Supporting Information for

Measuring T₁ relaxation in paramagnetic solids with solid-state NMR: A case study on the milling induced phase transition in Li₆CoO₄

Nianrui Guo, Fushan Geng, Guozhong Lu, Xinbiao Jiang, Chao Li, Bingwen Hu, Ming Shen* Shanghai Key Laboratory of Magnetic Resonance, State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China

E-mail: mshen@phy.ecnu.edu.cn

Fig. S1. XRD patterns of Li_6CoO_4 synthesized using sealed quartz tubes with reactants pressed into tablets (a), using sealed quartz tubes with powered reactants (b), and using tubular furnace with reactants pressed into tablets (c). The reference PDF cards for tetragonal Li_6CoO_4 (#78-1519) and trigonal layered $LiCoO_2$ (#75-0532) are depicted for comparison.

Fig. S2. Rietveld refinement on the laboratory XRD patterns of Li_6CoO_4 (a), BM- Li_6CoO_4 (250r-5h) (b), and BM-Li6CoO4(250r-5h) (c). The refined structural parameters are listed in **Table S1** in the following.

sample/phase	space group	lattice parameters	atom	site	occupancy(g) and	fraction			
		(Å)			atomic coordination	(mol%)			
Li ₆ CoO ₄	P42/nmc	a=6.545(1)	Lil	8 <i>f</i>	x = 0.020(1)	100			
ordered phase		c=4.651(5)	Li2	4 <i>d</i>	z = 0.283(5)				
			Co	2a					
			0	8g	y = 0.532(1)				
<i>R</i> wp = 3.55 %, <i>R</i> p = 2.80 %, <i>R</i> e =3.27%, and <i>S</i> = 1.09.									
Li ₆ CoO ₄ (BM250r-5h)	P42/nmc	a= 6.528(7)	Lil	8 <i>f</i>	x = -0.009(5)	63(5)			
ordered		c=4.669(9)	Li2	4 <i>d</i>	z = 2.764(2)				
and disordered phases			Co	2 <i>a</i>					
			0	8g	y = 0.523(1)				
					z = 0.507(8)				

Table S1. Results of Rietveld refinement shown in Fig. S2.

	Fm3m	a=4.616(7)	Li	8 <i>c</i>	g = 0.75	36(4)		
			Co	8 <i>c</i>	g = 0.125	-		
			0	4 <i>a</i>				
<i>R</i> wp =1.70%, <i>R</i> p = 1.36%, <i>R</i> e =1.15%, and <i>S</i> = 1.48								
Li ₆ CoO ₄ (BM250r-25h)	Fm3m	a=4.613(4)	Li	8 <i>c</i>	g = 0.75	100		
disordered phase			Co	8 <i>c</i>	g = 0.125	-		
			0	4 <i>a</i>		-		
Rwp = 1.40%, $Rp = 1.12%$, $Re = 1.12%$, and $S = 1.25$.								

Fig. S3. Photographs of synthesized pristine Li_6CoO_4 and ball-milled samples. The change of color from dark blue to black is in accordance with the UV-Vis spectroscopy results.

Wavelength(nm)

800

Fig. S4. SEM images of pristine Li₆CoO₄ and ball-milled samples.

Fig. S5. (a) XRD pattern, (b) ⁷Li pjMATPASS projection, and (c) ¹⁷O Hahn-echo spectrum of ¹⁷O-labelled Li_6CoO_4 . The reference PDF card for tetragonal Li_6CoO_4 (#78-1519) is shown in (a) for comparison.

Although only diffraction peaks from Li_6CoO_4 are shown from XRD results, the ⁷Li resonance at 0 ppm and ¹⁷O resonance at -636 ppm is a strong signature of $LiCoO_2$. We tentatively assign 229 ppm resonance to oxygen atoms in Li_6CoO_4 lattice and the 40 ppm resonance to oxygen atoms in diamagnetic impurity, possibly from Li_2CO_3 .

The synthesis of this sample is based on a low-cost $H_2^{17}O$ -based method, which is similar to others report. (Métro, T.-X.; Gervais, C.; Martinez, A.; Bonhomme, C.; Laurencin, D. Unleashing the Potential of ¹⁷O NMR Spectroscopy Using Mechanochemistry. Angewandte Chemie International Edition 2017, 56 (24), 6803-6807.) 0.01 mol of Li₂O, 0.01 mol of CoO and 0.5 ml $H_2^{17}O$ (35-40% ¹⁷O labelling, Cambridge Isotope) were grounded for 30 minutes in a 45 mL zirconia grinding bowl with two zirconia balls using a SPEX 8000M Mixer/Mill. The mixture was then calcinated at 700 °C with a hearting rate of 5 °C/min under argon flow for 12 h in a tube furnace. The product was manually grounded in an agate mortar and stored in an argon-filled glove box.

Fig. S6. Co 2p XPS and Raman spectra of pristine Li₆CoO₄ (a) and ball-milled samples: Li₆CoO₄(BM250r-5h) (b), Li₆CoO₄(BM250r-25h) (c), and Li₆CoO₄(BM250r-50h) (d). The Co 2p XPS spectra have two main peaks due to spin-orbit splitting with satellite peaks labelled as 'sat.'.

Fig. S7. (a) 2D ⁷Li pj-MATPASS spectrum of Li_6CoO_4 synthesized using tubular furnace with reactants pressed into tablets. (b) ⁷Li 1D projection taken from (a) after shearing transformation. Because this sample is partially oxidized to $LiCoO_2$ owning to limited air tightness, an additional 0 ppm resonance is shown. The spectrum was recorded with a recycle delay of 0.1 s, which leads to underestimated peak intensity of the $LiCoO_2$ phase. The XRD pattern of this sample is shown in **Fig. S1(c)**.

Fig. S8. ⁷Li 1D projections extracted from 2D IR-pjMATPASS spectra acquired with incremented relaxation delays. Note that in typical IR experiments, short relaxation delays result in signals with negative intensities. In IR-pjMATPASS, signals are all positive because of the single coherence transfer pathway.

Fig. S9. ⁷Li one-dimensional Hahn-echo spectra of ball-milled samples.