New organic ionic plastic crystals utilizing the morpholinium cation

Azra Sourjah, Colin S. M. Kang, Cara M. Doherty, Durga Acharya, Luke A. O'Dell and Jennifer M. Pringle

Supplementary Information

Figure S1: DSC traces of all four morpholinium -based salts. Heating and cooling curves were obtained from the second cycle. For $[C_2mmor][FSI]$, $[C_2mmor][TFSI]$ and $[C_{(i3)}mmor][FSI]$ the scan rate was 10 °C min⁻¹. For $[C_{(i3)}mmor][TFSI]$ scan rate was 2 °C min⁻¹

Figure S2: DSC thermogram of the $[C_{(i3)}mmor]$ [TFSI] salt, scan rate 10 °C min-¹. 2nd heating and cooling curves are shown in green. 3rd heating and cooling curves are shown in red, respectively.

Figure S3: The combined heating and cooling ionic conductivity values of the morpholinium salts

Figure S4: Solid-state NMR deconvolution fitting using DMfit software of $[C_2mmor][FSI]$ at 0 °C. The green peak represents broad component, and the purple peak represents the narrow component. The red peak is the cumulative peak.

Figure S5 : For [C₂mmor][FSI] in Phase I, a small proportion of more dynamic cations start growing at higher temperatures. The peak becomes distinguishable from 100 °C onwards. This could be due to two different proton environments in the cationic structure that get resolved when the temperature is increased.

Figure S6: The deconvolution of the broad asymmetric peaks of [C_2 mmor][FSI] considering CSA parameters at -20 °C and 0 °C

Figure S7: The deconvolution of the broad asymmetric peaks of $[C_{(i3)}mmor]$ [FSI] considering CSA parameters at 20 °C and 30 °C

Figure S8: linewidth analysis of [C₂mmor][FSI] :static ¹H NMR (left) and ¹⁹F NMR (right)

Figure S9: linewidth analysis of [C₂mmor][TFSI]: static ¹H NMR (left) and ¹⁹F NMR(right)

Figure S10:linewidth analysis of $[C_{(i3)}mmor]$ [FSI]: ¹H static NMR (left) and ¹⁹F NMR (right)

Figure S11:linewidth analysis of $[C_{(i3)}mmor]$ [TFSI]: ¹H NMR(left) and ¹⁹F NMR(right)

Figure S12: solid-state NMR, Temperature vs relative intensity percentage values for $[C_2mmor][FSI]$ salt: ¹H NMR (left) and ¹⁹F NMR (right). A quantitative analysis can be made of the fraction of relatively static and more dynamic cations at the respective temperatures.

Figure S13: solid-state NMR, temperature vs relative intensity percentage values for [C₂mmor][TFSI] salt: ¹H NMR (left) and ¹⁹F NMR (right).

Figure S14: solid-state NMR, temperature vs relative intensity percentage values for [C_(i3)mmor][FSI] salt: ¹H NMR (left) ¹⁹F NMR (right).

Figure S15: solid-state NMR, temperature vs relative intensity percentage values for [C_(i3)mmor][TFSI] salt: ¹H NMR (left) ¹⁹F NMR (right).