-<br>1000  | 86.49       | 2.93  | 10.58 | 16.82           | 40.19                                        | 37.38           | 5.61        |  |

| Table S4. XPS analysis of the CN-T samp | les |
|-----------------------------------------|-----|
|-----------------------------------------|-----|



**Figure S7.** (a, c and e) XPS N 1s analysis of before CN catalyst; (b, d and f) XPS N 1s analysis of after CN catalyst.



Figure S8 Adsorption of BPA by normal/poisoned CN-800 at pH 9.0. Conditions:  $[BPA] = 20 \text{ mg } L^{-1}, \text{ [catalyst]} = 0.50 \text{ g } L^{-1} \text{ at } 25 \pm 1 \text{ °C}.$